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Abstract: Variational auto-encoders (VAE) have recently been successfully applied in the intelligent
fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the
hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as
a common and key problem in existing deep learning models. Additionally, its anti-noise capability
may face a decline when VAE is used to analyze bearing vibration data under loud environmental
noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively
select its parameters, this paper proposes an optimized stacked variational denoising autoencoder
(OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust
network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE
and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder
(SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via
stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model
are automatically determined by employing a novel meta-heuristic intelligent optimizer known as
the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into
a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are
conducted to validate the effectiveness of the proposed method. The results of analysis indicate that
the proposed method not only can achieve a high identification accuracy for different bearing health
conditions, but also outperforms some representative deep learning methods.

Keywords: stacked variational denoising auto-encoder; seagull optimization algorithm; rolling
bearing; fault diagnosis

1. Introduction

Mechanical equipment is widely used in all walks of life in modern society, where
rolling bearings are the most common component of mechanical equipment. Due to the
continuous influence of alternating impact force and load, rolling bearings are easily subject
to varying degrees of fault, in different positions. Once bearings are damaged, it will
inevitably cause mechanical equipment to stop work, bringing about economic loss and
even causing personnel casualties [1]. Therefore, accurate diagnosis of bearing faults is of
great significance in ensuring the safe and reliable operation of mechanical equipment [2].
That is, it is very valuable to develop effective bearing fault diagnosis technology for the
field of mechanical health monitoring.

With the rapid development of technologies such as sensors and industrial internet,
the concept of intelligent diagnosis provides a new pathway for feature learning and the
intelligent recognition of bearing faults [3,4]. Many intelligent diagnosis techniques have
been successfully applied to bearing fault diagnosis and have achieved a good identification
result. For instance, Gunerkar et al. [5] adopted wavelet transform (WT) to extract bearing
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fault features from time domain signals, whereafter the extracted features were input into a
back-propagation neural network (BPNN) to identify multiple bearing faults. Jin et al. [6]
used wavelet packet transform (WPT) and power spectrum analysis to obtain fault features,
and then adopted a support vector machine (SVM) to classify the fault types. Li et al. [7]
combined variational mode decomposition (VMD) and approximate entropy to extract
bearing fault feature information, and an improved kernel extreme learning machine
(KELM) was used to identify bearing fault types. However, the above-mentioned methods
are all shallow learning methods, which have a high requirement for expert experience
and knowledge and artificial feature extraction. In other words, these shallow learning
methods have many disadvantages. Specifically, in the above methods, WT and WPT can
effectively extract nonlinear time–frequency characteristics, but require the selection of
suitable basis functions when processing complex vibration signals. BPNN has a nonlinear
mapping and self-learning abilities, but easily falls into local minimization and has a slow
convergence speed in the learning process [7]. SVM can efficiently solve the problem of
high-dimensional nonlinear decision making, but it is difficult to select kernel parameters
and penalty parameters and is significantly affected by faulty samples. VMD is an adaptive
signal decomposition method and has good anti-noise performance. However, its mode
number needs to be estimated according to prior knowledge. Beyond these issues, although
KELM is fast in feature learning and fault diagnosis, its stability is relatively weak.

To avoid the above problems and forgo the dependence on artificial feature extrac-
tion, increasingly, many deep learning methods (e.g., deep belief network (DBN) [8],
convolutional neural network (CNN) [9], auto-encoder (AE) [10] and stacked denoising
auto-encoder (SDAE) [11]) are being presented to autonomously mine the representative
diagnostic information hidden in the raw data and have received great attention in intelli-
gent fault diagnosis. Shao et al. [12] presented a novel method, called an adaptive deep
belief network (DBN), with a dual-tree complex wavelet packet (DTCWPT) to process
bearing vibration signals and achieve fault diagnosis of rolling bearings. Liu et al. [13]
adopted an ensemble convolutional neural network (ECNN) model, obtaining accurate
and robust results in bearing fault diagnosis under complex conditions. Zhang et al. [14]
proposed a new ensemble deep contractive auto-encoder (EDCAE) to process the data
collected in noisy environments and obtain accurate, intelligent diagnoses. Although the
above-mentioned standard deep learning model is able to effectively deal with industrial,
big-data scenarios, their training accuracy will be reduced when are faced with little sample
data. Therefore, a new generative network model, named variational auto-encoder (VAE),
was proposed by Kingma and Welling in 2013 [15], which could automatically learn more
representative and discriminative fault features from the little collected sample data by
using variational inference and reparameterization techniques. Specifically, in the VAE
method, one constraint is added to the encoding network so that the generated latent
variables roughly follow the standard normal distribution, by which recognition accuracy
could be greatly improved [16]. To date, some important achievements of VAE have been
made in the field of fault diagnosis. The specific research progress of VAE is summarized
in Table 1, including the research method, research problem and data source. It can be seen
from statistics data provided in Table 1 that the existing VAE methods have good ability
to solve different fault diagnosis problems, but they mainly focus on the problem of fault
diagnosis at steady speeds and rely on human experience to select their network parameters
without self-adaptation. Additionally, there are few studies investigating the robustness
of VAE in the existing literature. In other words, due to fault features of the collected
bearing vibration signal being easily submerged by environmental noises, it is very difficult
to identify bearing faults by traditional older methods. Moreover, although the existing
VAE methods have made some achievements in fault diagnosis, their feature-learning
performances and anti-noise abilities may be reduced when existing VAE models are used
to analyze bearing vibration data containing a lot of noise and nonlinear components.
Therefore, the research focus of this paper is to find a new way to detect the health status
of bearings. In other words, differently from the mentioned earlier methods, the method
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proposed in this paper mainly focuses to self-adaptive parameter selection and anti-noise
performance improvements upon VAE models, at both steady and variable speeds.

Table 1. Summary of VAE in fault diagnosis.

