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An effective health status assessment (HSA) for pump station units (PSUs) is crucial for accurately 
determining their real status and providing technical support for safe operational decisions. Due to the 
limitations of existing data-driven HSA methods, which primarily focus on the temporal dependencies 
of monitoring signals and fail to explore the complex interconnections among signals comprehensively. 
Moreover, when constructing performance degradation indices based on linear differences, these 
methods do not effectively integrate heterogeneous signals, resulting in an incomplete and inaccurate 
assessment of the overall system degradation. This paper proposes a real-time comprehensive HSA 
method for PSUs based on multi-source heterogeneous uncertainty information. Initially, a health 
benchmark model (HBM) is built using CrossGNN, which possesses cross-scale and cross-variable 
interaction capabilities, to precisely capture the temporal dependencies and dynamic relationships 
among variables in monitoring signals. Subsequently, key measurement points that reflect the 
operational status of the PSUs are identified through correlation analysis to establish multi-source 
evaluation indices. Then, considering the uncertainty in signal changes, a novel health degradation 
index (HDI) is developed using Mahalanobis distance (MD) and the Gaussian Cloud Model (GCM) to 
analyze changes in unit status. Furthermore, a weighting calculation method based on the non-
dominated sorting genetic algorithm (NSGA-II) is proposed to establish a real-time comprehensive 
health index (RCHDI) for a thorough assessment of PSUs status. Finally, the effectiveness of the 
proposed method is validated through a case study using data from a pump station in the South-
to-North Water Diversion Project in China. The results show that, compared to other studies, the 
proposed method significantly improves the stability and smoothness of the state assessment curve, 
with increases of 21.5% and 47.1% respectively, providing a new perspective for comprehensively 
assessing the health status of PSUs.V

Keywords  Pump station units, Health status assessment, Spatio-temporal Interaction, Weight optimization, 
Comprehensive health degradation index

Introduction.
Pump station engineering is pivotal within hydraulic engineering, serving essential roles such as flood 

control and drainage, and thereby demanding high operational safety standards1. The machinery units, central 
to pump station operations, are crucial for the stable functioning of water management systems2. Given this 
context, prioritizing the health and efficiency of PSUs is imperative3. Currently, maintenance of PSUs primarily 
relies on post-failure repairs and scheduled preventative measures. This approach leads to simultaneous under-
maintenance and over-maintenance, escalating safety risks and maintenance costs4. To address these issues, a 
shift from reactive to proactive maintenance is necessary5. Accordingly, the assessment of PSUs health status 
has emerged as a significant research area6, where effective Health Status Assessments (HSAs) can facilitate the 
development of reliable maintenance schedules, thus preempting potential failures.

Health assessment methods for equipment primarily fall into three categories: physics-based, knowledge-
driven, and data-driven approaches. The mechanical structure of PSUs is complex, and the mechanisms 
of degradation in complex environments have not been fully revealed. Moreover, the degradation of key 
components is intricate, with interdependencies that complicate accurate model development7. Knowledge-
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driven models rely on expert experience to map degradation characteristics to health states but are susceptible 
to subjective biases. With advancements in sensor technology, PSUs are equipped with numerous sensors to 
monitor operational status in real-time8, making data-driven methods increasingly popular. Without the 
involvement of human experience, automatic feature extraction and dimensionality reduction are performed on 
operational data to construct a nonlinear relationship between degraded features and health status, achieving 
modeling of device performance degradation9.

HSA using data-driven methods typically involves three steps: First, a HBM is constructed based on monitoring 
data collected during the unit’s healthy state. Next, this HBM is used to predict real-time monitoring signals. 
Finally, a HDI curve is constructed from the differences between predicted and actual signals to characterize 
the equipment’s degradation process10–13. Consequently, the HBM’s fitting ability in complex conditions and 
the scientific rigor in constructing the HDI are crucial for the effectiveness of HSA14. An et al. employed Radial 
Basis Function Neural Networks and grey theory to map the relationships between head, power, and vibration 
signals15. Fu and colleagues developed a model using Aggregated Ensemble Empirical Mode Decomposition and 
Optimized Support Vector Regression (SVR) to fit the relationship between the guide vane and PSUs vibration 
signals16. However, previous studies often focused solely on single-component monitoring data, neglecting 
the impact of various components on overall health, which can lead to the loss of critical state information 
and incomplete health assessments of units17. Consequently, recent research has explored integrating multi-
source monitoring data. Shan et al.7 utilized a combined multi-objective optimization backpropagation neural 
network (BPNN) to learn the relationships between multidimensional monitoring parameters and multiple 
vibration signals; Zhang et al.14 developed a deep HBM based on a multi-head self-attention network (MSNN) 
to study the functional relationships between multidimensional monitoring parameters and multiple vibration 
signals. These studies considered multidimensional monitoring indicators but focused only on their temporal 
characteristics, overlooking internal spatial dependencies, and the inherent characteristics and dynamic changes 
among indicators, making simple averaging insufficient to accurately reflect the degradation state of the PSUs. 
Moreover, in constructing the HDI, many models have not adequately considered the overall distribution and 
uncertainty of data. For instance, Ye et al.18 processed monitoring data using Long Short-Term Memory networks 
combined with autoencoder technology to generate reconstruction errors for calculating HI, but did not address 
the uncertainty in data distribution. Additionally, while Duan et al.19 considered uncertainties by fitting the 
probability density distribution of monitoring data using Gaussian Mixture Models (GMM) to construct HI, the 
choice of model parameters and the comprehensiveness of data distribution remain challenging.

Despite the merits of existing methods, they still present several limitations: (1) When constructing models 
from multidimensional monitoring data, only the temporal characteristics of parameters are considered, ignoring 
the complex spatial dependencies formed by inter-variable connections. This oversight limits the model’s ability 
to fully learn from the interactive multidimensional data. Additionally, real-world operational anomalies, human 
interference, and equipment malfunctions introduce noise that degrades data quality, resulting in reduced 
accuracy of the HBM and unstable assessment outcomes. (2) Given the variability of PSUs operating conditions, 
learning solely from signal amplitude overlooks the randomness and uncertainty of monitoring signals. When 
constructing the HDI based on deviations, the overall distribution of data is not considered, leading to significant 
errors in the HDI. (3) The use of a comprehensive evaluation index, RCHDI, to assess the overall health of the 
unit is complicated by the inherent characteristics and dynamic changes of different indicators, which vary in 
real-time. Simple averaging methods fail to accurately depict the degradation state of the PSUs.

