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Purpose: Leptomeningeal disease (LMD) is clinically detected in 5% to 10% of patients with solid tumors and is a source of substantial
morbidity and mortality. Prognosis for this entity remains poor and treatments are palliative. Radiation therapy (RT) is an essential
tool in the management of LMD, and a recent randomized trial demonstrated a survival benefit for proton craniospinal irradiation
(CSI) in select patients. In the setting of this recent advance, we conducted a review of the role of RT in LMD from solid tumors to
evaluate the evidence basis for RT recommendations.
Methods and Materials: In November 2022, we conducted a comprehensive literature search in PubMed, as well as a review of
ongoing clinical trials listed on ClinicalTrials.gov, to inform a discussion on the role of RT in solid tumor LMD. Because of the paucity
of high-quality published evidence, discussion was informed more by expert consensus and opinion, including a review of societal
guidelines, than evidence from clinical trials.
Results: Only 1 prospective randomized trial has evaluated RT for LMD, demonstrating improved central nervous system progression-
free survival for patients with breast and lung cancer treated with proton CSI compared with involved-field RT. Modern photon CSI
techniques have improved upon historical rates of acute hematologic toxicity, but the overall benefit of this modality has not been
prospectively evaluated. Multiple retrospective studies have explored the use of involved-field RT or the combination of RT with
chemotherapy, but clear evidence of survival benefit is lacking.
Conclusions: Optimal management of LMD with RT remains reliant upon expert opinion, with proton CSI indicated in patients with
good performance status and extra-central nervous system disease that is either well-controlled or for which effective treatment options
are available. Photon-based CSI traditionally has been associated with increased marrow and gastrointestinal toxicities, though
intensity modulated RT/volumetric-modulated arc therapy based photon CSI may have reduced the toxicity profile. Further work is
needed to understand the role of radioisotopes as well as combined modality treatment with intrathecal or central nervous system
penetrating systemic therapies.
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Introduction to assess the current state of the literature and inform
Leptomeningeal disease (LMD) is the spread of malig-
nancy into the cerebrospinal fluid (CSF)-filled leptome-
ningeal space surrounding the brain and spinal cord of
the central nervous system (CNS). Although 20% to 30%
of patients with metastatic disease and neurologic symp-
toms harbor LMD at autopsy,1-3 LMD is clinically
detected in only 5% to 10% of patients with solid tumors.4

The incidence of LMD varies with histology, with lung
and breast cancers being most commonly associated with
LMD (5%-25%), followed by melanoma (6%-18%) and
gastrointestinal malignancies (4%-14%).3,5-7 Mutation
status may also relate to LMD risk, particularly for the
epidermal growth factor receptor family of mutations.8,9

The incidence of clinically detected LMD is thought to be
rising because of a combination of improved imaging
techniques6 and improved control of extra-CNS disease
(ECD).10-12

Dissemination of tumor cells through the CNS results
in a diverse presentation of neurologic symptoms that
may include severe headaches with nausea and vomiting,
cranial neuropathies, cerebellar dysfunction, radiculop-
athy, and cauda equina syndrome. Symptoms can be
debilitating and life-threatening, resulting in substantial
morbidity and mortality and requiring multidisciplinary
management. The median overall survival (OS) of
patients with LMD is often measured in months but can
be highly variable in relation to multiple factors such as
patient performance status, status of ECD, tumor histol-
ogy, and systemic therapy options.13 Given the historically
poor prognosis, the primary goals of treating LMD with
radiation therapy (RT) have been to stabilize or improve
neurologic symptoms, reduce tumor bulk, and restore
CSF flow.

Involved-field RT (IFRT), such as whole brain
(WBRT) and focal spine RT, is effective in symptom man-
agement, but does not generally improve OS, and out-of-
field failure is common.13 This can partially be attributed
to LMD tumor dissemination affecting the entire neuro-
axis, thus requiring the craniospinal compartment to be
considered as the target volume. However, delivery of cra-
niospinal irradiation (CSI) with traditional photon-based
techniques can lead to significant hematologic and gastro-
intestinal morbidity and is generally not recommended
for adults with LMD from solid tumors. In contrast, pro-
ton beam therapy can permit a safe delivery of CSI thanks
to protons’ negligible exit dose, potentially improving
safety and efficacy of the treatment. A recent phase 2 ran-
domized trial of proton CSI versus photon IFRT for LMD
from breast and non-small cell lung cancer (NSCLC)
demonstrated a significant survival benefit of proton CSI
with no increase in high-grade radiation toxicities.14