Authors Year Country/Region Research Problem Methods
Experiment
Validation
(Yes/No)

Data Access

Chen et al. 2019 China fault diagnosis of
diesel engine VSAE yes private

Huang et al. 2019 Taiwan motor fault detection RNN-based
VAE yes private

Martin et al. 2019 Chile bearing fault diagnosis Deep VAE yes public
Zhao et al. 2020 China bearing fault diagnosis VAE and CNN yes private

Wang et al. 2020 China fault diagnosis of
planetary gearbox CVAE-GAN yes private

Yan et al. 2020 China and
Singapore chiller fault diagnosis CWGAN-GP-

VAE yes private

Tang et al. 2021 China quality-related fault
detection VAE and VIB yes private

Costa et al. 2021 Spain visual diagnosis of
atrial fibrillation RVAE yes private

Kim et al. 2021 Republic of
Korea

semiconductor fault
detection VAE model yes private

Zhang et al. 2021 USA bearing fault diagnosis
VAE-based

deep generative
models

yes public

Chao et al. 2021 Switzerland fault diagnosis of
safety-critical systems KIL-AdaVAE yes public

In this study, to improve the anti-noise ability of VAE and adaptively select its network
parameters, a new deep learning model, named optimized stacked variational denois-
ing autoencoder (OSVDAE), is proposed for bearing fault diagnosis that can mine more
representative fault information hidden in the raw bearing vibration data and establish
accurately mapped relationships between it and the operating state of equipment. Specif-
ically, the proposed OSVDAE method mainly consists of two stages (i.e., a parameter
optimization stage and a feature learning stage). The major differences between our study
and previous fault diagnosis studies can be summed up in two points. On the one hand,
in the feature learning stage, considering a stacked denoising auto-encoder (SDAE) can
not only improve the anti-noise ability of the auto-encoder, but also automatically learn
more representative and discriminative fault feature information through stacking multiple
denoising auto-encoder networks. Therefore, by integrating the advantages of SDAE and
VAE, a stacked variational denoising autoencoder (SVDAE) is proposed for the feature
learning of bearing faults. On the other hand, in the parameter optimization stage, a recently
proposed intelligent optimizer, the seagull optimization algorithm (SOA) [17], which has a
faster operating speed and convergence performance than some existing representative
optimizers (e.g., particle swarm optimization (PSO), sine cosine algorithm (SCA), Genetic
algorithm (GA) [18] and Grey wolf optimizer (GWO)), is adopted to automatically select
the key parameters of the SVDAE model in this paper. The originality and novelties of this
study can be summarized as follows:

(1) A novel deep learning model, named stacked variational denoising autoencoder
(SVDAE), is proposed, which can effectively process bearing vibration data under
noisy environment and obtain high-quality deep features.

(2) A new intelligent optimizer, named seagull optimization algorithm (SOA), is intro-
duced to automatically determine the important parameters of SVDAE, which can
avoid the empiricism and triviality of repeatedly manually adjusting parameters in
deep learning methods.
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(3) A data-driven fault diagnosis scheme based on an optimized stacked variational
denoising autoencoder is proposed for bearing fault identification, which can improve
the accuracy of bearing fault diagnosis.

(4) The effectiveness and superiority of the proposed method are demonstrated by exper-
iments and comparisons between bearing fault diagnoses.

The rest of this paper is organized as follows. Section 2 introduces the variational
autoencoder and reviews its application in fault diagnosis. Section 3 describes the contents
related to the proposed method, including the variational denoising autoencoder, stacked
variational denoising autoencoder and optimized stacked variational denoising autoen-
coder. Section 4 conducts two sets of experiments and comparisons to show the efficacy
and superiority of the proposed method in bearing fault detection. Section 5 gives the
conclusions of this paper.

2. Theoretical Background

In this section, the basic theory of VAE is firstly described, then we used a summary
table to conduct the literature review on VAE in fault diagnosis.

2.1. Overview of Variational Auto-Encoder

VAE is regarded as a new unsupervised learning algorithm with an encoder, sampling
and a decoder that has a fast convergence rate and little overfitting. Figure 1 shows the
architecture of VAE. As is apparent and differently from standard AE, the VAE model has
an additional sampling layer beyond the encoder and decoder. In this way, in training
the VAE model, the latent variable, z, with a Gaussian distribution can be obtained, the
parameters of which (i.e., mean and variance) can be automatically learned by a network
training process, such that new input data can be generated by the decoding for z. To
make the generated data highly similar to the original data, here, maximized marginal
distribution is conducted by

pθ(x) =
∫

pθ(x/z)pθ(z)dz (1)

where pθ( x|z) denotes the reconstruction of the original data, x, by the latent variable, z;
pθ(z) denotes the prior distribution of latent variable z.

Figure 1. Architecture of the VAE model.
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Supposing that we have an approximation posterior, qϕ(z|x ); the basic idea of the VAE
model is to automatically learn a variational approximation posterior qϕ(z|x ) to replace
the real posterior distribution pθ( z|x), where ϕ and θ denote the parameters of the encoder
and decoder, respectively. To achieve this, the loss function of VAE is calculated by the
variational lower bound of likelihood function, which mainly consists of two items (see
Equation (2)).

L(θ, ϕ; x(i)) = −DKL(qϕ(z
∣∣∣x(i) )‖pθ(z) ) + Eqϕ(z|x(i))[log pθ(x(i)|z )] (2)

where the first item DKL(q‖p) represents the Kullback–Leibler divergence, the second
item Eq(log p) means the reconstruction error. Supposing that pθ(z) satisfies the standard
normal distribution N(0, 1), qϕ( z|x) obeys the Gaussian distribution N(µ, σ2), and the
Kullback–Leibler divergence can be rewritten as

− DKL [qϕ( z|x(i))‖pθ(z) ] =
1
2

J

∑
j=1

(1 + log (σ
(i)
j )

2
− (µ

(i)
j )

2
− (σ

(i)
j )

2
) (3)

where J is the dimension of the latent variable z, µ
(i)
j and σ

(i)
j represent the j-th element of

qϕ( z|x). Meanwhile, the reconstruction error can be expressed as

Eqϕ(z|x(i))[log pθ(x(i)|z )] = 1
L

L

∑
l=1

log pθ(x(i)
∣∣∣z(i,l) ) (4)

where L denotes the amount of sampling from qϕ( z|x). The reparameterization trick is
adopted to update z under the rules of z = µ + ε · σ. Therefore, Equation (2) can be
rewritten as

L(θ, ϕ; x(i)) =
1
2

J

∑
j=1

(1 + log (σ
(i)
j )

2
− (µ

(i)
j )

2
− (σ

(i)
j )

2
) +

1
L

L

∑
l=1

log pθ(x(i)
∣∣∣z(i,l) ) (5)

where z(i,l) = µ(i) + σ(i)ε(l) and ε(l) ∼ N(0, 1). The goal of the VAE model is to minimize
the loss function shown in Equation (2). Due to the addition of KL divergence into the loss
function of the VAE model, the VAE model can not only effectively learn the underlying
characteristics from the original data, but also can generate new sample data by sampling
and decoding. Specific details of VAE can be found in the literature [15].