To more accurately and reliably assess and predict the health status of PSUs, this study proposes a health 
state assessment method for PSUs based on the integration of spatiotemporal and uncertainty information. 
The proposed method aims to overcome the three aforementioned drawbacks. First, it establishes an HBM by 
mining the potential spatiotemporal dependencies in multidimensional monitoring data of pump station units 
across scales and variables. Second, it introduces a HDI construction method based on MD and GCM. Finally, 
it employs a dynamic multi-objective optimization algorithm for weighting calculations combined with a sliding 
window mechanism to dynamically update weights, ultimately yielding an RCHDI that thoroughly characterizes 
the health state of the unit. The main contributions are summarized as follows:

1) Construction of multi-scale time series with varying noise levels using cross-scale interactive GNN to 
capture clearer trends and weaker noise time scales, and cross-variable interactive GNN to capture dynamic 
correlations between different variables. This improves the robustness of the Health Benchmark Model to 
industrial noise and addresses the complex spatiotemporal dependencies in multidimensional monitoring data 
that existing methods fail to handle adequately.

2) Introduction of an HDI construction method based on MD-GCM that considers the uncertainty of actual 
industrial monitoring signals. The MD incorporates the intrinsic structure and distribution characteristics of 
data, enhancing the sensitivity of the HDI to changes in the health state of the unit.

3) Application of a dynamic multi-objective optimization algorithm to determine indicator weights for 
the RCHDI, eliminating the need for manual criteria setting or reliance on expert experience. This reveals the 
intrinsic properties and real-time dynamic changes of each HDI, thereby comprehensively characterizing the 
variations in the unit’s health state.

The remainder of this paper is organized as follows: Sect.  2 provides a brief introduction to the relevant 
foundational knowledge. Subsequently, Sect. 3 elaborates in detail on the framework of the proposed technique. 
Section 4 discusses the engineering applications and comparative analysis of the method. Finally, the study is 
discussed and summarized in Sects. 5 and 6, respectively.
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 Background knowledge
 Graph neural network
Graph Neural Networks (GNNs) are a category of deep learning models specifically designed to handle non-
Euclidean graph structure data. These models utilize the topology of graphs to learn meaningful representations 
of nodes and edges. Through a message-passing mechanism, they effectively propagate and aggregate 
information along the edges of the input graph, enabling the acquisition of expressive node representations20–22. 
The operation of GNNs primarily includes three fundamental steps: message passing, information aggregation, 
and node updating.

First, at the l − th layer of the graph, for each edge (i, j), GNN computes the message ml
ij = Message

(
hl−1
i , hl−1

j

)
 

using a predefined message function, where ​ hl−1
i ​and hl−1

j respectively represent the states of nodes i and j 
from the previous layer, simulating the process of information transfer between nodes. Next, for each node i
, GNN aggregates the information transmitted by its neighborhood N (i) through the aggregation function 
Aggregation ml

i = Aggregation
({

ml
ij|j ∈ N (i)

})
to form a comprehensive message representation. Finally, 

GNN updates the vector representation of each node iusing the update function Update hl
i = Update

(
ml

i, h
l−1
i

)
, which takes the aggregated message and the current node’s representation as inputs to update the representation 
of each node. The final node zi = hl

iembedding representation is zi = hl
i​, which is the hidden representation 

obtained from the last layer of GNN. After obtaining the node embeddings, GNN uses the READOUT function 
to learn the representation of the entire graph hG = READOUT ({zi|i ∈ G}), where hGis the representation 
of graph G.

Gaussian cloud model
As system complexity increases, the issue of uncertainty becomes more prevalent23. In response to this, 
researchers have proposed using rough set theory and fuzzy set theory to address this problem. Rough set 
theory expresses the uncertainty of things through upper and lower approximations, while fuzzy set theory 
introduces the concept of membership degrees to describe the degree of uncertainty in objects. However, these 
methods often rely on expert experience or prior knowledge when determining membership functions and 
degrees, leading to significant subjectivity and difficulty in accurately reflecting real-world issues24. In contrast, 
the GCM25,26, an implementation of cloud modeling, quantifies the digital characteristics of a qualitative concept 
through three parameters: expectation (Ex), entropy (En), and hyper-entropy (He). This model integrates 
fuzziness and randomness, achieving a mapping between qualitative and quantitative aspects, and scientifically 
handles uncertainty issues without being constrained by expert subjective judgments.

The definition is as follows: Assume C (Ex,En,He) is a qualitative concept on the quantitative domain U
, and a single random instantiation x (x ∈ U)satisfies x ∼ N (Ex,En′), where Ex is the expected value and 
En′  is the variance of a Gaussian distribution; simultaneously, it satisfies En′ ∼ N

(
En,He2

)
, where En is the 

expected value and He2 is the variance for En′ . The association degree the association degree µ c (x) ∈ [0,1] 
of xwith respect to C  satisfies:

	 µ c (x) = e−(x−Ex)2/2(En′ 2)� (1)

The distribution µ c ( x) in the domain U  is called a membership cloud, which can be characterized by the 
GCM, and each (x, µ ) is referred to as a cloud droplet. Here, the expected value Ex is the center of the cloud 
droplets’ spatial distribution in the domain and represents the point value that best characterizes concepts such 
as equipment status levels; the entropy En measures the uncertainty of the status level concept, determined 
by the degree of dispersion and ambiguity; the hyper-entropy He represents the uncertainty of the entropy, 
corresponding to the thickness of the cloud droplets.

