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Flow cytometry is an objective method for conducting in vitro antimalarial sensitivity assays with increasing potential for appli-
cation in field sites. We examined in vitro susceptibility to seven anti-malarial drugs for 40 fresh P. falciparum field isolates via a
flow cytometry method (FCM), a colorimetric LDH-based ELISA (DELI), and standard microscopic slide analysis of growth. For
FCM, 184/280 (66%) assays met analytical acceptance criteria, compared to 166/280 (59%) for DELI. There was good agreement
between FCM and microscopy, while DELI tended to produce higher half-maximal inhibition constants (IC50s) than FCM, with
an overall bias of 2.2-fold (Bland-Altman comparison). Values for artesunate and dihydroartemisinin were most affected. Para-
doxical increases in signal at very high concentrations of mefloquine and related compounds were more marked with the DELI
assay, suggesting that off-target effects on LDH production may be responsible. Loss of FCM signal due to reinvasion or slow
growth was observed in a small number of samples. These results extend previous work on use of flow cytometry to determine
antimalarial susceptibility in terms of the number of samples, range of drugs, and comparison with other methods.

The spread of drug-resistant Plasmodium falciparum is a public
health emergency in Southeast Asia (1). The rapid and accu-

rate detection of reduced susceptibility of P. falciparum to individ-
ual antimalarials allows action to be taken before clinical failure of
a combination becomes established (2). Molecular markers of
drug resistance can contribute to this process, but they rely on
mechanisms of resistance being fully understood at the molecular
level, and so sensitive and accurate methods for monitoring in
vitro parasite drug sensitivity remain an important component of
assessment methods (3).

For many years, in vitro susceptibility assays depended on mi-
croscopic analysis of blood films in the form of a readout (4).
While cheap and effective, this approach has inherent problems of
subjectivity and requires considerable resources in terms of train-
ing and time. The tritiated hypoxanthine radioisotope assay (5)
addressed these challenges and was considered the gold standard
for a considerable time (6). However, high costs and problems
associated with the disposal of radioactive waste led to develop-
ment of plate read antimalarial susceptibility assays, which pro-
vided a safe and cost-effective alternative. These plate read-based
assays included enzyme-linked immunosorbent assays (ELISAs)
on the parasite antigens lactate dehydrogenase (pLDH [7] and
colorimetric LDH-based ELISA [DELI] [8]) or P. falciparum his-
tidine-rich protein 2 (HRP2) (9) and parasite nucleic acid detec-
tion via fluorescent dyes detected in microtest format (10) or by
flow cytometry (11–16). Flow cytometry methods involve the use
of fluorescent dyes (e.g., SYBR green for DNA and ethidium for
DNA/RNA) to stain Plasmodium DNA and RNA in malaria-in-
fected red blood cells (iRBCs) prior to detection by a flow cytom-
eter (17, 18). The DELI method is more sensitive than flow cytom-
etry (0.005% of parasitemia versus 0.01% for flow cytometry

assay), but results take longer to be obtained (more than a day
after assay termination versus 30 min for flow cytometry). In ad-
dition to this, flow cytometry requires 5 times less volume of cell
suspension than the DELI method. Importantly, flow cytometry
provides a direct measure of parasite growth (with schizont mat-
uration being the most common endpoint), whereas DELI and
other ELISA methods involve the indirect measurement of para-
site growth via a secondary protein marker, introducing the pos-
sibility of artifactual effects.

In this work, we carried out simultaneous ex vivo susceptibility
tests using the DELI colorimetric microtest, flow cytometry, and
microscopic analysis on fresh field isolates of Plasmodium falcip-
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arum and explored relative differences in success rate and inhibi-
tion constants for seven antimalarials.

MATERIALS AND METHODS
Ethics statement. The clinical samples examined in this study were col-
lected after ethical approval was obtained from the Oxford Tropical Re-
search Ethics Committee (OXTREC 027-025, United Kingdom) and the
ethics committee of the Faculty of Tropical Medicine, Mahidol University
(MUTM 2008-215).