2.2. Literature Review on Variational Auto-Encoder in Fault Diagnosis

Since the VAE method’s appearance, many studies on VAE in fault diagnosis have
been presented in the literature. Table 1 lists the current research circumstance of the
VAE model in fault diagnosis. Specifically, Chen et al. [19] proposed a variational stacked
autoencoder (VSAE) to adaptively extract fault features from angular domain signals and
effectively diagnose valve train faults of a diesel engine under various operating condi-
tions. Huang et al. [20] adopted a recurrent neural network (RNN)-based VAE method for
realizing the dimensionality reduction of time series data and motor fault detection. Martin
et al. [21] used a fully unsupervised deep VAE-based approach for dimensionality reduction
and bearing fault diagnosis. Zhao et al. [22] combined a VAE and CNN model to handle
small fault sample data and identify faults in rolling bearings. Wang et al. [23] applied a
combination method, called conditional variational auto-encoder generative adversarial
network (CVAE-GAN), to generate fault samples and diagnose imbalanced faults in a global
gearbox. Yan et al. [24] proposed a variational autoencoder-based conditional Wasserstein
GAN with gradient penalty (CWGAN-GP-VAE) to diagnose various faults for chillers.
Tang et al. [25] combined the VAE model and deep variational information bottleneck
(VIB) to monitor and identify quality-related and quality-unrelated faults. Costa et al. [26]
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proposed a semi-supervised recurrent variational autoencoder (RVAE) method to effec-
tively address the diagnosis of atrial fibrillation (AF). Kim et al. [27] presented a fault
diagnosis model to robustly process drift by modeling process drift with a variational
autoencoder (VAE). Zhang et al. [28] presented a semi-supervised learning framework for
bearing fault diagnosis using variational autoencoder (VAE)-based deep generative models.
Chao et al. [29] used a knowledge-induced learning with adaptive sampling variational
autoencoder (KIL-AdaVAE) for fault detection and the fault segmentation of complex
safety-critical systems.

From to the literature survey, it can be seen that the studies mentioned above can solve
the problems in fault diagnosis to a certain extent, but most of the above methods handle
fault diagnosis problem at constant speed and select the parameters of the VAE model
according to human experience. Additionally, the robustness of the above algorithm against
noise is rarely studied. That is, the existing literature generally focuses on the application
of VAE research to fault diagnosis under steady speeds, but little consideration is given to
the concentrated surveying of parameter selection and the anti-noise capabilities of VAE
models. Differently from these previous studies, this study mainly focuses to self-adaptive
parameter selection and improving the anti-noise performance of a VAE model at constant
speed and variable speed. Concretely, the novelty and contribution of this study can be
summarized in three aspects:

(1) To improve the anti-noise capability of VAE model, a new deep learning model, named
stacked variational denoising auto-encoder (SVDAE), is constructed by integrating
stacked denoising techniques and a variational auto-encoder.

(2) To avoid the dependence of human experience of parameter selection of the existing
VAE model, we adopted a novel optimizer, the seagull optimization algorithm (SOA),
using its fast operation to adaptively select the parameters of SVDAE.

(3) To improve the accuracy of fault diagnosis, an intelligent diagnosis scheme based on
optimized stacked variational denoising autoencoder (OSVDAE) is proposed that can
effectively identify bearing faults under constant and variable speeds.

3. Proposed Methodologies

In this section, the basic theory of variational denoising auto-encoder (VDAE) is firstly
presented, then a stacked variational denoising auto-encoder (SVDAE) is constructed on
the basis of VDAE, and we use a novel meta-heuristic optimizer, the seagull optimization
algorithm (SOA), to select the parameters of SVDAE. Finally, an intelligent bearing fault di-
agnosis scheme, based on optimized stacked variational denoising autoencoder (OSVDAE)
is proposed.

3.1. Variational Denoising Auto-Encoder

Due to unstable working conditions and complex operating environments, when a
local fault appears in rolling bearings, the resulting bearing vibration signal contains a
mass of noise interference, which indicates that the obtained identification accuracy will be
not too high if traditional AE is used to process the noisy bearing vibration data. Denoising
auto-encoder (DAE) is an improved version of AE, which can enhance the generalization
ability and robustness of the AE model and prevent over-fitting problems by adding noise
into the input data. Hence, considering the merits of both DAE and VAE, in this section,
the concept of variational denoising auto-encoder (VDAE) is presented by integrating a
denoising module into the original VAE architecture, which can extract the robust features
from the noisy vibration signal. Figure 2 shows the architecture of the VDAE model.
Specifically, in the proposed VDAE, based on a binomial distribution (see Equation (6)),
noise is firstly added into the original input data x = {x1, x2, · · · , xn} to form the corrupted
input data x̂ = {x̂1, x̂2, · · · , x̂n}. Subsequently, the corrupted input data layer is connected
with the hidden layer of VAE to automatically learn the latent features z = µ + ε · σ, where
ε represents an auxiliary variable with normal distribution N(0, 1),µ and σ denote the
features learned from the approximate posterior distribution qϕ(z|x ). Finally, the learned
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latent features, z, are connected with the decoder to generate the new data, y, which is
highly similar to the original data, x.

x̂ ∼ qD(x̂|x ) (6)

where x̂ denotes the noisy input data and qD represents the binomially distributed
random noise.

Figure 2. Architecture of the VDAE model.

3.2. Stacked Variational Denoising Auto-Encoder

Stacked auto-encoder (SAE) is a deep network structure composed of multiple stan-
dard AE stacking, which can learn fault characteristics in depth and reduce the dimension-
ality of input data. Hence, inspired by SAE and VDAE, in this section, a stacked variational
denoising auto-encoder (SVDAE) is constructed to extract the latent variables layer by
layer. Compared with single VDAE models, SDVAE can extract more robust and more
representative latent features due to its deep network structure. Specifically, the training
process of the SVDAE model is divided into two stages (i.e., unsupervised pre-training
and supervised fine-tuning). Figure 3 shows the architecture of the SVDAE model. In the
unsupervised pre-training process of the SVDAE model, the output (i.e., latent variables)
of the previous VDAE will be regarded as the input of the next SVDAE to conduct the
training process of the SVDAE model. When all VDAE models are trained well, the pre-
training process of the SVDAE model is completed, and the representative latent features
can be obtained, which is regarded as the input of the classifier. The pre-training process of
SVDAE can obtain the local optimal solution of model parameters and reduce the effect of
gradient dispersion. In the supervised fine-tuning process of the SVDAE model, the back
propagation algorithm is adopted to adjust the network parameters of SVDAE, which is
aimed at updating the model parameters. At the end of the SVDAE model, the softmax
classifier is adopted to output the identification result in terms of the probability p(θ)j of
Equation (7).

p(θ)j =
e(θ

(j)x)

∑K
k=1 e(θ(k)x)

, j = 1, 2, · · · , n (7)

where p(θ)j denotes the probability of the j-th class fault, x represents the input sample, K
is the number of fault categories, θ denotes the parameters learned from SVDAE.
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Figure 3. Architecture of the SVDAE model.