NSGA-II algorithm
The Non-dominated Sorting Genetic Algorithm (NSGA) is a genetic algorithm based on the concept of Pareto 
optimization, facilitating decision-makers to make choices based on different preferences 27. The NSGA-
II algorithm has been proven to effectively solve complex multi-objective problems across various technical 
fields. For instance, in the field of structural engineering, the algorithm was applied to optimize the vibration 
control system of a 20-story steel structure by adjusting actuator placements and tuning, which not only 
significantly enhanced system performance but also reduced computational costs and accelerated convergence 
to the Pareto front28. In the realm of energy management, NSGA-II was used for a multi-objective optimization 
model targeting low-carbon, economical, and safe operation of Ultra-High Voltage Direct Current (UHVDC) 
systems. It outperformed other mainstream algorithms by significantly reducing carbon losses and trading 
costs, achieved through improved population initialization and crowding calculation strategies29. Additionally, 
in the optimization of battery thermal management systems, NSGA-II effectively lowered the highest system 
temperatures, temperature variance, and pressure drops by adjusting the battery spacing, cooling tube diameter, 
and inlet velocity, thus enhancing the cooling efficiency and economic viability of the system30.

The widespread adoption of the NSGA-II algorithm in these complex multi-objective problems is primarily 
due to its effective balance between solution diversity and quality. This algorithm maintains population diversity 
through fast non-dominated sorting and crowding distance calculations, ensuring that the search process covers 
a broad area of the solution space. Moreover, NSGA-II elitism strategy ensures that superior solutions are not lost 
during the evolutionary process, thus enhancing the algorithm’s convergence speed and the quality of optimized 
solutions. This effectively improves the algorithm’s computational speed and robustness, converging to high-
quality solutions that meet both optimization goals and constraints31. The specific steps of NSGA-II are 32,33:
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	(1)	� Initialization randomly generates P with population size N , and set the evolutionary generation GEN = 1
.

	(2)	� Determine whether the first generation subpopulation has been generated. and add 1 to the number of 
evolutionary generations if it has been generated. Otherwise, the offspring Qt of size N  is generated by 
selection, crossover, and mutation, and the parent Pt is combined with the offspring Qt to generate a pop-
ulation size Rt of 2N .

	(3)	� Fast non-dominated sorting. Non-dominated sorting is performed on Rt to obtain the non-dominated 
hierarchy (F1, F2, . . . , Fn). Then, put the members in the non-dominated layers F1 to Fn into S, in order.

	(4)	� If the number in S, is equal to N , there is no need to perform the following operation, directly Pt + 1 = St

, and repeat steps (2) and (3). If the number in St is greater than N , the crowding distance should be cal-
culated.

	(5)	� Combining the parent population Ptand offspring population Qt, a population Rt = Pt ∪ Qtof size 2N
can be obtained, as shown in the Fig. 1. For population Rt, the nondominated layers are sorted in ascend-
ing order by the rank number after the nondominated sorting. The individuals in each layer are sorted in 
descending order by crowding distance. Then, the first N  individuals are selected to form the new parent 
population Pt + 1.

	(6)	� Finally, repeat steps (3) to (5) until the algorithm runs to the maximum number of iterations.

HCA experimental method
This paper proposes a health assessment method for PSUs based on multi-objective dynamic optimization of 
comprehensive health degradation indices: considering multi-variable spatio-temporal fusion and uncertainty 
distribution.

Figure 2 describes the method flow framework. First, to address the issue of insufficient mining of spatio-
temporal dependencies in multidimensional monitoring data, an HBM based on cross-scale and cross-variable 
interactive graph neural networks is established; secondly, considering the randomness of monitoring signal 
changes and distribution differences, the MD-GCM is used to construct a HDI from multi-source monitoring 
indicators; finally, to comprehensively characterize the health status of the unit in real time, a dynamic multi-
objective optimization algorithm is used to integrate multiple HDIs to generate the RCHDI.

HBM based on interactive GNN
This method aims to accurately mine spatio-temporal dependencies by overcoming noise interference in 
multidimensional time-series data. Initially, multisensor monitoring data, influenced by internal sensor 
correlations, exhibit complex nonlinear coupling and heterogeneous distribution of samples. Furthermore, 
various monitoring signals in the PSUs, such as voltage, current, and temperature, dynamically interact and 
collectively impact the operational state of the pump station units. Additionally, noise in sensor data increases 
the complexity of predictions. Therefore, effectively handling unexpected noise in multidimensional monitoring 
data of the pump station and accurately capturing sequence dependencies and dynamic correlations are key to 
constructing the HBM. The process of constructing the health model for the pump station units is shown in 
Fig. 3.

Adaptive multi-scale recognizer
Design an adaptive multi-scale recognizer using Fast Fourier Transform (FFT)34to extract key frequency 
components from multidimensional time series. By analyzing the average amplitude of these frequencies, 
identify the periodic variations in the data, and based on this, reconstruct time series representing different 
noise levels.

	
Â (x) =

1

D

∑ D

d=1

√
(F (x)d)

2 + (F (x)d)
∗2� (2)

Here, F (x)d represents the d-th complex result of the signal x after the FFT transformation, (·)∗denotes the 
complex conjugate. The sum of the squares of the real and imaginary parts is computed for each frequency 
component. Following this, the square root is taken to derive the amplitude, which is then averaged across all 
D amplitudes.

Select the top S frequencies with the highest amplitudes {f1, f2, . . . , fs}, calculating their respective lengths 
{p1, p2, . . . , ps} = { L

f1
, L
f2
, . . . , L

fS
} , thus obtaining time series of S different scales.

	 Xs = AvgPool(X)kernel=stride=ps� (3)

Then, perform average pooling on each time series to capture sequence features from coarse to fine scales. 
Concatenate all scale time series to obtain X ′ ∈ RL′ ×D. After an expansive transformation to X ′ ∈ RL′ ×D× C

, input into the cross-scale interaction module.

Cross-scale interaction
Based on the scale features extracted in Sect. 3.1.1, initialize and configure a cross-scale temporal correlation 
graph. Each node in the graph represents different time points processed by the adaptive multi-scale recognizer. 
By analyzing the periodic characteristics of the nodes and selecting neighbors based on the correlations between 
them, construct a cross-scale graph35. Additionally, consider the temporal sequence to ensure that nodes are 
connected both to scale-related neighbors and to immediately adjacent nodes in time.

Scientific Reports |        (2024) 14:24096 4| https://doi.org/10.1038/s41598-024-74651-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


A cross-scale graph in the time dimension is represented as Gscale = (V scale, Escale), with nodes denoted by 
Vscale = V scale

1 , V scale
2 , . . . , V scale

L′ . To reduce the impact of noise on association weights, two learnable vectors, 
vecscale1 and vecscale2  are used to initialize the relationship matrix between time nodes through the outer product 
form.

