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New experiments show that different combinations of
translesion DNA polymerases act to bypass lesions
in mammalian cells, depending on the type of DNA da-
mage. Bypass of most lesions tested was dependent on
REV3L (polz) and at least one additional DNA polymerase.
The data fit a model whereby DNA polymerases work
sequentially to bypass adducts in DNA.

Mammalian genomes encode 15 different DNA polymerases.
Why are there so many? One reason, it appears, is that some of
these are specialized to allow bypass of particular types of damaged
bases in DNA. Although endogenous and environmentally induced
DNA damage is primarily removed by DNA repair mechanisms
(including nucleotide excision repair, base excision repair, mis-
match repair, and various forms of strand break repair), some
damage may remain, which can block progression of the normal
DNA replication machinery. Translesion DNA synthesis (TLS)
enables cells to tolerate damaged DNA without repairing it.

The most-studied TLS enzymes from human and mouse cells
belong to the ‘Y family’ of DNA polymerases, and include POLH
(polZ), POLI (poli), POLK (polk), and REV1. These DNA poly-
merases are able to insert bases opposite DNA lesions at the
expense of low-fidelity mutagenic replication. These enzymes also
have low processivity, incorporating only a few nucleotides before
dissociating from the template–a characteristic that may help allow
a higher fidelity replicative polymerase to take over as soon as
possible.

It has been recognized for some time that polz, an enzyme in the
‘B family’ of DNA polymerases, is an exceptionally important player
in TLS. In the yeast Saccharomyces cerevisiae, DNA polymerase z
(polz) has the catalytic subunit Rev3 and an auxiliary subunit Rev7.
Yeast rev3 mutants show moderate UV sensitivity and a frequency
of UV-induced mutation that is an order of magnitude lower than
wild type (Lemontt, 1971). REV3L is the mammalian homologue of
Rev3 and it is thought to have a similar function in DNA damage-
induced mutagenesis in mammalian cells, as antisense and shRNA
suppression of REV3L reduce the level of mutagenesis induced by
UV light and several other DNA-damaging agents (Li et al, 2002;
Diaz et al, 2003). Purified polz from yeast is able to efficiently
extend from a mismatched base, and from primer termini following
insertion of a base opposite a lesion in DNA. An in vitro experiment
with synthetic DNA showed that after mammalian POLI inserted a
base opposite an abasic site or a thymine-thymine 6-4 photoproduct
(TT 6-4 PP), yeast polz could extend the primer terminus (Johnson
et al, 2000). Mammalian REV3L (353 kDa) is twice the size of yeast
Rev3, and there is no information about its biochemical properties.
Until now, there has been no direct evidence to support a TLS model
involving multiple specialized DNA polymerases in mammalian cells.

Previously, experiments to discern the function of specialized
DNA polymerases have used one of two approaches. One way is to
treat DNA polymerase-defective cells with radiation or chemicals to
induce multiple lesions in their genomes. A second technique
employs single lesions in a synthetic DNA template, and purified
DNA polymerases. The new work from Zvi Livneh and colleagues
(Shachar et al, 2009) is a significant advance because it combines
these two approaches. DNA, containing defined sites of damage,
was introduced into mammalian cells to test the role of specific
specialized DNA polymerases.

Shachar et al at the Weizmann Institute of Science in Israel used
a quantitative TLS assay system. Plasmids were constructed carry-
ing a defined DNA lesion at a specific site in a short single-stranded
‘gap’. Cultured mammalian cells were transfected with a gapped
plasmid containing a lesion and encoding kanamycin resistance
(kanR), together with a control gapped plasmid without a lesion
encoding chloramphenicol resistance (cmR). The recipient cells
carried disruptions of specific TLS DNA polymerase genes, or had
TLS polymerase gene expression suppressed by siRNA technology.
Following an incubation period, closed circular plasmids were
extracted from the mammalian cells and transformed into a
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Figure 1 Working model for the bypass of a site of DNA damage by
the action of multiple DNA polymerases. Shachar et al. (2009)
constructed plasmids containing a gap, each with a different type
of single DNA template lesion near the centre of the gap (A). In
mammalian cells, several steps are necessary for complete gap
filling. Replicative DNA polymerases are normally stalled at sites
of damage (B), and a specialized DNA polymerase such as POLH,
POLI, POLK or polz inserts a base (or bases) opposite the adduct
(C). The polymerase selected depends on the type of DNA lesion.
Extension of this aberrant terminus may require another specialized
DNA polymerase, often polz. The length of tracts synthesized by
polz in vivo is not yet known (D). For the bypass of a TT CPD, polz
is not necessary. Some post-replication repair gap filling may occur
in G2 phase, and some lesion bypass may take place during S phase.
If bypass happens in S phase or for filling of long gaps in vivo,
switching back to a replicative DNA polymerase is necessary (E).
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TLS-defective Escherichia coli strain. The ratio of kanR/cmR colonies
revealed the extent of gap repair. The DNA sequence of the
bypassed region of the plasmids was analysed in individual kanR

colonies to determine whether the TLS was mutagenic.
Using this assay, the authors found three combinations of TLS

reactions in mammalian cells, depending on the particular DNA
lesion. A thymine-thymine cyclobutane pyrimidine dimer (TT CPD)
was bypassed rapidly and accurately in a process dependent on
POLH and independent of polz. In a second mechanism, TLS of an
intrastrand GG adduct formed by cisplatin utilized POLH and polz,
whereas a (þ )-trans-benzopyrene diol epoxide-N2-G adduct used
POLK and polz. These events involved the participation of both a Y
family DNA polymerase and polz in a process that was accurate and
moderately rapid. A third type of reaction was observed for the
bypass of an abasic site, a 4-hydroxyequilenin-C adduct, or a TT 6-4
PP. TLS of these adducts depended on polz and another DNA
polymerase not yet identified, and it was slow and relatively
mutagenic. These findings provide direct evidence that multiple
specialized DNA polymerases mediate TLS in mammalian cells, and
they emphasize the critical role of polz. One interpretation is that
bypass usually consists of an insertion step by a Y-family DNA
polymerase, and extension by polz (Figure 1).

Consistent with previous work in budding yeast, genetic studies
indicate that yeast Rev3 is involved in TLS of an AP site and a TT
6-4 PP, but not in the bypass of a TT CPD (Nelson et al, 2000). Yeast
Rad30 (the homologue of POLH) can insert a base opposite a 6-4 PP
but cannot extend it. The full bypass reaction requires yeast polz
(Johnson et al, 2001).

Future work with this system could enable a systematic catalo-
guing of the lesions in DNA that can be bypassed, and the DNA
polymerases responsible. It will be important to know which lesions
are bypassed in S-phase and which during gap filling in G2 phase,
after DNA replication is completed (Waters and Walker, 2006).
Work with other genetic mutations will help define the mechanisms
of switching between DNA polymerases, a reaction that is currently
proposed to involve post-translational modifications, including
monoubiquitination of the sliding clamp PCNA protein at stalled
DNA replication forks (Kannouche and Lehmann, 2004). Although
Shachar et al. emphasize ‘two-polymerase mechanisms’, some of
the reactions are most likely to involve more than two DNA
polymerases. For instance, some complete bypass reactions involve
the replicative enzymes pold or pole (McCulloch et al, 2004).
Switching back to a replicative DNA polymerase may involve
deubiquitination of PCNA (Zhuang et al, 2008).
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