3.3. Optimized Stacked Variational Denoising Auto-Encoder

When the SVDAE model is used to analyze the collected bearing vibration data, its
performance may be affected by the hyper-parameter settings of SVDAE. That is, improper
network model parameters will result in low recognition accuracy. If artificial adjustment
methods are adopted to select the parameters of SVDAE, it will be tedious and complex,
while high accuracy cannot be fully guaranteed. This indicates that an intelligent algorithm
is urgently needed to determine the parameters of SVDAE. The seagull optimization
algorithm (SOA) is a novel meta-heuristic optimizer proposed by Dhiman and Kumar,
in 2019 [17]. Compared with several well-known meta-heuristics (e.g., spotted hyena
optimizer (SHO), grey wolf optimizer (GWO), particle swarm optimization (PSO), sine
cosine algorithm (SCA) and genetic algorithm (GA)), SOA has the shorter running time
and can converge more rapidly towards the expected position because of its adaptive
mechanism. Therefore, in this paper, the SOA method is introduced to automatically
determine several important parameters (i.e., number of iterations N, learning rate a,
number of nodes in the first hidden layer l1, number of nodes in the second hidden layer l2
and number of nodes in the third hidden layer l3) of the SVDAE model, which can improve
its identification accuracy and avoid the problem of artificial empirical selection of the
SVDAE model’s parameters. Figure 4 shows the flowchart of using the SOA to optimize
the parameters of the SVDAE model. The specific optimization procedures are expressed
as follows:

(1) Load sample data, use Equation (8) to initialize the population of seagulls and set the
initial parameters of the SOA. Specifically, set the population size of seagulls N = 100,
maximum number of iterations Maxiteration = 200, the frequency coefficient fc = 2, the
current iteration number x = 1 and the constants µ = υ = 1 Considering there are five
variables in the SVDAE model that need to be optimized, the position of each seagull

is expressed by a vector
→
P s = [N, α, l1, l2, l3] where α represents the learning rate of

each VDAE, N denotes the epochs number of the SVDAE model, l1, l2 and l3 are the
number of nodes of the hidden layers of VDAE1, VDAE2 and VDAE3, respectively.

→
P s =

→
Pmin + rand(

→
Pmax −

→
Pmin). (8)

where
→
Pmin = [10, 0.001, 400, 200, 50] and

→
Pmax = [200, 1, 800, 400, 100] represent the

upper and lower bounds of the vector
→
P s respectively.
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(2) Calculate the objective function of each seagull and determine the current best position
of the seagulls. In this step, the identification accuracy f (i) is selected as the objective
function, as shown in Equation (9).

max f (N, α, l1, l2, l3) = 1− xi
xc+xi

s.t
N ∈ [10, 200], α ∈ [0.001, 1],

l1 ∈ [400, 800], l2 ∈ [200, 400], l3 ∈ [50, 100]
(9)

where xi denotes the number of misidentified samples, and xc is the number of
correctly identified samples.

(3) According to Equation (10), calculate the distance
→
Ds between the current seagull and

the best seagull, and update the position of each seagull.

→
P s(x) = (

→
Ds × x′ × y′ × z′) +

→
Pbs(x)

→
Ds =

∣∣∣∣→Cs +
→
Ms

∣∣∣∣
→
Cs = A×

→
P s(x)

→
Ms = B× (

→
Pbs(x)−

→
P s(x))

(10)

where
⇀
P s(x) denotes the current position in the updating of seagulls,

⇀
Pbs(x) denotes

the current best position in the updating of seagulls and x denotes the current iter-

ation number.
→
Ds represents the distance between the current seagull and the best

seagull,
→
Cs represents the current seagull position that will not collide with other

seagulls, A represents the movement behavior of seagulls in a given search space and
meets A = fc − (x× ( fc/Maxiteration)), fc is a frequency coefficient that can control
the variation range of the variable A, which is linearly decreased from fc to 0, and

x = 0, 1, 2, · · · , Maxiteration.
→
Ms denotes the position of each seagull moving towards

the best seagull, B is a random number and satisfies B = 2× A2 × rd, rd is a random
number between 0 and 1. x′ = r× cos(k), y′ = r× sin(k) and z′ = r× k are all plane
coordinates, while r = u× ekv represents the radius of each turn of the spiral, u and
v are constants that controls the shape of the spiral and k denotes a random number
between 0 and 2π.

(4) Calculate the objective value of the current seagull and save the global best position

of the seagulls. If
⇀
P s(x) is better than

⇀
Pbs(x),

⇀
P s(x) is considered as the global best

position of the seagulls. Otherwise,
⇀
Pbs(x) is considered the individual best position

of seagulls from which to continue to update.
(5) Judge if the stop condition is met. Specifically, judge whether the number of iterations

is reached or the expected identification accuracy is achieved. If it reaches maximum

number of iterations, output the best position
⇀
Pbs(x) of the seagulls (i.e., the optimal

combination parameters of the SVDAE model). Otherwise, set m = m + 1, repeat the
steps (2)~(5) until the stop condition is satisfied.

(6) Use the optimized SVDAE model to automatically learn the discriminative fault
feature information from the collected bearing vibration signal.

To make it easier for the reader to understand, we plotted the block diagram of
OSVDAE, as shown in Figure 5. Specifically, the proposed OSVDAE includes two stages
(i.e., parameter optimization process and feature learning process), wherein the first stage
is regarded as the parameter optimization process of using SOA to determine the optimal
combination parameters of SVDAE, and the second stage is regarded as the bearing fault
feature learning process of using the OSVDAE model.
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Figure 4. The flowchart of using SOA to optimize the parameters of SVDAE.

Figure 5. The block diagram of the proposed OSVDAE.
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3.4. Proposed OSVDAE-Based Fault Diagnosis Method

To extract more robust fault features from bearing vibration data and improve fault
identification accuracy, this paper proposes a bearing fault diagnosis scheme based on
optimized stacked variational denoising autoencoder (OSVDAE) with the seagull opti-
mization algorithm (SOA), which can avoid the problem of complexity and the triviality
of manually adjusting the parameters of the SVDAE model. Figure 6 shows the flowchart
of the proposed method for the fault diagnosis of rolling bearings, which is primarily
composed of three steps (i.e., vibration data collection, deep feature learning and fault
pattern identification) and its general procedure is expressed as follows:

Figure 6. The flowchart of the proposed fault diagnosis method.

Step 1: Vibration Data Collection. Bearings’ vibration data are collected by using a data
acquisition card and an accelerometer mounted on an experimental platform. Additionally,
a fast Fourier transform (FFT) of the collected bearing vibration data is conducted to obtain
the frequency spectrum data, then their frequency spectra are randomly selected as training
samples or testing samples.