Isolates and culture. Parasite preparation, culture, and drug exposure
followed the protocol described previously (18). Briefly, clinical isolates of
P. falciparum were collected from patients with parasitemias of between
0.1 and 0.9%, prior to antimalarial treatment, at clinics run by the Shoklo
Malaria Research Unit (SMRU) on the northwestern border of Thailand.
Five milliliters of whole blood in lithium heparin collection tubes were
transported to the SMRU field laboratory within 6 h of collection. Leuko-
cyte depletion was undertaken using cellulose columns (Sigma catalog no.
C6288) (19, 20), and parasitemia was adjusted to 0.1% by addition of
uninfected red cells.

Drug assay. These assays used artesunate (AS; molecular weight [Mw],
384.4 g/mol; Holly Pharmaceuticals Co. Ltd.), dihydroartemisinin (DHA;
Mw, 284.94; Fluka), lumefantrine (LUM; Mw, 528.94; Sigma-Aldrich),
mefloquine hydrochloride (MQ; Mw, 414.77; Sigma-Aldrich), piper-
aquine tetraphosphate (PIP; Mw, 999.56; Artekin Holley Pharmaceutical
Co), chloroquine diphosphate (CQ; Mw, 515.9; Sigma-Aldrich), and qui-
nine hydrochloride (QN; Mw, 396.9; Sigma-Aldrich). A stock solution of
each drug was prepared in methanol in glass vials coated with a 0.2%
(vol/vol) AquaSil water solution (Pierce) to prevent the drug from bind-
ing to the glass surface. One or two dilutions of each drug were subse-
quently made in methanol to obtain the drug at the desired testing con-
centration. Twenty microliters of the final drug solution was added in
duplicate to the left-hand column of a 96-well microtiter plate (Nunc,
Singapore), consisting of 87.0 nM AS, 59.6 nM DHA, 434.0 nM LUM,
3,307.9 nM MQ, 1,322.8 nM PIP, 10,256.7 nM CQ, and 12,901.4 nM QN.
Ten 2-fold serial dilutions were made in methanol, and the right-hand
column was left without any drug in order to measure uninhibited
growth. The predosed plates were dried in an incubator at 37°C overnight,
covered with Plate Sealer (Linbro), and stored at 4°C.

Four microliters of packed red blood cells at 0.1% parasitemia was
mixed with 200 �l of RPMI-based culture medium and added to each well
of the predosed drug plates. Plates were then incubated in an atmosphere
containing 5% CO2 at 37°C for approximately 42 h; a slide was examined
after 24 h of culture, and the duration of culture was modified in some
cases according to the predicted time of schizont maturation. At the time
of harvesting, the contents of wells were mixed, the contents of duplicate
wells were combined into single tubes, and each resulting cell suspension
was distributed appropriately in order to measure growth by three read-
outs (see Fig. S1 in the supplemental material).

Colorimetric microtest (DELI). The colorimetric microtest (DELI)
was performed as described previously (8, 21) with cell suspensions frozen
overnight prior to ELISA.

Flow cytometry. Twenty microliters of cell suspension was diluted
in 80 �l of phosphate-buffered saline, stained with dihydroethidium
(D7008; Sigma, Singapore) and SYBR green (10,000�; S9430; Sigma, Sin-
gapore) with 5 �g/ml and 5� as the final concentrations, respectively, and
incubated for 20 min in the dark at room temperature as previously de-
scribed (18). After staining, this suspension was analyzed using an Accuri
C6 flow cytometer (BD Singapore). Forward scatter (FSC) and side scatter
(SSC) signals of all erythrocytes were acquired via linear amplification,
included potential abnormal cells due to hemoglobinopathies (22, 23).
Sixty thousand events were recorded, and flow cytometry analyses were
done using FlowJo software (Tree Star). The proportion of schizont
events for each sample was determined via a defined gating strategy
(17, 18).