In constructing a cross-scale temporal correlation graph, a neighbor selection strategy based on the periodic 
characteristics of each time node is employed. The most strongly associated nodes from all possible neighbors 
are chosen to ensure that the connections in the graph accurately reflect the actual correlations between nodes.

	 Nscale
s

(
V scale
i

)
= argTop− ks

(
Escale

s

(
V scale
i

))
� (4)

Fig. 1.  NSGA-II procedure.
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Here, argTop− ks (·) represents the operation of extracting the top k nodes with the highest relevance weights, 
and Escale

s

(
V scale
i

)
∈ RL(s) denotes the relevance weight of the time node V scale

i  at scale s.
For each time node V scale

i , in addition to selecting neighbors based on scale sensitivity, it is also necessary to 
consider the temporal order of the nodes to ensure connections are maintained with the immediately preceding 
and following nodes:

	 Ntrend
(
V scale
i

)
=
{
V scale
i

∣∣ |i− j| ≤ 1, scale
(
V scale
i

)
= scale

(
V scale
j

}
� (5)

Fig. 2.  Framework of the proposed HSA method.
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Here, scale (·)denotes the scale of a time node. The trend neighbor set of the time node V scale
i  consists of its 

immediate adjacent time nodes (i, e., |i− j| ≤ 1), where |i− j| ≤ 1 ensures that only temporally adjacent 
nodes are selected, i.e., the previous and next time points.

In the cross-scale temporal correlation graph, each time node V scale
i has a neighborhood consisting of scale-

sensitive neighbors Nscale (Vi) and trend neighbors Ntrend (Vi). These combined neighborhoods update the 
relevance weight matrix Escale to reflect the connections between nodes. Information propagation is executed 
within this graph using GNN, where N  stacked layers output the normalized time node features Ht,N

:,: .

Cross-variable interaction
This module leverages the temporal node features obtained from the cross-scale interactions described in 
Sect.  3.1.2 to integrate multi-time-scale information, supporting deep interactive analysis between variables. 
Here, variables act as graph nodes, and relationships and information transfer between nodes are defined 
through GNN. Homogeneous and heterogeneous neighbors, as well as normalized weights, are set to precisely 
capture the complex dynamics between variables.

The cross-variable graph is denoted as Gvar = (V var, Evar), and Evaris initialized by generating two latent 
vectors vecvar1 and vecvar2 :

	 Evar = Softmax (ReLU (vecvar1 × vecvar2 ))� (6)

Decompose homogeneous and heterogeneous node sets, select the Kvar
+ nodes Nvar

+ (Vi) = Top−Kvar
+ (Evar(Vi )) 

with the strongest relevance to each variable node V var
i as homogeneous (positive) neighbors, and choose the 

Kvar
− nodes Nvar

− (Vi) = Bottom−Kvar
− (Evar(Vi )) with the weakest relevance as heterogeneous (negative) 

neighbors.
For each variable node the V var

i weights of its homogeneous and heterogeneous edges are normalized 
separately. Subsequently, the weights are updated to construct a cross-variable graph with distinct homogeneous 
and heterogeneous edges.

Cross-variable interactions are facilitated through the propagation of information on the cross-variable 
graph using a GNN. Each variable node’s feature update incorporates the influence of its positive and negative 

Fig. 3.  PSUs HBM construction process.
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neighbors. The propagation process involves stacking N layers, ultimately outputting the normalized variable 
features Hvar,N

:,i .
Multistep Prediction: The output features from the cross-variable interaction module are fed into two 

multilayer perceptrons (MLPs). The first MLP is used to map the time dimension of the features from T  to 
1, while the second MLP maps the time dimension from the historical input sequence length L′  to the target 
output sequence length.

	 {X̂t
1, . . . , X̂

t
D}

L+T

t=L+1 = MLPT?MLPC (Hvar)?� (7)

In the formula, D is the number of variables, L is the length of the input sequence, and T  is the prediction step 
size.

Health degradation index construction
Using GCM, the amplitude variations and uncertainty information of monitoring signals are quantified, revealing 
the randomness and uncertainty of signal changes. Additionally, to minimize the impact of signal distribution 
differences on the accuracy of distance measurements, the deviation between the real-time operational state 
and the healthy operational state GCMs is calculated using MD to construct the HDI. This approach avoids 
the influence of model hyperparameters and enhances the sensitivity of the HDI to changes in the PSUs health 
status.

GCM modeling process
In the process of GCM modeling, the key to quantifying the dynamic changes of signals lies in understanding 
the interaction of signal components: amplitude, phase, and frequency. By defining the base component (BCG), 
we can effectively analyze how these components interact within the composite component C (Ex,En,He), 
where Ex、En、He are the signal’s amplitude, phase, and frequency respectively. Furthermore, by defining 
the frequency composite component (FCG) as (Ex,En,He), we establish a comprehensive description of the 
interaction, facilitating the comparison and differentiation between GCM1 and GCM2.

The GCM modeling process of PSUs vibration is shown in Fig. 4: (1) Convert the input quantitative sample 
value xi into numerical features Ex,En,He; (2) Generate a normal random number En′  with an expected 

Fig. 4.  GCM modeling process of PSUs vibration signals.
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value of En and a standard deviation of He; (3) Generate a normal random number xi with an expected value 
of Ex and a standard deviation of En′ ; (4) Obtain the degree of certainty that x belongs to qualitative concept 
C  based on the formula µ i = exp

[
−(xi−Ex)2

2En′ 2i

]
; (5) Repeat the above calculation process N  times to generate a 

cloud with N  cloud droplets, N  taken 3000 times.
To demonstrate the impact of these three factors on GCM, the qualitative idea is that the vibration of the pumping 

station unit is approximately 12.77µ m, represented by a Gaussian cloud as C (Ex,En,He) = (12.77,1.74,0.28)
, as shown in Fig. 5 (a). The x-axis in the figure represents the value of cloud droplets, while the y-axis represents 
the degree to which cloud droplets belong to qualitative concepts. From Fig. 5b-d, it can be seen that Ex affects 
the central axis of the cloud, En changes the width of the cloud, and He affects the thickness of the cloud.