Step 2: Deep Feature Learning. The training samples are input into the constructed
OSVDAE model to train the stacked encoding network layer-by-layer, which is aimed at
obtaining the representative latent fault features. Meanwhile, the SOA method is employed
to automatically determine the important parameters of the OSVDAE model.
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Step 3: Fault Pattern Identification. The testing samples are fed into the well-trained
OSVDAE model to automatically identify bearing faults and provide the final intelligent
bearing fault diagnosis.

4. Experimental Verification and Discussion
4.1. Case 1: Bearing Experimental Data from CWRU
4.1.1. Data Description and Settings

Experimental data are provided by the Bearing Data Center of Case Western Reserve
University (CWRU). The experimental apparatus mainly consists of a motor, testing bearing,
a torque transducer, a dynamometer and control electronics. Figure 7 shows photos of the
experimental apparatus and a corresponding structure diagram thereof. Table 2 lists the
specific parameters of the experimental bearing. In this experiment, single point bearing
faults (i.e., inner race fault (IRF), outer race fault (ORF), ball fault (BF)) are introduced to the
testing bearings using electro-discharge machining, where each kind of fault has three fault
diameters of size 7 mils, 14 mils and 21 mils (1 mil = 0.001 inches). Additionally, the damage
point of the bearing’s outer race fault is oriented to six o’clock. In the data collection process,
10 kinds of bearing vibration data (see Table 3), under different motor speeds, are obtained
by using the motor drive end sensor with a sampling frequency of 12 kHz. Concretely, in
this paper, normal condition data under 1730 rpm, IRF data of three fault parameters under
1750 rpm, ORF data of three fault parameters under 1772 rpm and BF data of three fault
parameters under 1797 r/min are obtained. That is, 10 kinds of bearing working conditions
are selected in this paper. Sixty data samples of each bearing’s working conditions are
intercepted by using a sliding window with the length of 2048 points. The length of each
sample is 2048 data points. Table 2 lists the detailed bearing experimental data adopted in
this paper, where 30 samples of each bearing’s working conditions are randomly chosen as
the training samples and the remaining 30 samples are considered testing samples. That is,
the training-to-testing samples ratio is 1:1. Figure 8 plots the time domain waveform and
frequency spectrum of one data sample from each kind of bearing condition. As seen in
Figure 8, although there are some differences in the shape of the time domain waveform
and spectrum, it is very difficult to accurately judge bearing fault conditions because of the
interference from signal noise.

Figure 7. (a) The experimental equipment and (b) its corresponding structure diagram.

Table 2. Specifications of experimental bearing in case 1.

Bearing Type Roller Diameter
(mm)

Pitch Diameter
(mm)

Number of
Balls

Contact Angle
(o)

SKF6205-2RS 7.94 39.04 9 0
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Table 3. Bearing experimental data description in case 1.

Bearing Condition Motor Speed
(rpm)

Fault Diameter
(mils)

Number of
Training Samples

Number of
Testing Samples Class Label

Normal 1730 0 30 30 1
Inner race fault 1 (IRF1) 1750 7 30 30 2
Inner race fault 2 (IRF2) 1750 14 30 30 3
Inner race fault 3 (IRF3) 1750 21 30 30 4

Outer race fault 1 (ORF1) 1772 7 30 30 5
Outer race fault 2 (ORF2) 1772 14 30 30 6
Outer race fault 3 (ORF3) 1772 21 30 30 7

Ball fault 1 (BF1) 1797 7 30 30 8
Ball fault 2 (BF2) 1797 14 30 30 9
Ball fault 3 (BF3) 1797 21 30 30 10

Figure 8. Time-domain waveform and frequency spectrum of one data sample from each kind of
bearing condition.

4.1.2. Results and Analysis of Fault Diagnosis

The proposed method is used to process the above collected bearing experimental
data, where the key parameters of the SVDAE model are automatically determined by
the SOA method. Table 4 lists the optimal combination parameters of the SVDAE model
obtained by the SOA method. According to the flowchart of the proposed method, the
frequency spectra data matrix of size 300 × 2048 is regarded as the training sample set
to train an SVDAE model with optimized parameters, while the remainder frequency
spectra data matrix of size 300 × 2048 is considered as the testing sample set with which
to test the recognition performance of the well-trained SVDAE model and obtain bearing
fault diagnoses. Figure 9 shows the identification accuracy of the proposed method in the
first trial. It can be observed from Figure 9 that the proposed method can obtain 100%
identification (300/300), which means that the proposed method can effectively identify
different bearing fault conditions under variable speeds. In addition, to intuitively observe
the output features of the proposed method and prove the superiority of its feature learning
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performance, a feature visualization method, t-distributed stochastic neighbor embedding
(t-SNE), is adopted to map the high-dimensional features learned by the third hidden layer
of the proposed method into two-dimension space. Figure 10 shows the results of the
two-dimension visualization of the output features of the proposed method using t-SNE.
It can be seen from Figure 10 that the output features learned by the proposed method
have an obvious degree of discrimination, which is the reasons for selecting the proposed
method for bearing fault diagnosis. It is also verifies that the proposed method has good
feature learning ability.

Table 4. The optimal parameters of SVDAE in case 1.

Model Parameters Value

The number of iterations N 180
The learning rate a 0.009

The number of nodes in the first hidden layer l1 660
The number of nodes in the second hidden layer l2 250
The number of nodes in the third hidden layer l3 80

Figure 9. Identification results of the first trial of the proposed method in case 1.

Figure 10. The results of the two-dimension visualization of the output features of the proposed
method using t-SNE.

To show the advancement of the proposed method and enhance the reliability of the
diagnosis results, the same experimental data from above are analyzed by the traditional
VAE and three representative deep learning models (i.e., SDAE, DBN and CNN). Due to
the randomness of sample selection, each algorithm is executed 10 times to observe their
identification results. According to previous studies, their model parameters are specifically
summarized as follows: (1) In the traditional deep VAE [30], the network structure is set as
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2048–512–64–32–10, which includes one input layer, three hidden layers and one output
layer. (2) In the SDAE model [31], the network structure is set as 2048–200–100–80–10,
which includes one input layer, three hidden layers and one output layer. (3) In the DBN
model [32], the network structure is set as 2048–200–100–80–10, which includes one input
layer, three hidden layers and one output layer. (4) In the CNN model [33], the network
structure includes one input layer, two convolutional layers, two pooling layers and one
fully connected layer, where the size of the input layer is 32 × 32, the convolution kernel
sizes of two convolutional layers are, respectively, 4 and 3, the size of both pooling layers
is 2. (5) For a fair comparison, the number of iterations, or the learning rate, of the SDAE,
DBN and CNN models is selected as the same as that of the proposed method. Figure 11
shows the identification results of different deep learning methods in 10 trials. Additionally,
Table 5 provides the detailed diagnosis results of different models, including maximum,
minimum, mean and standard deviation of identification accuracy. As seen from Figure 11
and Table 5, the average recognition accuracy of the proposed method (OSVDAE) is 99.93%,
which is obviously higher than that of the other four methods (VAE, SDAE, DBN and
CNN), which are 95.00%, 97.03%, 93.17% and 96.06%, respectively. This verifies that the
proposed method is effective in discriminating different bearing faults at unsteady speeds.
In other words, the proposed method reliably diagnoses rolling bearing faults.