Microscopy. Microscopic enumeration of schizont maturation was
performed by a well-trained microscopist using thin blood smears stained
with Giemsa with a denominator of 100 parasites.

Calculation of IC50. The growth measurements for DELI, FCM, and
microscopy at each drug concentration were entered into the online
IVART calculator of the WorldWide Antimalarial Resistance Network
(WWARN) (24) in order to determine half-maximal inhibition constants
(IC50s). At least 30% of parasite isolates placed in short-term culture ex-
hibit less-than-optimal growth due to pre-exposure to drugs or other
factors contributing to reduced parasite viability (6). Modified criteria to
define these assays were developed based on the outputs of the nonlinear
regression-based algorithm produced by the IVART analytical tool (24).
IVART models a 2-parameter curve outputting IC50 and gamma (sigmoi-
dicity coefficient) using the nonlinear least-squares (NLS) algorithm (25).
A threshold confidence interval ratio of the IC50 (CIR) of �3 was selected
to define core assays of higher reliability. However, the CIR parameter is
not useful in a subset of assays where modeling is achieved only with a
fixed gamma of 10 (the resulting 1-parameter model has artifactually
narrow confidence intervals). In such cases, the growth ratio (uninhibited
growth divided by maximally inhibited growth) was used to define core
assays of higher reliability in accordance with previous recommendations
(6, 24) by calibrating growth ratio to CIR in the larger set of 2-parameter
curves. In the case of FCM, 75% of these curves with a growth ratio of 5 or
more had a tight CIR (less than 3), while in this work, for DELI, this
occurred with a growth ratio of 1.3 (see Fig. S2 in the supplemental ma-
terial). For both FCM and DELI these rules were checked by examining
the within-method correlation between MQ and QN; in both cases, these
criteria produced the optimal correlation coefficient compared to cutoffs
involving lower or higher growth ratios. For microscopic assays in which
background is generally zero (rendering growth ratios of no value), a
schizont proportion of 10% (6) rather than the growth ratio was used to
define reliable 1-parameter curves.

Paradoxical growth was calculated as a proportion determined as fol-
lows: (growth at maximum drug � minimum growth)/(growth at no
drug � minimum growth).

Statistical analysis. The median IC50s presented in Table 1 were com-
pared using a Wilcoxon matched-pairs test. We used the method of
Bland-Altman for assessing agreement between two methods of clinical

TABLE 1 Geometric mean and 95% CI for seven drugs and three methods

Drug

Microscopy Flow cytometry Colorimetric microtest

n Mean IC50 (95% CI) n Mean IC50 (95% CI) n Mean IC50 (95% CI)

AS 29 0.5459 (0.4395–0.6781) 29 0.7795 (0.565–1.075) 33 1.875 (1.487–2.363)
DHA 33 1.568 (0.9877–2.488) 28 2.653 (2.195–3.206)
LUM 23 28.25 (17.45–45.75) 22 53.89 (35.4–82.02)
MQ 35 34.48 (26.34–45.15) 21 36.29 (21.88–60.2) 18 34.22 (19.81–59.12)
PIP 26 9.131 (7.415–11.24) 29 15.12 (13.1–17.46)
CQ 36 111.2 (93.02–132.9) 30 128.5 (96.55–171) 24 189 (117.7–303.7)
QN 22 239.8 (153.4–374.7) 12 356.9 (214.5–594)
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FIG 1 (A) Flow cytometry gating strategy to define schizont parasitemia after 42 h of drug exposure. The maturation of P. falciparum schizonts (shown in the
gate) was compared to the drug-free condition. The y axis represents the SYBR green signal, and the x axis represents the ethidium signal. (B and C) Concen-
tration-inhibition curves and IC50s generated with the flow cytometry (B) and DELI (C) assays.
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measurement (26). Statistical analysis and graphics were carried out in
Stata 12.0 (StataCorp, USA) and Prism software version 5 (GraphPad, San
Diego, CA, USA).