Building HDI based on MD-GCM
The deviation between the theoretical health status signal and the measured signal indicates the difference 
between the actual and baseline health status of the PSUs, providing a basis for constructing the HDI. Although 
directly comparing differences between two signals is a conventional method widely used in one-dimensional 
linear data4, this approach has limited effectiveness in handling complex multi-source heterogeneous signals. To 
address this issue, multi-dimensional distance measurement methods such as Euclidean distance36 and cosine 
distance 37 have been used to quantify signal differences. In more complex evaluations using cloud models, it 
is also necessary to analyze the interaction and statistical dependence of characteristic values in addition to 
considering the direct differences in model characteristic values. The MD can improve the sensitivity of the HDI 
to changes in unit health by considering the correlations and statistical characteristics of these values38.

Using MD calculate the deviation between the real-time monitored GCM1 and the health-predicted GCM2. 
Each GCM has three numerical characteristics (Ex,En,He). Assuming that GCM1 (Exi, Eni,Hei) and 
GCM2 (Exj, Enj,Hej) are mapped into a three-dimensional space, the distance diatance (I|J) between the 
two points would be:

Fig. 5.  Examples of GCM and its shape under different numerical characteristics. (a) Examples of GCM; (b) 
GCM has different Ex; (c) GCM has different En; (d) GCM has different He
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	 Dij =

√
(I − J)TS−1 (I − J)� (8)

Here, vectors I = (Exi, Eni,Hei) and J = (Exj, Enj,Hej), while matrix S−1 is the inverse of the covariance 
matrix S formed by vectors I  and J .

	 HDIi = e−(Dij)
−1

� (9)

HDIi represents the HDI of key characteristic variables. A larger distance Dij = diatance (I|J) indicates a 
higher degree of health degradation in the unit; conversely, a smaller distance indicates a lower degree of health 
degradation in the unit.

Multi-source HDI fusion based on multi-objective optimization
The operational condition of the unit changes in real time, and the impact of each monitoring parameter on 
the unit’s health status also varies over time. Traditional comprehensive evaluation methods typically treat 
each indicator with equal weight or use an entropy-based weighting method 39. However, due to the unique 
inherent and dynamic characteristics of different indicators, simple weighted fusion does not fully reflect the 
actual impact of each indicator on the evaluation results. To address this issue, this study employs the NSGA-II 
algorithm to solve for the optimal weight vector and constructs the RCHDI by weighted fusion of multi-source 
HDIs. This allows for a more comprehensive and real-time representation of the health status changes in PSUs.

Objective functions and constraints
Information entropy is a measure of the randomness or uncertainty of a system, used to ensure the diversity and 
balance of weight distribution, such that no single indicator excessively dominates the RCHDI. For the weighted 
HDI data, information entropy f1 (x) is defined as:

	 f1 (x) = −
∑ n

i=1
Pilog (pi)� (10)

Where, Pi represents the proportion of the i-th feature’s weight relative to the sum of all weights, calculated as 
Pi =

xi∑ n
j=1xj

. In this equation, xi is the weight of the i-th feature, and n is the total number of features.
Measuring the variance of weighted health indicators can assess the variability of the health index over time. 

Higher variance indicates that the health status may be unstable; appropriate weight configurations can reduce 
f﻿luctuations and enhance the stability of health assessments. Variance f2 (x) is defined as:

	
f2 (x) = var

(
n∑

i=1

xi ·HDIi

)
� (11)

Where, var represents the calculation of variance.
Negative covariance is the negative value of the covariance between two variables. Covariance is a statistical 

measure used to assess the direction and extent of the joint variation between two variables. By minimizing 
negative covariance in optimization, the positive correlation between the comprehensive health index and 
key health indicators can be enhanced, thereby improving the accuracy and robustness of health assessments. 
Negative covariance f3 (x) is defined as:

Let the comprehensive health index fbe calculated from the weighted health indicators:

	
f =

n∑
i=1

xi ·HDIi� (12)

The objective function for negative covariance f3 (x) calculates the negative sum of the covariances between the 
comprehensive health index and all key health indicators, as follows:

	 f3 (x) = −
∑ n

i=1
Cov (f,HDIi)� (13)

where the covariance is calculated as:

	
Cov (f,HDIi) =

1

T − 1

∑ T

t=1

(
ft−

−
f

)(
HDIit−

−
HDIi

)
� (14)

where: T is the number of time points; ft is the value of the comprehensive health index at time point t;
−
f is the 

mean of the comprehensive health index; 
−

HDIi is the mean of the i-th key health indicator.
Combining entropy, variance, and negative covariance according to equations (10)、(11)、(13), a multi-

objective function can be constructed to determine weights for critical health indicators, with the following 
constraints added:
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



min [f1 (x) , f2 (x) , f3 (x) ] n
i=1xi = 1

xi ≥ 0, i = 1,2, . . . , n
� (15)

Where, f1 (x) represents entropy, f2 (x) denotes the variance function, f3 (x) stands for the negative covariance 
function.

Finally, Optimize the multi-objective function in Eq. (15) using the NSGA-II algorithm from Sect. 2.3 to find 
the optimal weight vector for evaluating indices.

Engineering application and analysis
Data description
The pump station discussed in this study is a key water transfer site within the Middle Route of the South-to-
North Water Diversion Project. The total design flow rate of the pump station is 20.00 m³/s, with each unit 
designed for 6.67 m³/s. It employs four units of vertical axial flow pumps of model 1600ZLQ6.67-1.60, one of 
which is standby. The design head is 2.21 m, with each pump unit paired with a motor rated at 355 kW. The total 
installed capacity of the pump station is 1420 kW. The station is powered by a dual-loop 10 kV electrical supply.

Since it’s operation, the Pump Station has accumulated a large amount of available historical time series data. 
This data is generated and collected by the industrial control system, stored in the form of time series data for 
industrial control points, with frequencies ranging from 100ms to 1000 ms. For a view of some components 
and sensor arrays, please refer to Fig. 6.

The main units monitored at the pump station include the pumps and motors. The types of monitoring data for 
the unit are listed in Table 1 and include: motor vibration、 pump vibration、coupling noise、pump noise、stator 
winding temperature、thrust bearing temperature、upper and lower guide bearing temperatures、stuffing box 
temperature、lower oil sump oil temperature、upper oil sump oil temperature、lower oil sump oil level、upper 
oil sump oil level、current、voltage、active power and unit vibration amplitude, totaling 42 dimensions.