Figure 11. Identification accuracy obtained by different methods for 10 trials in case 1.

Table 5. Diagnosis results of different deep learning methods in case 1.

Different Methods
Identification Accuracy Obtained Using Different Methods (%)

Maximum Minimum Mean Standard
Deviation

Proposed method 100 99.67 99.93 0.1391
VAE 95.33 94.67 95.00 0.2200

SDAE 97.33 96.67 97.03 0.2435
DBN 93.67 93.00 93.17 0.2357
CNN 96.33 95.67 96.06 0.2087

To study the impact of training sample size on the diagnosis ability of different deep
learning methods, the total training sample size is respectively set to 50, 100, 150, 200,
250, 300, 350, 400, 450 and 500, where the number of training samples of each bearing
condition is 10% of the total size of the training sample data. The identification results of
different methods are plotted in Figure 12. As shown in Figure 12, the recognition accuracy
of different methods increases with more training samples, which means that sufficient
training samples are necessary for using these methods to achieve a high identification
accuracy. Generally, the more training samples, the better trained is the model and the
higher its diagnostic accuracy. However, a large training sample size will result in a large
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amount of computation, so this work selects the same training and testing sample size
to strike a balance between identification accuracy and computational efficiency. That
is, the ratio of training to testing samples is 1:1. Additionally, it can also be seen from
Figure 12 that the proposed method can obtain a higher identification accuracy than the
other methods, even if the training sample size is different. That is, the validity of the
proposed method is further verified.

Figure 12. The identification results of various methods for different training sample sizes in case 1.

To further consolidate the diagnosis results, we analyze the impact of noise on the
recognition performance of the proposed method. Concretely, Gaussian white noise of
different signal-to-noise ratios (SNR) is added into the original vibration data to inves-
tigate and compare the results of the various deep learning methods. Figure 13 shows
the identification results of various deep learning methods at different noise levels (i.e.,
SNR = −8 dB, −6 dB, −4 dB, −2 dB, 0 dB, 2 dB, 4 dB, 6 dB, 8 dB). As seen from Figure 13,
as the intensity of additional noise increases, the identification accuracy of various deep
learning methods follows a trend of decline from SNR = 6 dB to −8 dB. When the added
noise level is greater than 6 dB, the various methods gradually achieve a steady accuracy
of 90% above. Additionally, among these comparison methods, the proposed method
achieves the best identification accuracy. This indicates that the proposed method has
the most robustness against noise and performs better than the other four methods (VAE,
SDAE, DBN and CNN) in bearing fault identification.

Figure 13. Identification accuracy of the proposed method under different SNR conditions in case 1.

To more deeply investigate the diagnostic results of the proposed method, the five-fold
cross-validation of different deep learning methods is conducted. Concretely, the collected
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dataset (600 samples) is equally divided into five parts (i.e., each part has 120 samples),
where four parts (i.e., 480 samples) are alternately selected as the training samples and
the remaining part (i.e., 120 samples) is regarded as the testing samples. That is, five
trials of different methods are performed. The average identification accuracies of the five
trials are regarded as the final diagnoses. Table 6 lists the diagnosis results of different
methods with five-fold cross validation. As seen from Table 6, the average identification
accuracies (i.e., the proposed method, VAE, SDAE, DBN and CNN) of five methods are
99.83%, 95.49%, 97.16%, 92.99% and 96.33%, respectively. Obviously, the proposed method
can obtain a greater recognition accuracy than the other four methods (VAE, SDAE, DBN
and CNN), which once again indicates that the proposed method has a better bearing fault
recognition performance.

Table 6. Diagnosis results of different methods with five-fold cross validation in case 1.

Different
Methods

Accuracy Obtained by Different Methods for Five Trials (%) Average
Accuracy

(%)1 2 3 4 5

Proposed
method 100 100 99.17 100 100 99.83

VAE 95.83 95.00 95.83 95.83 95.00 95.49
SDAE 97.50 97.50 96.67 96.67 97.50 97.16
DBN 93.33 92.50 93.33 93.33 92.50 92.99
CNN 96.67 96.67 95.83 96.67 95.83 96.33

4.2. Case 2: Bearing Vibration Data from Laboratory
4.2.1. Data Description and Settings

In this case, an experimental bearing dataset from the laboratory is used to evaluate
the performance of the proposed method. The experimental equipment mainly consists of
a motor, drive belt, loading equipment, a bearing test module, an electrical control system
and a computer monitoring system, which can be seen in Figure 14. The bearing test module
includes four bearings of model HRB6205, and Table 7 lists the detailed specifications of
the testing bearings. In this experiment, five types of faults (i.e., inner race fault (IRF),
outer race fault (ORF) and ball fault (BF), outer and inner race compound fault (OIRCF),
outer race and ball compound fault (ORBCF)) are introduced to normal bearings using
electro-discharge machining. Figure 15 shows a global view of a faulty bearing. With the
motor running at 1050 rpm, a PCB accelerometer with a sensitivity of 100 mV/g is mounted
on near bearing case to collect bearing vibration data of different conditions. The adopted
data collection and recording unit is a NI9234 acquisition card with four input channels.
The sampling frequency of the signal is set to be 10,240 Hz. The collected bearing vibration
data are intercepted into 480 samples (the length of each sample is 2048 points) using a
sliding window, from which 40 samples of each bearing condition are randomly selected
as the training set and the remaining samples are regarded as the testing set. That is, the
sizes of the training and testing sets are both 240 (i.e., the ratio is 1:1). Table 8 displays
the specific description of the adopted bearing experimental data. Figure 16 plots time
domain waveform and frequency spectra of one data sample from each bearing condition.
As seen from Figure 16, although there are some differences in the waveforms and spectra
of the vibration data between bearing conditions, it is very difficult and impractical to
manually identify bearing fault conditions by observing their differences, especially for a
significant amount of real bearing vibration data containing environmental noise. Hence, a
new method for reliably diagnosing fault in rolling bearings is urgently needed.
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Figure 14. (a) Rolling bearing test rig and (b) its structure schematic diagram.