RESULTS
Inhibition assay of P. falciparum schizont maturation. Our flow
cytometry method is based on the detection of parasite DNA (Sybr
green) and RNA (ethidium) in infected red blood cells after cul-
ture in the presence of different drug dilutions (Fig. 1A) (17, 18).
The schizont parasitemia is defined by cells clustered with the
highest Sybr green and ethidium signals. The IC50s for all 7 drugs
were generated by flow cytometry (Fig. 1B) and DELI (Fig. 1C)
methods for 40 fresh field isolates of P. falciparum. Microscopic
assessment was undertaken for AS, CQ, and MQ only. Summary
IC50 statistics for accepted assays (see Materials and Methods) for
each drug and method are presented in Table 1. The microscopic
method had the highest rate of success (100/120 assays [83%]).
Flow cytometry produced 184/280 (66%) accepted assays, and the
colorimetric microtest (DELI) produced 166/280 (59%).

Comparison of flow cytometry, microscopy, and DELI meth-
ods. The summary data presented in Table 1 indicate that flow
cytometry obtains IC50s highly analogous to those obtained by
microscopy for the three drugs studied by both methods. A paired
analysis of samples fulfilling acceptance criteria for both methods
showed that there was no significant difference between the two
methods (P � 0.55; Wilcoxon test). Examination by Bland-Alt-
man analysis (26) showed good agreement across the range of
samples and drugs, with a bias of less than 5% between the mi-
croscopy and flow cytometry readings (Fig. 2A).

The colorimetric ELISA (DELI) yielded higher IC50s than flow
cytometry, with a paired analysis for samples fulfilling acceptance
criteria in both methods, showing a significant difference between
the two methods (P � 0.0001; Wilcoxon test). This was supported
by Bland-Altman analysis (Fig. 2B), which showed that overall,
the DELI result was around double that obtained by flow cytom-
etry (bias of 2.2-fold). Analysis by individual drugs showed the
effect was strongest with artemisinins (Table 1). As expected,
paired analyses comparison of DELI with microscopy showed the
same issue, with the most significant difference being found with
AS (P � 0.0001) being smaller with CQ (Wilcoxon P � 0.023); no
effect was observed with MQ (P � 0.6).

Limitations of flow cytometry and DELI methods. The main
issues for drug inhibition assays of schizont maturation using field
isolates are the variability in stage and tightness of parasite syn-
chronization at the start of culture and the variable growth rate
during culture. According to the readout method, this variability
can significantly influence the final growth measurements and
hence IC50s (6). Particular problems are seen in the following
scenarios.

(i) Low signal due to reinvasion or slow parasite growth. One
practical issue with methods relying on schizont detection (i.e.,
microscopy and FCM) is that if reinvasion occurs, the signal is
lost. This is not a significant problem for ELISA methods, since
protein simply accumulates over time and the signal is not lost at
reinvasion. Although cultures were assessed at 24 h in order to
predict the timing of schizogony, there were nevertheless a small
number of cases where reinvasion had clearly begun the next day
at the time of harvesting (Fig. 3, top), reducing signal and com-
promising the determination of IC50.

A separate issue was low parasite growth rate, in which para-

site-infected cells are clustered at intermediate levels of SYBR
green and ethidium fluorescence associated with the trophozoite
stage (Fig. 3, bottom).

(ii) Paradoxical increases in apparent growth at high drug
concentrations. Previous work has noted the tendency for con-
centration-inhibition assays to display paradoxically increased
growth at very high drug concentrations (25). A number of expla-
nations have been put forward, including precipitation of drug at
high concentrations, mixed-clone infections (27), plate edge ef-
fects (28), and “off-target” ring-stage effects (24). Because all assay
readouts were derived from the same wells, it was possible to ex-
amine whether the paradoxical effect was assay method depen-
dent. Analysis by drug and method showed that the effect was
much greater in DELI assays and with nonartemisinin drugs (Fig.
4), consistent with previous observations (24). The microscopic
results did not show this effect (data not shown).