Data preprocessing
During the period from Jan 20, 2023, to Oct 11, 2023, the industrial control system of the pump station collected 
204,559 real measurement values. However, the actual measured data significantly differed from experimental 
simulation data, showing noticeable data anomalies and rapid shifts. According to the 3 Sigma principle of the 
normal distribution, data points exceeding three times the standard deviation from the mean were defined as 
outliers and replaced with three times the standard deviation. Additionally, the data was down sampled to 1 
sample per minute and filtered to remove invalid data due to sensor malfunctions and other reasons. As a result, 
the final dataset consisted of 101,186 valid annotated data points.

To enhance the accuracy and timeliness of health assessment for the pump station units, it is essential to 
leverage spatiotemporal complementarity among parameters and simplify redundant ones when constructing 
the health assessment model. In health assessment, operational states are commonly described using active 
power information. Therefore, key monitoring parameters most correlated with active power are selected as 
health assessment indicators. The random forest algorithm40 is employed to assess feature importance and 
conduct feature selection. The Gini index measures the contribution of a feature in reducing the impurity of the 
model, effectively identifying the key features that have the most impact on decision-making. The Gini index 
(importance contribution) of each data feature is shown in Table 2.

From Table 2, it can be observed that there is a significant variation in the Gini index contributions of each 
monitoring parameter. The Gini index contribution of thrust bearing temperature is highest, approximately 
0.5321, while the stator winding temperature has the lowest contribution, around 0.0025, indicating minimal 
impact on the operational power of the PSUs. To better reflect the actual health condition of the units, based 
on the feature importance ranking, the final selection of 6 monitoring features with contribution values greater 
than 0.02 are chosen as key health assessment indicators: Thrust Bearing Temperature, Motor X-axis Vibration, 
Lower Guide Bearing Temperature, Technical Water Pump Temperature, Pump X-axis Oscillation, and Upper 
Guide Cooling Water Temperature.

Health baseline model (HBM) evaluation
To validate the superior performance of the proposed graph-based Health Baseline Model (HBM), a comparative 
experiment was designed. The comparison models include Autoformer 41, Informer42, Dlinear43, and MSGNet 
44. The initial learning rate was set to 0.001, and the training period was set to 300 epochs. The training data was 
split into 70% for training and 30% for testing. The data was normalized in batches before being loaded into the 
models for training. Performance evaluation was conducted using three metrics: Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and Mean Squared Error (MSE).

From Table 3, compared to the MSGNet model, the CrossGNN model showed reductions of 0.04, 0.41, and 
1.45 in the MAE, RMSE, and MSE metrics respectively, achieving the best results in both MAE and RMSE. 
This indicates that the model has the lowest average error and highest stability. Compared to Transformer 
models based on attention mechanisms, graph representation learning better captures the internal relationships 
within high-dimensional time series parameters, effectively enhancing the capability to represent states and 
significantly improving task accuracy. Experimental results confirm the superior performance of the CrossGNN 
model in health monitoring of pump station units.

To reduce the impact of random initialization on accuracy, we conducted ten runs of the same model to 
obtain the mean and standard deviation of performance metrics, as shown in Fig. 7. Multiple tests demonstrate 
that CrossGNN not only offers the highest prediction accuracy but also exhibits higher stability. In the ranking of 
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prediction accuracy on the PSUs dataset, CrossGNN performs the best, followed by MSGNet, Dlinear, Informer, 
and Autoformer. Overall, Autoformer and Informer models, which are based on attention mechanisms, tend to 
over-rely on contextual information and are susceptible to noise interference, making it difficult to accurately 
capture the intrinsic information of coupled variables, resulting in significant prediction errors. In contrast, 
models based on graph neural networks show minor losses but greater variability in accuracy. CrossGNN with 
its shortest boxplot length and lowest bottom, demonstrates optimal precision and stability. This is attributed 
to its ability to learn dependencies across different scales and invariant relationships between homogeneity and 
heterogeneity among variables, which enhances the model’s robustness to noise.

Construction of real-time comprehensive health degradation index
Construction of health degradation index
With the completion of the HBM, the real-time operational status’s 42-dimensional monitoring parameters are 
input into the model, and the key monitoring parameters {Thrust Bearing Temperature, Motor X-axis Vibration, 
Lower Guide Bearing Temperature, Technical Water Pump Temperature, Pump X-axis Oscillation, Upper Guide 
Cooling Water Temperature} are used as output labels, representing theoretical health prediction values.

The assessment sample set consists of valid data collected from Jun 1, 2023, to Oct 1, 2023. Data was gathered 
every minute, with each data point representing one minute. Every 60 data points were used to generate one 
GCM as a set of assessment samples, totaling 2500 assessment units. For each key measurement point, the HDI 
is calculated separately: Thrust Bearing Temperature HDI (HDI_tbt)、Motor X-axis Vibration HDI (HDI_mxv)

Fig. 6.  Schematic diagram of PSUs components and sensor array on site.
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、Lower Guide Bearing Temperature HDI (HDI_lgbt)、Technical Supply Pump Temperature HDI (HDI_tsput)
、Pump X-axis Swing HDI (HDI_pxs)、Upper Guide Cooling Water Temperature HDI (HDI_ugcwt).

Figure  8 illustrates the Health Index (HDI) trends for 6 key monitoring parameters of the pump station 
unit. While local fluctuations are present, there is an overall upward trend, indicating changes in the unit’s 
health status over time. The HDI for HDI_mxv and HDI_lgbt shows a gradual increase, with HDI_mxv rising 
from approximately 0.20 to 0.56, and HDI_lgbt increasing from about 0.10 to 0.52. This suggests sustained 
stability with minor performance degradation, necessitating regular inspections to prevent structural defects or 
increased wear. In contrast, parameters such as HDI_tbt、HDI_tsput, HDI_pxs and HDI_ugcwt exhibit more 
significant fluctuations. Notably, the HDI_pxs fluctuates widely between 0.20 and 0.47, indicating potential 
issues like improper assembly or mechanical wear. These fluctuations highlight the need for stricter monitoring 
and maintenance strategies.