Table 7. Specifications of testing bearing in case 2.

Bearing Type Ball Diameter
(mm)

Pitch Diameter
(mm)

Number of
Balls

Contact Angle
(◦)

HRB6205 7.94 39.04 9 0

Figure 15. Photo of the faulty bearing: (a) ORF, (b) IRF, (c) OIRCF and (d) BF.

Table 8. The detailed description of bearing experimental data in case 2.

Bearing Conditions Fault Diameter
(Width × Depth)

Number of Training
Samples

Number of Testing
Samples Class Labels

Normal 0 × 0 mm 40 40 1
Outer race fault (ORF) 0.1 × 0.6 mm 40 40 2
Inner race fault (IRF) 0.1 × 0.5 mm 40 40 3

Ball fault (BF) 0.1 × 0.6 mm 40 40 4
Outer and inner race compound

fault (OIRCF) 0.1 × 0.5 mm 40 40 5

Outer race and ball compound
fault (ORBCF) 0.1 × 0.6 mm 40 40 6
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Figure 16. Time domain waveform and frequency spectra from one data sample each of the different
bearing conditions, in case 2.

4.2.2. Results and Analysis of Fault Diagnosis

The proposed method was adopted to identify the above bearing fault conditions.
According to the process of the proposed method, the SOA method is firstly used to
automatically determine the important parameters of the SVDAE model. The optimized
results are shown in Table 9. Then, the optimized SVDAE model containing the optimal
parameters is trained by the training sample matrix of size 240 × 2048 in the frequency
domain, while the testing sample matrix of the same size is utilized to test the well-trained
SVDAE model and output the final fault diagnoses. Figure 17 shows the identification
result of the proposed method in the first experiment. As is apparent, the proposed method
achieves a 100% testing accuracy (240/240), which indicates that the proposed method is
effective in identifying bearing fault types.

Table 9. The optimal parameters of SVDAE in case 2.

Model Parameters Value

The number of iterations N 150
The learning rate a 0.003

The number of nodes in the first hidden layer l1 580
The number of nodes in the second hidden layer l2 270
The number of nodes in the third hidden layer l3 60
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Figure 17. Identification results of the first trial of the proposed method in case 2.

To verify the advantages of the proposed method, the same bearing data are also
processed using four typical deep learning methods (i.e., VAE, SDAE, DBN and CNN).
Moreover, to improve the reliability of the diagnostic results, 10 trials of each method are
carried out for a fair comparison. Note that, in all compared methods, the number of
iterations and the learning rate are the same as that of the proposed method. The VAE,
SDAE and DBN models all have five layers (i.e., one input layer, three hidden layers and
one output layer), their network structures are 2048–512–64–32–6, 2048–200–100–80–6, and
2048–200–100–80–6, respectively. The network structure of CNN is set to the same as in case
1. Figure 18 shows the diagnosis results of different methods in 10 trials. Additionally, the
maximum, minimum, mean and standard deviation of identification accuracy of different
methods are shown in Table 10. It can be observed from Figure 18 and Table 10 that average
accuracy (i.e., 99.91%) of the proposed method is the greatest among all the compared
deep learning models, while the standard deviation (i.e., 0.1771) of the proposed method is
less than that of the comparison methods. Therefore, by this comparison, it can be easily
concluded that the proposed method achieves better diagnostic performance and has good
stability in identifying bearing fault conditions.

Figure 18. Identification accuracy obtained by different methods for 10 trials in case 2.
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Table 10. Diagnosis results of different deep learning methods in case 2.

Different Methods
Identification Accuracy Obtained Using Different Methods (%)

Maximum Minimum Mean Standard
Deviation

Proposed method 100 99.58 99.91 0.1771
VAE 95.83 95.00 95.37 0.3058

SDAE 97.91 97.08 97.41 0.2635
DBN 94.16 93.33 93.74 0.3389
CNN 96.67 95.83 96.33 0.3313

To consolidate the diagnostic results of the proposed method, the identification results
of various methods under different training samples are calculated, as shown in Figure 19.
As seen from Figure 19, as the number of training samples increases, the fault recognition
performances of the various deep learning methods gradually follow. Compared with
other methods (i.e., VAE, SDAE, DBN and CNN), the proposed method achieves the
highest accuracy under almost all sample training scenarios. Theoretically, more training
samples represents a better-trained model, but it also increases the training time. Therefore,
this worm set the training data and testing data to be of the same size for the purposes
of balancing identification accuracy and algorithm efficiency. Additionally, according
to Figure 19, a conclusion can be drawn that the proposed method still performs better
under varying samples except for the case of training sample size = 30 and 60. That is,
the effectiveness and superiority of the proposed method in bearing fault identification
is verified due to its denoising mechanism and the parameter optimization technique
introduced into the stacked VAE.

Figure 19. The identification results of various methods for different training sample size in case 2.

To investigate the robustness of the proposed method for bearing vibration signals in
a noisy environment, we adopt different methods to process the above bearing condition
data containing different noise levels (i.e., SNR = −8 dB, −6 dB, −4 dB, −2 dB, 0 dB,
2 dB, 4 dB, 6 dB, 8 dB). Figure 20 shows the identification results of various method at
different noise levels. As seen from Figure 20, the identification accuracy of the proposed
method increases with increasing signal-to-noise ratio. Additionally, the proposed method
can obtain a higher identification accuracy than other state-of-the-art methods (i.e., VAE,
SDAE, DBN and CNN), even if the SNR is low. That is, the diagnosis performance of the
proposed method is superior, overall compared with the diagnostic performance of the
other methods.
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Figure 20. Identification accuracy of various methods at different SNR conditions in case 2.

To more deeply show the diagnostic results of the proposed method, we conducted
five-fold cross-validation on the proposed method and four comparison methods (VAE,
SDAE, DBN and CNN). Similarly, the collected dataset are equally divided into five parts,
whereby four parts (i.e., 384 samples) are alternately selected as the training set and the
remaining part (i.e., 96 samples) is regarded as the testing set. That is, each method
conducts five trials. The average accuracy of five trials of each method is regarded as
their final diagnosis results (see Table 11 in detail). It can be clearly seen from Table 11
that the proposed method achieves an average identification accuracy of 99.79%, which is
obviously higher than those of other four methods (VAE, SDAE, DBN and CNN), which are
95.41%, 97.49%, 93.33% and 96.45%, respectively. This, once again, shows that the proposed
method is effective in identifying different bearing fault types and sizes. In other words, the
proposed method has a better bearing fault diagnosis ability compared with VAE, SDAE,
DBN and CNN.

