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ABSTRACT: The following salts have been synthesized and structurally charac-
terized: Na2[IrF6]·2H2O (C2/m, a = 6.6327(4), b = 10.0740(6), c = 5.9283(5) Å, β =
122.3880(10)°) and Na3[IrF6]·2H2O (R-3, a = 7.5963(3), b = 7.5963(3), c =
9.8056(4) Å) (for the first time) by single-crystal X-ray diffraction; the unit cell
parameters of a tetragonal phase (P42/mnm, a = 5.005(2), c = 10.074(4) Å) of the
stable α-Na2[IrF6] were determined for the first time; and the unit cell parameters of
β-Na2[IrF6] (P321, a = 9.332(4), c = 5.136(2) Å) and Na3[IrF6] (P21/n, a =
5.567(4), b = 5.778(4), c = 8.017(2) Å, β = 90.41(2)°) were determined using
powder X-ray diffraction (PXRD). The data of the thermal stability was obtained by
differential thermal analysis (DTA) for all substances. The presence of Na3[IrF6]·H2O
monohydrate is predicted. H2[IrF6] was prepared in a solution and was demonstrated
to behave as a strong dibasic acid.

1. INTRODUCTION

Nowadays, paramagnetic complexes of iridium(IV) are
considered as promising building blocks for designing
electronic and magnetic quantum materials.1,2 Earlier studies
were essentially focused on oxoiridates with the principal
structural fragment {IrO6}

8−, and these compounds have been
demonstrated to possess some intriguing physical properties,
such as Mott spin−orbit insulators,3 superconductors,4−6 Weyl
semimetallics,7−11 spin liquids and ices,12−15 and ferromagnets
with anomalous Hall effect (AHE).16 With expectations that
materials containing [IrF6]

2− fragments also can exhibit specific
physical properties,17 some efforts for the investigation of the
electronic structures of (PPh4)2[IrF6]·2H2O, Zn(viz)4[IrF6],
(PPh4)2[IrCl6],

18 A2[IrF6] (A = Na, K, Rb, Cs), and Ba[IrF6]
19

as well as the crystal structures of (PPh4)2[IrF6]·2H2O,
Zn(viz)4[IrF6],

18 Li2RhF6, K2IrF6,
20 Rb2IrF6,

21 Cs2IrF6,
22

Ca[IrF6]·2H2O, Sr[IrF6]·2H2O, and Ba[IrF6]
23 have been

undertaken. The most convenient precursor for the synthesis
of diverse hexafluoroiridates (IV) involving different cations is
the salt Na2[IrF6]. As a rule, sodium salts of iridates are well
soluble in water and therefore are handy starting compounds
for ligand substitution reactions24 as well as cation meta-
thesis.21−23 Although Na2[IrF6] has been known for a long
time and its unit cell parameters have been reported (P321, a =
9.34 Å, c = 5.14 Å),25 followed by structural refinement in
2016 (P321, a = 9.32858(24) Å, c = 5.13417(19) Å),18 there
are lacunas in the data on the structures of sodium
fluoroiridates including the structure of the stable tetragonal
phase Na2[IrF6]. Anhydrous sodium fluoroiridates (III) and
(IV), as well as crystal hydrates commonly occurring on the

crystallization of aqueous solutions, lack both powder and
single-crystal structural data. These findings suggest that the
studies on the preparation and structures of sodium
fluoroiridates need to be revised.

2. EXPERIMENTAL SECTION

The PXRD experiments were examined on a DRON-RM4
diffractometer (Cu Kα source, graphite monochromator at the
diffracted beam, room temperature, 2θ range 5−60°). The
experimental data were processed with PowderCell program
v.2.4.26 The data from the powder structural database PDF27

have been used as standards.
The single crystals were examined on an automated Bruker

Nonius X8 APEX diffractometer (MoKα radiation 0.71073 Å,
graphite monochromator, CCD detector) at 150(2)K. The
reflection intensities were measured by φ scanning of narrow
(0.5°) frames. Absorption is taken into account empirically
using the SADABS program.28 Structures were solved by the
direct methods of the difference Fourier synthesis and further
refined by the full-matrix least-squares method using the
SHELXTL package.29 Atomic thermal parameters for non-
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hydrogen atoms were refined anisotropically. The positions of
hydrogen atoms for water molecules are not located.
A thermal analysis was performed on an “STA 449 F1

Jupiter” in a platinum crucible under a helium atmosphere in
the temperature range 25−500 °C.