DISCUSSION

This work describes the use of flow cytometry to assess the in vitro
sensitivity of P. falciparum field isolates, comparing the results
directly to those from microscopic and ELISA methods. The de-
velopment of portable flow cytometers, like the one used in this
comparison, presents a viable option for running drug sensitivity
assays in the field, with the added benefits of decreased sample

FIG 2 Bland-Altman plots for flow cytometry compared to microscopy (A)
and DELI (B). Microscopic data were obtained for AS, CQ, and MQ, while flow
cytometry and DELI colorimetric microtest data were obtained for all 7 drugs.
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FIG 3 (A) Flow cytometry data illustrating two issues with P. falciparum ex vivo sensitivity assays, reinvasion and slow parasite growth. (B) Corresponding data
for the DELI colorimetric microtest for these isolates.
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volume and training time (29). In addition, the absence of reticu-
locytes in the P. falciparum drug assay limits background fluores-
cence due to RNA staining, unlike Plasmodium vivax studies
(30, 31).

Results from the flow cytometry method (FCM) agreed closely
with microscopic assessment in our field study as in previous work
(17, 18), providing a rapid, objective version of the original in vitro
gold standard method. No evidence of bias was observed, and the
limits of agreement were comparable to other method compari-
sons of this (9, 32), although somewhat greater than in previous
flow cytometry studies under field conditions (18, 33), consistent
with use of a single-well flow cytometry assessment for each drug
concentration.

By comparison, DELI produced substantially higher IC50s than
microscopy or FCM. The effect clearly depended on the particular
drug under study, with artemisinins and chloroquine showing the
largest changes. This may reflect ring-stage production of LDH
(34, 35), with higher concentrations of artemisinins being needed
to inhibit ring-stage growth (36). The fact that dihydroethidium
needs to be metabolized to fluoresce in viable cells could also
explain this difference. FCM signal is generated in much later
forms, which are more sensitive. Our findings are consistent with
previous comparisons of ELISA-based assays with other methods
(6, 9, 32).

The utility of different assay methods for detection of resis-
tance to particular drugs depends on the specific properties in
relation to each drug’s mechanism of action (37).The production
of ELISA antigens during the ring stage may hence explain why
such assays have been associated with detection of progressively
higher IC50s for artemisinins in large sample series from Cambo-
dia (38, 39), although these assays are clearly not as focused on
ring-stage assessment as the in vitro ring-stage survival assay
(RSA) (40, 41).

By obtaining multiple readouts from the same culture wells, we
were able to cast light on the cause of a long-standing issue in in
vitro culture, that of paradoxical growth at high concentrations of
nonartemisinin drugs. Overall, the evidence suggests that this may
be due to an off-target effect of high concentrations of these drugs

against rings and not to problems in drug solution, mixed infec-
tions, or plate effects, since the issue was specific to the LDH read-
out method. It is unclear why the issue appeared to be more prob-
lematic here than in previous studies of the DELI assay (8). One
factor may be the difference between field isolates and culture-
adapted parasites in terms of stage and growth rate, meaning that
this is likely to be a specific issue for laboratories that receive par-
asites very soon after sampling (tiny ring stage). Another possible
factor is resistance to multiple antimalarials, including artemis-
inins (42), which is also likely to be a particular issue in laborato-
ries that receive parasites very soon after sampling (tiny ring
stage).

In conclusion, this study illustrates that, in the context of P.
falciparum drug sensitivity assays, the flow cytometry approach
described here brings objectivity and speed (compared to micros-
copy) with lower sampling volumes and low background (com-
pared to the colorimetric microtest (DELI), although financial
and time resources in the setup phase may limit its use in field
sites.
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