Table 11. Diagnosis results of different methods with five-fold cross validation in case 2.

Different
Methods

Accuracy Obtained by Different Methods for Five Trials (%) Average
Accuracy

(%)1 2 3 4 5

Proposed
method 100 100 98.95 100 100 99.79

VAE 95.83 95.83 94.79 94.79 95.83 95.41
SDAE 97.91 96.87 97.91 97.91 96.87 97.49
DBN 93.75 93.75 92.71 92.71 93.75 93.33
CNN 96.87 95.83 96.87 96.87 95.83 96.45

4.3. Research Limitations and Future Work

Based on the comparisons and analysis of fault diagnosis results obtained by different
methods under two sets of experimental bearing data, we can draw a definite conclusion
that the proposed method has an accurate classification result and has better identification
accuracy than several typical deep learning methods mentioned in this paper; this is
probably due to the stacked denoising techniques and the parameter optimization process
introduced into the original VAE model, which are also the advantages of the proposed
method. The proposed method can provide a reference for algorithm the improvement
and future study of the VAE model in bearing fault diagnosis. Despite this, this paper
nonetheless leaves some work to be done on the proposed method in the future. Some
limitations and specific future works of the proposed method are envisaged as follows:

(1) In this paper, through the fusion of stacked denoising techniques, VAE and an opti-
mization algorithm, the proposed method could improve the anti-noise performance
of the VAE model and adaptively select its parameters. However, the over-fitting
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problem of the proposed method was not considered completely. That is, the overfit-
ting problem of the network model is one limitation of this study. Therefore, to solve
this problem, in a future work, considering the advantages of the existing available
advanced AE (e.g., deep sparse auto-encoder [34], deep contractive auto-encoder [35],
deep convolutional auto-encoder [36], wavelet auto-encoder (WAE) [37], and discrimi-
native manifold regularized auto-encoder (DMRAE) [38]), we intend to add a sparsity
constraint to the neurons in the hidden layer of the SVDAE and improve the loss
function of the SVDAE by adding the Jacobian norm to develop an ensemble stacked
variational auto-encoder (ESVAE) that can both prevent over-fitting and improve
feature-learning ability.

(2) It is difficult to obtain sufficient bearing fault data in actual production, which easily
leads to imbalanced samples from training. This indicates that bearing fault diagnosis,
under data imbalance, is a difficult problem. That is, another limitation of this study
is the uncertainty of implementing unbalanced bearing fault diagnosis. Therefore, to
solve the unbalanced fault diagnosis problem, in a future work, we intend to integrate
the synthetic minority over-sampling technique or bagging method into SVDAE to
improve the generalization performance of the network model. Additionally, some
loss items (e.g., the focal loss, piecewise loss) can also be added into the SVDAE model
to solve the unbalanced fault diagnosis problem of rolling bearings, which is our
future research direction.

(3) When multi-sensor experimental data are collected, including vibration and acoustic
signals, the utilization of multi-sensor information is very critical for the reliable fault
diagnosis of bearings. This paper mainly solves the bearing fault diagnosis problem
of single-sensor data, whereas the effectiveness of the proposed method is unknown
for multi-sensor data processing. That is, the indeterminacy of the proposed method
in multi-sensor fault diagnosis is regarded as one limitation of this study. Therefore, in
our future work, we will refer to the coupling notion of a deep coupling auto-encoder
(DCAE) [39], by which the proposed method can be improved to handle multi-sensor
data, aimed at capturing the joint fault feature information between multi-sensor
signals and perform more accurate fault diagnosis.

(4) In the experimental case 2 of this paper, bearing vibration data were actually collected
on different dates. As the room temperature was different on different dates, the
collected bearing vibration data was collected in different room temperatures. This
indicates that the proposed method can identify bearing faults under different room
temperatures. In other words, when bearing vibration data of different room tem-
peratures are analyzed, it is generally not required to re-train the proposed model.
However, due to the limitations of the experimental conditions, when the experiments
of this paper were conducted, the room temperatures were not recorded, which is
regarded as one deficiency of this study. Therefore, in our future work, we will adopt
a thermodetector to record the room temperature in which bearing data is collected
and confirm the identification accuracy of the proposed method as a function of
room temperature.

(5) In two experimental cases of this paper, the robustness and parameter selection of the
proposed SVDAE were studied intensively, but the internal working mechanism of the
SVDAE was not investigated in detail. Therefore, in our future work, we will adopt
some representative feature visualization techniques (e.g., t-distributed stochastic
neighbor embedding (t-SNE), principal component analysis (PCA), local preserving
projection (LPP) and local sensitive discriminant analysis (LSDA)) to clearly describe
the clustering of output features of the different layers of SVDAE. Meanwhile, in a
future work, the discrimination degree of the output features of the proposed method
will be quantitatively evaluated by using sensitive indexes (e.g., intra-class distance,
inter-class distance and the ratio between them).
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5. Conclusions

This paper proposed a novel bearing fault diagnosis scheme based on optimized
stacked variational denoising autoencoder (OSVDAE). Two experimental examples were
adopted to demonstrate the effectiveness of the proposed method in identifying bearing
faults. The experimental comparison results showed that the proposed method could
obtain a high identification accuracy of 99% or above, which was greater than those of the
traditional VAE and several representative deep learning models (i.e., SDAE, DBN and
CNN). Additionally, the proposed method showed certain robustness for bearing fault
signals in noisy environments. The main contributions and novelties of this paper are
as follows:

(1) A novel deep learning model, named stacked variational denoising auto-encoder
(SVDAE), was presented to extract the inherent fault features from the original bearing
vibration data and provided better robustness than the original VAE.

(2) A new meta-heuristic intelligent optimizer, termed the seagull optimization algorithm
(SOA), was employed to automatically select the hyper-parameters of SVDAE model,
which improved the feature learning ability and avoided the dependence upon human
experience for parameter selection in deep learning.

(3) An intelligent diagnostic framework based on optimized stacked variational denoising
autoencoder (OSVDAE) was proposed for reliably diagnosing bearing faults that does
not require artificial, features-based expert knowledge and so is appropriate for
ordinary technicians.

(4) The experimental results and comparison analysis of bearing fault diagnosis showed
the effectiveness and superiority of the proposed method.

Due to the limitations of the research conditions, this paper mainly focused on solving
the problem of bearing fault diagnosis, whereas other key parts (e.g., gear, rotor and blade)
of mechanical equipment are also prone to breaking down. Hence, in future work, the
problem of reliable fault diagnosis in other key parts (e.g., gear, rotor and blade) will be
analyzed using the proposed method.
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