3. RESULTS AND DISCUSSION
β-Na2[IrF6] (I) was prepared according to the literature
method18 via the treatment of solid Na2[IrCl6] with gaseous
fluorine under dynamic heating up to 300 °C in a flow reactor.
Na2[IrCl6] was prepared from commercial “IrCl4·2H2O” in few
steps (“The Gulidov Krasnoyarsk Non-Ferrous Metals Plant”
Open Joint Stock Company, 51.9% iridium) by dissolution in
concentrated hydrochloric acid, followed by the addition of the
stoichiometric amount of NaCl and concentration to afford the
dry salt. The attempted recrystallization of β-Na2[IrF6] (I)
from aqueous solutions yielded single crystals of Na2[IrF6]·
2H2O (II) but not those of (I). We expect that they can be
prepared by recrystallization from anhydrous HF; however,
such an experiment has not been carried out for technical
reasons. Then, the powder of (I) has been examined with
powder X-ray diffraction (Figure 1).

The powder diffraction pattern of compound β-Na2[IrF6]
(I) was simulated by the full-profile technique using the crystal
data of an isostructural compound Na2[SiF6]

30,31 (Figure 1),
as, according to Babel,31 β-Na2[IrF6] belongs to the structural
type of Na2[SiF6] (rhombohedral cell, space group P321). The
refinement of the unit cell parameters afforded the following
values: sp. gr. P321, a = 9.332(4), c = 5.136(2) Å coinciding
within uncertainty with the published data.18

It should be noted that the compound β-Na2[IrF6] is
metastable and, similar to Na2[SnF6],

32 it is converted to the
tetragonal phase stable at room temperature with the progress
of time. The diffraction pattern of a sample of β-Na2[IrF6]
stored in a closed vial for two years exhibited reflections of the
tetragonal phase α-Na2[IrF6]. The refinement of unit cell
parameters gave the following data: sp. gr. P42/mnm, a =
5.005(2), c = 10.074(4) Å (Figure 2).
A comparison of α-Na2[IrF6] and β-Na2[IrF6] structures

calculated by the Rietveld method using TOPAS v. 6.033

software is shown in Table 1. The structure of α-Na2[IrF6] is
slightly denser due to the stronger interaction between sodium
and fluorine.

The obtained single crystals of Na2[IrF6]·2H2O (II) were
examined by single-crystal XRD. The crystal data of (II) is as
follows: C2/m, a = 6.6327(4) Å, b = 10.0740(6) Å, c =
5.9283(5)Å, β = 122.3880(10)° (ICSD #1955565). The
powder diffraction pattern of the bulk sample of (II) confirmed
the analytical and phase purity of the product.
The interaction of 1.009 g of β-Na2[IrF6] (I) with 10 ml of

H+-form of the cation exchanger KU-2 in 10 ml of water under
stirring for 30 min (100 rpm) afforded a solution of H2[IrF6]
(III). After the removal of the resin by filtration, the solution
volume was added to 20 ml with the addition of water and the
expected concentration C(Ir) was 0.143 M. The resultant
solution was titrated with aqueous NaOH to give the proton
content C(H+) of 0.289 M; the iridium concentration C(Ir) of
0.120 M was also determined by UV−vis spectroscopy.34 The
determined concentration is less than the expected value,
apparently, because of the partial sorption of iridium by the
cation resin. Alkali titration gave only one equivalence point;
hence, the solution is a strong acid in both steps. The reported
behavior25 of (III) as a mixture of the strong acid in the first

Figure 1. Powder diffraction pattern of β-Na2[IrF6] (I) and its full-
profile refinement.

Figure 2. Powder diffraction pattern of a mixture of α-Na2[IrF6] and
β-Na2[IrF6] (I) and its full-profile refinement.

Table 1. Comparison of α-Na2[IrF6] and β-Na2[IrF6]

substance
bond distances in

[IrF6]
2− (Å)

bond distances in
{NaF6} (Å)

calculated
density (g/cm3)

α-Na2[IrF6],
low temp.

Ir-F1
(4x)

1.946 Na-F1
(2x)

2.248 4.63

Ir-F2
(2x)

1.940 Na-F1
(2x)

2.284

Na-F2
(2x)

2.354

average 1.943 average 2.295
β-Na2[IrF6],
high temp.

Ir1-F1
(6x)

1.940 Na1-F2
(2x)

2.204 4.52

Ir2-F2
(3x)

1.947 Na1-F3
(2x)

2.322

Ir2-F2
(3x)

1.933 Na2-F1
(2x)

2.407

mean 1.940 mean 2.311
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two steps and a weak acid in the third step has not been
confirmed by us.
As reported in the literature,25 preparations of the crystals of

H2[IrF6] (III) appeared to be unsuccessful. We expect that
they can be prepared by the crystallization of IrF4 from
anhydrous HF; however, such an experiment has not been
carried out for technical reasons. The solution of (III) was
used by us for the preparation of a series of salts; however, this
contribution is related to only the synthesis of sodium salts,
including the preparation from the acid (III).
The interaction of an aqueous solution of H2[IrF6] (III)

with sodium chloride, followed by a low concentration in the
air, gave large yellow crystals that were identified by single-
crystal XRD (by the method described below) as Na3[IrF6]·
2H2O (IV) (R-3, a = 7.5963(3), b = 7.5963(3), c = 9.8056(4)
Å) (ICSD #1955580).