Given this recent advance, we conducted a review of the
role of RT in the management of LMD from solid tumors
modern RT recommendations, supplemented by expert
commentary.
Methods and Materials
In November 2022, we conducted a search of the rele-
vant literature in PubMed and of ongoing clinical trials
listed on ClinicalTrials.gov to inform a discussion on the
role of RT in the management of solid tumor LMD. We
used search terms including, but not limited to, combina-
tions of such keywords as “leptomeningeal metastases,”
“leptomeningeal disease,” “leptomeningeal carcinomato-
sis,” “neoplastic meningitis,” and “carcinomatous menin-
gitis,” as well as “radiotherapy,” “radiation therapy,”
“irradiation,” “radioisotope,” and “radionuclide.” Only
studies written in the English language that included
patients with LMD from solid tumors were reviewed.
Studies of LMD from primary CNS tumors (eg, medullo-
blastoma) or hematologic malignancies (eg, leukemia)
were excluded. All publication years were considered.
Because of the paucity of high-quality published evidence,
discussion was informed more by expert consensus and
opinion, including a review of societal guidelines, than
evidence from clinical trials.
Results and Discussion
Overview of current guidelines

National Comprehensive Cancer Network (NCCN)
guidelines version 1.2023 stratifies patients with LMD
into “good risk” (Karnofsky performance score [KPS]
≥60; no major neurologic deficits, minimal systemic dis-
ease, reasonable systemic treatment options) versus “poor
risk” (KPS <60; multiple, serious, major neurologic defi-
cits; extensive systemic disease with few treatment
options; bulky CNS disease; encephalopathy).15 The rec-
ommended management of poor-risk patients includes
best supportive care and palliative measures such as the
consideration of IFRT to painful or neurologically symp-
tomatic sites. The recommended management of good-
risk patients includes systemic therapy, intra-CSF sys-
temic therapy, RT, and palliative and/or best supportive
care. RT is recommended to be given as stereotactic radio-
surgery (SRS) or IFRT and/or WBRT to bulky disease and
neurologically symptomatic or painful sites. Consider-
ation of CSI is recommended in selected patients,
although patient selection guidelines are not provided.
When employing CSI, NCCN guidelines recommend
consideration of advanced modalities such as intensity
modulated RT or protons where available.
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The European Association of Neuro-Oncology and
European Society for Medical Oncology guidelines do not
incorporate risk stratification. European Association of
Neuro-Oncology/European Society for Medical Oncology
guidelines instead recommend palliative approaches for
patients with life expectancies less than 1 month. For
other patients, treatment recommendations are algorith-
mically stratified by CSF cytology, presence of brain
metastases (BMs), status of ECD, and LMD subtype.16,17

For circumscribed symptomatic lesions, including CSF
flow obstruction, IFRT is recommended.17 WBRT may be
considered for extensive nodular or symptomatic linear
LMD. In exceptional circumstances of radiographically
occult cauda equina syndrome or cranial nerve palsies,
IFRT may be considered. No specific recommendations
were made regarding the use of CSI.
IFRT

IFRT, typically in the form of WBRT and/or focal
spine RT, does not comprehensively treat the entire CNS
compartment at risk for LMD tumor cell dissemination.
Because of the overall simplicity in patient set-up and
treatment delivery, IFRT allows for rapid initiation of
therapy to stabilize neurologic symptoms in a majority of
patients.18 Clinical application of IFRT is based on retro-
spective or noncomparative prospective studies, as the
only randomized prospective evaluation of photon IFRT
was conducted in comparison to proton CSI.14 Dose frac-
tionation typically ranges from 20 to 40 Gy in 5 to 20 frac-
tions. Prior reviews of IFRT in the management of LMD
have not found reliable evidence of an OS benefit, and the
vast clinical and methodological differences of past studies
have hindered the ability to perform a meta-
analysis.13,19,20 Inadequate data exist to guide treatment
based on primary tumor histology; however, patients with
gastrointestinal malignancies have lower likelihood of
benefit from IFRT13 and mutational status has correlated
to treatment benefit in retrospective work.21 Radiographic
patterns of LMD are being elucidated, but as they have
not been routinely reported, insufficient data exist to eval-
uate their ability to inform use of IFRT.22-24 Given the
lack of high-level evidence guiding the use of IFRT, there
exists a diversity of expert opinion on IFRT application.25