Model MAE RMSE MSE

Informer 1.6293 9.7417 94.9014

Autoformer 0.4781 10.8632 118.0096

MSGNet 0.1571 1.9696 3.8792

Dlinear 0.2342 2.1498 4.6215

CrossGNN 0.1152 1.5592 2.4310

Table 3.  Comparison of health benchmark model experimental results.

 

Function Importance Function Importance

Thrust bearing temperature 0.5321 Lower guide cooling water temperature 0.0153

Motor X-axis vibration 0.1317 Pump Y-axis swing 0.0099

Lower guide bearing temperature 0.1164 Motor Y-axis vibration 0.0075

Technical supply pump temperature 0.1012 Blade mechanism temperature 0.0039

Pump X-axis swing 0.0465 Pump oil tray temperature 0.0028

Upper guide cooling Water temperature 0.0226 Motor lower oil level 0.0025

Table 2.  The gini index contributions of each data feature.

 

Symbol Monitored parameters Symbol Monitored parameters

ugbt Upper guide bearing temperature pv Pump vibration

ugott Upper guide oil tray temperature mvx Motor X-axis vibration

ugcwt Upper guide cooling water temperature mlo Motor lower oil level

V Voltage mn Motor noise

I Current muo Motor upper oil level

tbt Thrust bearing temperature myv Motor Y-axis vibration

cpf Cumulative pump flow lgott Lower guide oil tray temperature

swt Stator winding temperature pecr Pump energy consumption ratio

rcf Reverse cumulative flow pep Pump electric power

isf Instantaneous second flow cln Coupling layer noise

bmt Blade mechanism temperature ps Pump swing

p Pump active power pcwp Pump cooling water pressure

mott Maximum oil tray temperature ppf Pump power factor

prp Pump reactive power pbt Packing box temperature

fcwt Frequency converter winding Temperature lgcwt Lower guide cooling water temperature

ps Pump speed lgbt Lower guide bearing temperature

fcc Frequency converter current cwf Cooling water flow

fcp Frequency converter power cwmpp Cooling water main pipe pressure

fcat Frequency converter ambient Temperature tsput Technical supply pump unit temperature

fcv Frequency converter voltage swmpt Supply water main pipe temperature

asp Air System Pressure vpp Vacuum pipeline pressure

Table 1.  Types of monitoring data for unit.
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Overall, continuous monitoring and analysis of these parameters are essential to promptly identify and 
address potential mechanical failures, minimizing unscheduled downtime and ensuring operational efficiency 
and safety.

Construction of RCHDI
Figure 8 shows that the HDI curves for different monitoring indicators vary, indicating that a single indicator 
or average weight cannot provide an accurate and comprehensive response to the overall changes in the unit. 
Therefore, it is necessary to extract different degradation representation information from various signals and 
perform weighted fusion. As described in Sect. 3.3, a multi-objective weight-solving function is constructed 
according to Eqs.  (10), (11), (12), (13), (14) and (15), and solved using the NSGA-II algorithm. The specific 
operations are as follows: the population size is set to 100, with a maximum of 10,000 iterations, and 50 
exponential weight vector individuals are formed as the initial population through random mutation. Individual 
selection is based on the fitness function, and genetic operations are carried out using binary crossover and 
polynomial mutation operators, with a crossover rate of 0.9 and a mutation rate of 0.01, meaning that 1% of 
genes undergo mutation each generation. An elitism strategy is employed, where superior individuals are 
selected through fast non-dominated sorting and crowding distance comparison, ensuring these individuals 
evolve into the next generation. After 40 iterations, the algorithm achieves a Pareto optimal solution set, with the 
optimization results displayed in Fig. 9.

As shown in Fig.  9, f1 (x) represents entropy, f2 (x) denotes the variance function, f3 (x) stands for the 
negative covariance function. The non-dominated solutions are highlighted in red, and the best weight vector is 
obtained based on the predefined importance levels, as shown in Table 4.

Figure 10 shows the RCHDI curve calculated using the optimal weights, integrating the characteristics of 6 
key monitoring parameters. It exhibits local fluctuations and a gradually increasing overall trend, consistent with 
the actual health status. This demonstrates that the method proposed in this paper is practical and can accurately 
reflect the actual operating conditions of the unit.

This study uses 6 key monitoring parameters to calculate the RCHDI for a quantitative analysis of the 
health status of PSUs. As shown in Fig. 10, since the start of the operational period, RCHDI has continuously 
deteriorated, gradually increasing from 0.1 at the beginning of the evaluation period to 0.4. This change indicates 
that the degradation of thrust bearings, technical supply pumps, pump rotors, and upper guide bearings has led 
to a decline in the overall health of the unit. Particularly after a period of relative stability in the data between 
1000 and 1500 days, the sharp rise in the RCHDI index highlights the necessity for urgent maintenance. 
The comparison between the original weighted data and the smoothed data further confirms the long-term 
degradation trend of the equipment’s health and effectively reduces the impact of short-term fluctuations on the 
health assessment. Although the HDI increases with operational time, typically, degradation indicators can be 
restored through maintenance and servicing once a certain level of degradation is reached. It is important to note 

Fig. 7.  Comparison of health benchmark prediction model performance.
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that the data collected in this study did not include maintenance periods, so no regression phenomenon in HDI 
indices was observed, effectively characterizing the unit’s degradation state.

The continuous trend of health degradation may be caused by wear and tear of internal components, 
insufficient maintenance, or operational errors. This study determines the timing for maintenance interventions 
through periodic evaluations and preset thresholds. When RCHDI exceeds the set threshold, maintenance 
should be triggered immediately. Adjusting the maintenance cycle based on real-time data effectively addresses 
potential faults, optimizing operational efficiency and extending the equipment’s lifespan.

Fig. 8.  Trends in HDI for different monitoring parameters.
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Discussion
Comparison of different distance calculation methods
The effectiveness of the proposed RCHDI construction technique based on MD-GCM was tested by comparing 
it with the RCHDI construction method based on Relative Standard Deviation (RSD)45. The RCHDI based on 
relative deviation is defined as follows:

	
RSD =

|yi − ŷi|
ŷi

× 100%� (16)

In the formula, yi represents the actual measured value of the key monitoring parameter at the current time, and 
ŷi represents the theoretical healthy value predicted by the health benchmark model.