H IrF 3NaCl 2H O

Na IrF 2H O 1/2 Cl 2HCl
2 6 2

3 6 2 2

[ ] + +

→ [ ]· + +

The powder diffraction pattern of the product (IV) prepared
via interaction of (III) with a threefold excess of sodium
chloride perfectly coincides with the pattern predicted from
the single-crystal data (Figure 3).

A gentle attempt to slowly remove water from Na3[IrF6]·
2H2O (IV) by stepwise heating to 150 °C (step size of 10 °C)
with thermal equilibration at 10−30 min resulted in a weight
loss of ∼3% (theoretical water content 8.76%). According to
the PXRD, the sample was an almost pure phase of (IV), so
the partial removal of water did not result in an essential
structural rearrangement of (IV). On heating up to 450 °C, the
sample completely lost water within the temperature range of
135−400 °C, and underwent further slow partial decom-
position (not more than 5%; Figure 4)

tNa IrF 2H O Na IrF H O H O (

135 185 C)
3 6 2 3 6 2 2[ ]· → [ ]· + ↑

= − °

tNa IrF 2H O Na IrF H O (

200 400 C)
3 6 2 3 6 2[ ]· → [ ] + ↑

= − °

t2Na IrF 6NaF 2Ir 3F ( 380 C)3 6 2[ ] → + + ↑ > °

t

4Na IrF 6H O

12NaF 4Ir 12HF 3O (

380 C)

3 6 2

2

[ ] +

→ + + ↑ + ↑

> °

PXRD has demonstrated that the thermal decomposition of
Na3[IrF6]·2H2O (IV) mostly afforded Na3[IrF6] (V). In
addition to sodium hexafluoroiridate, the sample exhibited
diffraction peaks of NaF and metallic Ir (Figure 5). The

crystallographic data for the salt Ca3TeO6,
35 isostructural to

previously unknown Na3[IrF6] (V), were used for full-profile
fitting of the unit cell parameters of compound (V): sp. gr.
P21/n, a = 5.567(4), b = 5.778(4), c = 8.017(2) Å, and β =
90.41(2)°.
The common scheme of conversion in the Na(H)−Or−

F(Cl) system is shown in Figure 6 (Na2[IrCl6], Na2[IrCl6]·
2H2O, and Na2[IrCl6]·6H2O).

36

Figure 3. Powder diffraction pattern of Na3[IrF6]·2H2O (IV) and its
comparison to the pattern predicted using the single-crystal data.

Figure 4. TGA curves of water loss and decomposition of Na3[IrF6]·
2H2O (IV) in the helium atmosphere.

Figure 5. PXRD pattern of the products of thermal decomposition of
Na3[IrF6]·2H2O (IV). The pattern of Na3[IrF6] was derived using
the data for Ca3TeO6.
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4. CONCLUSIONS
The following salts have been synthesized and structurally
characterized for the first time: Na2[IrF6]·2H2O (C2/m, a =
6.6327(4), b = 10.0740(6), c = 5.9283(5) Å, β =
122.3880(10)°) and Na3[IrF6]·2H2O (R-3, a = 7.5963(3), b
= 7.5963(3), c = 9.8056(4) Å) by single-crystal XRD; unit cell
parameters for β-Na2[IrF6] (P321, a = 9.332(4), c = 5.136(2)
Å) and Na3[IrF6] (P21/n, a = 5.567(4), b = 5.778(4), c =
8.017(2) Å, β = 90.41(2)°) were determined from powder
diffraction data. The crystal system and unit cell parameters of
β-Na2[IrF6] coincide within experimental uncertainty with
ours and the data of Hepworth,25 and newer results: sp. gr.
P321, a = 9.332(4) Å, c = 5.136(2) Å. The unit cell parameters
of the stable tetragonal phase α-Na2[IrF6] (P42/mnm, a =
5.005(2), c = 10.074(4) Å) were determined for the first time.
H2[IrF6] was prepared in solution; and it was demonstrated to
behave as a strong dibasic acid. The outline of the thermal
decomposition curve suggests the presence of Na3[IrF6]·H2O.
The common scheme of the conversion in Na(H)−Ir−F(Cl)
was described.
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