WBRT is the most prescribed form of RT for the man-
agement of LMD.25 Retrospective studies demonstrate an
inconsistent relationship between WBRT and OS, but in
general, patients completing a course of WBRT live lon-
ger.13,26-29 Similar to WBRT for the management of BM,
WBRT is unlikely to improve survival in poor-risk
patients.30 However, the results of multiple studies suggest
a symptomatic benefit of WBRT, justifying its palliative
use.22,31-35 Although there are no clear guidelines for
proper patient selection, WBRT is typically indicated in
patients of adequate functional status who are not eligible
or able to be treated with proton CSI, have intracranial
CSF flow blocks, have symptoms of increased intracranial
pressure, or otherwise have symptomatic intracranial
lesions. Although a small retrospective analysis of patients
with breast cancer suggested improved survival with
higher RT doses,26 WBRT for LMD is typically prescribed
as 30 Gy in 10 or 20 Gy in 5 fractions given the palliative
nature of treatment. Moreover, because prolonged frac-
tionated schedules have not demonstrated benefits in
patients with BM without LMD, a lack of benefit for pro-
longed fractionation in patients with LMD would be
anticipated.36 Hippocampal avoidance WBRT has not
been studied in the management of LMD and is not rec-
ommended at this time because of the potentially reduced
coverage of at-risk CSF spaces. WBRT should be delivered
with 2 lateral opposing fields encompassing the cribriform
plate and the inferior border placed at the C2/C3 interver-
tebral space to ensure coverage of the inferior aspect of
the posterior fossa. In cases of isolated cranial neuropa-
thies, IFRT to the skull base, including the interpeduncu-
lar cistern and extending to include the first 2 cervical
vertebrae, can be considered in lieu of WBRT with the
goal of palliation of symptoms for patients who would
prefer to defer a more comprehensive approach.

The use of focal spine RT can be guided by radio-
graphic and/or clinical findings. For patients with cauda
equina syndrome, the lumbosacral vertebrae should be
targeted with a multifield 3-dimensional technique. For
radiculopathies or other neurologic symptoms above the
cauda equina, focal spine RT treatment fields are guided
by radiographic findings and symptoms. Focal spine RT
may be targeted to areas of CSF flow blocks, as these areas
are associated with decreased survival and have a reason-
able probability of response to focal spine RT.37-41

A limited number of retrospective studies have exam-
ined the role of focal intracranial RT, such as SRS, in the
setting of LMD. One retrospective review identified 16
patients of good performance status who had LMD
treated with SRS, achieving a median OS of 10 months.42

Of patients with imaging follow-up, 50% developed dis-
tant LMD at a median interval of 7 months. Prospective
work is required to guide patient selection when using
focal intracranial RT in the management of LMD. Given
that LMD is a disseminated disease, SRS is not recom-
mended as a first-line radiation treatment. However, SRS
may be useful as a salvage option for focally recurrent or
symptomatic disease in patients who have had prior RT.
CSI

LMD involves tumor dissemination through the entire
CNS compartment, thus eradication of leptomeningeal
tumor cells with RT requires CSI. CSI is standard-of-care
treatment in select patients with LMD from hematologic
malignancies, medulloblastoma, and germinomas.43-45
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For LMD from solid tumors, retrospective studies have
demonstrated efficacy of x-ray−based photon CSI for
symptom alleviation, but widespread use of photon CSI is
limited by toxicities and a lack of survival benefit.18,31,46-48

Of particular concern are the high rates of hematologic
toxicities as these patients have often undergone extensive
prior treatment compromising bone marrow reserve, and
myelosuppression may require early discontinuation of
CSI or compromise future delivery of systemic
therapy.46,47 Modern techniques, such as helical tomo-
therapy or volumetric-modulated arc therapy, allow for
improved dosimetry and organ sparing, thus improving
upon historical rates of acute hematologic toxicity while
increasing low-dose organ exposure.48-52 However, mod-
ern photon CSI techniques have not been correlated with
improved survival in retrospective studies of LMD,18,31

but a prospective study is forthcoming.52 Nonetheless, in
cases where proton CSI is not available, the use of modern
photon CSI to treat selected patients with good perfor-
mance status and controlled ECD remains a reasonable
option that has been anecdotally associated with favorable
outcomes, with retrospective series suggesting a median
survival of 7 months.46

Particle-therapy CSI, such as proton CSI, allows for
improved organ and vertebral body sparing compared
with all forms of photon CSI. In a study of adult patients
with medulloblastoma comparing photon and proton
CSI, proton CSI resulted in significantly fewer gastrointes-
tinal and hematologic toxicities.53 In 2021, Yang et al54

reported a low toxicity profile for proton CSI through a
phase 1 study of patients with solid tumor LMD. This
finding led to the first prospective clinical trial of RT for
solid tumor LMD, which randomized 63 patients in a 2:1
ratio to pencil beam scanning proton CSI or photon
IFRT, including WBRT and/or focal spine RT.14 Patients
in each arm had systemic therapy held during RT and
were prescribed 30 Gy in 10 fractions. Eligible patients
had KPS ≥60, adequate bone marrow function, and
NSCLC or breast cancer. At the time of planned interim
analysis, the trial was discontinued because of a significant
benefit of proton CSI for the primary outcome of CNS
progression-free survival (PFS; 7.5 vs 2.3 months; P <
.001). Although not powered to evaluate differences in the
secondary endpoint of OS, median OS was significantly
higher in the proton CSI arm (9.9 vs 6.0 months;
P = .029), which is likely a consequence of lower rates of
CNS progression. There was no significant difference in
the rate of grade 3 and 4 treatment-related adverse events
(P = .19), with high-grade treatment-related adverse
events occurring in a minority of patients. An exploratory
proton CSI arm consisting of patients with other solid
tumor histologies demonstrated a median CNS PFS of 5.8
months and median OS of 6.6 months.