To quantify the impact of deviations calculated using RSD and MD-GCM on the RCHDI curve, STA (Stability) 
and SMO (Smoothness) are used as the criteria for curve stability and smoothness, defined as follows46:

	
STA =

√
1

n

∑ n

i=1

(
Ii−

−
I

)2

� (17)

Variable a b c d e f

Weight 0.2128 0.1812 0.0893 0.4038 0.0156 0.1135

Table 4.  Weights of key monitoring indicators.

 

Fig. 9.  Optimized solution set of NSGA-II algorithm.
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SMO =

∑ n−1
i=1 |Ii+1 − Ii|
n− 1

� (18)

In the formula, Ii and 
−
I represent the value of each point on the curve and its average value, respectively, and 

n represents the number of samples.
Figure 11 depicts the estimated RCHDI curve, while Table 5 illustrates the evaluated STA and STO values. 

The RCHDI curve based on relative deviation exhibits significant fluctuations, whereas the RCHDI curve of 

Fig. 11.  Comparison of different HDI methods.

 

Fig. 10.  Real-time comprehensive degradation curve.
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the proposed method is smoother and more accurately reflects the deterioration process of health conditions. 
Furthermore, the STA and STO of the proposed method are significantly lower than those based on relative 
deviation, with the stability and smoothness of the curve improved by 21.5% and 47.1%, respectively. This is 
because the proposed method quantifies the uncertainty information contained in the amplitude magnitude and 
reflects changes in the amplitude of state monitoring parameters, both quantitatively and qualitatively describing 
the randomness of signal changes, thereby better characterizing the variations in the unit’s health performance.

The smoother RCHDI curve obtained through the proposed method indicates a more reliable and accurate 
assessment of the health degradation process. Enhanced curve smoothness and stability are crucial for early 
fault detection and timely maintenance. This method reduces relative deviation and provides a clearer trend, 
aiding in the development of more effective maintenance plans, thereby extending the operational efficiency and 
lifespan of PSUs. Additionally, the method’s quantitative and qualitative analysis of signal randomness offers a 
comprehensive understanding of health status changes, ensuring full consideration of minor fluctuations and 
major trends, highlighting its superiority in monitoring and maintaining the health of complex mechanical 
systems.

Comparison of different RCHDI weight calculation methods
The proposed multi-objective optimization weight calculation method was tested against traditional methods 
such as weighted average, weighted prior, and weighted variable, as well as multi-objective optimization 
algorithms SPEA2 and OMOPSO.

Based on the results shown in Fig. 12; Table 6, different weighting methods demonstrated consistency in the 
overall trend, all indicating a gradual increase in RCHDI over the assessment period, reflecting the continuous 
degradation of equipment health. In the comparative analysis, NSGA-II demonstrated significant advantages. 
Particularly in comparison with SPEA2 and OMOPSO, NSGA-II displayed superior stability and smoothness. 

Fig. 12.  Comparison of different weighting methods.

 

Methods STA STO

MD-GCM 0.0903 0.0037

RSD 0.1146 0.0070

Table 5.  Stability and smoothness of different HDI methods.
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Specifically, SPEA2 had a stability (STA) of 0.1101 and smoothness (SMO) of 0.0242, while OMOPSO had a 
stability of 0.0978 and smoothness of 0.0186, both higher than NSGA-II (STA = 0.0903, SMO = 0.0137). This 
indicates that the proposed method reduces the impact of short-term fluctuations and more smoothly reflects 
the long-term degradation trend of the equipment. By integrating the inherent attributes and real-time dynamic 
characteristics of each indicator, the proposed method dynamically adjusts weights, better adapting to various 
changes during actual operations, thereby enhancing the reliability and accuracy of the assessment.

In contrast, weighted average, weighted prior, and weighted variable methods use fixed weight configurations 
and show limitations in dynamic equipment states, as they cannot adapt to changes in environmental or 
equipment conditions, potentially leading to inaccurate assessments. The external archive strategy of SPEA2 
and the particle swarm optimization characteristics of OMOPSO lack adaptability in dynamically adjusting 
weights to accommodate real-time data, particularly in fine exploration and multi-objective trade-offs. Although 
capable of capturing the overall trend, they exhibit greater volatility, which could lead to misjudgments or over-
maintenance. Meanwhile, NSGA-II, through its non-dominated sorting and crowding distance mechanisms, 
maintains high efficiency in global searches while quickly converging to the Pareto optimal front, effectively 
balancing the exploration and exploitation of solutions. This advantage enables NSGA-II to more accurately 
reflect the actual health status of equipment in complex multi-objective optimization tasks, particularly when 
dealing with indicators closely related to equipment health.

Conclusion
This paper proposes an innovative method for real-time comprehensive evaluation of PSUs health status based 
on spatiotemporal fusion and uncertainty information, encompassing four steps: HBM construction, key 
monitoring parameter selection, multi-source HI construction, and real-time comprehensive evaluation. The 
results indicate:

(1) Utilizing CrossGNN to construct the HBM not only mitigates sensor data distortion and operational 
noise issues but also captures dynamic correlations and heterogeneity of multi-dimensional variable sequences 
more accurately through cross-scale and cross-variable interactions.

(2) Key monitoring parameters closely related to the operational state are selected using the random forest 
method to build a health HSA index system, providing a more realistic and comprehensive response to the unit’s 
health status. The proposed dynamic multi-objective optimization weighting method integrates the intrinsic and 
dynamic characteristics of each indicator, achieving the lowest STA (0.0903) and SMO (0.0037) values.

(3) The method qualitatively and quantitatively describes the changes in monitoring parameters and their 
uncertainty information. The new RCHDI based on MD-GCM comprehensively reflects changes in the actual 
operational state, improving curve stability and smoothness by 21.5 and 47.1%, respectively. In summary, the 
proposed method offers significant engineering application value, enabling real-time understanding of health 
status changes and providing technical support for condition prediction and maintenance planning.

However, a major issue in applying HSA tasks on-site is poor data quality. High anomalies and miss rates 
in field data result in limited standardized data. Future research should focus on leveraging high-fidelity data 
enhancement methods to obtain high-quality pseudo-data from field data.

Data availability
Data are fully available through the corresponding author upon reasonable request.
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