Based on these results, it is reasonable to consider CSI,
preferably proton-based, when considering RT in patients
with NCCN good-risk solid tumor LMD for the intent of
comprehensive CNS and CSF disease control. For patients
desiring focal CNS disease control and symptom pallia-
tion, focal or IFRT continues to be an effective tool and
has a role in the management of patients with good- and
poor-risk LMD. Furthermore, it is important to note that
a phase 3 study is planned to evaluate the survival benefit
observed in the phase 2 trial, and ongoing work in bio-
marker identification will further help elucidate which
patients benefit most from proton CSI.

Quantitative CSF tumor cell (CSF TC) count has been
shown to have improved diagnostic performance for LMD
compared with magnetic resonance imaging (MRI) and
CSF cytology.55-58 In a large retrospective cohort of patients
with CNS metastases, quantitative CSF TC count was asso-
ciated with survival.59 For patients undergoing proton CSI,
CSF TC before treatment and change in CSF TC after treat-
ment have been shown to correlate with CNS PFS and OS.
In a 58-patient retrospective study, Wijetunga et al60 were
able to group patients based on baseline CSF TC and
change in CSF TC at the time of proton CSI, with the most
favorable group of patients having low CSF TC count
before proton CSI, resulting in a median CNS PFS of 12
months and OS of 17 months. In patients with high base-
line CSF TC count and minimum change in CSF TC after
proton CSI, survival was poor (median CNS PFS of 4
months and OS of 5 months). In the previously mentioned
phase 2 trial of proton CSI versus IFRT, patients who
received proton CSI had decreasing CSF TC count after
CSI while patients who received IFRT had increasing CSF
TC count after IFRT, indicating that CSI is required to ade-
quately address LMD disease burden in the CSF.

In addition to CSF TC, there is an increasing interest in
the role of CSF circulating tumor DNA (ctDNA).61,62

Given the increase in signal-to-noise ratio in CSF as a
result of less circulating noncancerous genomic DNA,
CSF ctDNA analysis has been shown to be a sensitive
method to detect disease in the CNS.61,62 Furthermore,
CSF ctDNA also allows for an understanding of genomic
and clonal differences between the primary cancer and
the metastatic disease in the CNS.61 In a recent paper,
Wijetunga et al60 demonstrated unique LMD evolution
compared with systemic metastasis using matched plasma
and CSF ctDNA in patients undergoing proton CSI for
LMD. In addition, the authors observed unique selection
pressure applied by CSI that was isolated to the CSF com-
partment, and that variant allele frequencies may be a bio-
marker of response to proton CSI.63

Guidelines for target volume delineation and dose con-
straints for proton CSI have been previously
published.14,64 Although proximal spinal nerve roots are
generally part of the target for proton CSI, routine cover-
age of the optic nerves remains a topic of debate. Cover-
age of the optic nerves and retina may increase risk of
toxicity in patients receiving what has historically been
considered a palliative treatment, perhaps most notably
elevating the risk of retinopathy in patients receiving
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systemic therapies such as tyrosine kinase inhibitors
(TKIs).65-69 However, we have observed an anecdotal case
of late (3 year) bilateral, retina-only relapse in a patient
treated with optic-nerve sparing proton CSI, highlighting
how changes in prognosis and treatments for these
patients may increase the importance of comprehensive
radiation coverage to at-risk structures in patients with
disease that is otherwise well-controlled. The cribriform
plate is often contoured as a separate target volume to
ensure coverage.70,71 Cranial foramina are generally also
included in the clinical target volume as well as the spinal
neural foramina, and sagittal T2 sequence on MRI spine
helps to define the termination of the thecal sac. Before
start of therapy, all patients should undergo a thorough
neurologic examination, complete neuroaxis MRI imag-
ing, and lumbar puncture. At the start of treatment, we
generally prescribe memantine to reduce risks for neuro-
cognitive deficits,72 dexamethasone (typically 2 mg twice
daily with adjustment as needed during CSI and taper
after CSI) if not already on glucocorticoid steroids, proton
pump inhibitor, and pneumocystis pneumonia prophy-
laxis. Systemic therapies are typically held during CSI.
One should consider evaluating blood counts either in the
last week or the week after CSI, and more frequently in
patients with clinical need. After completion of RT, we
repeat clinical examination, neuroaxis imaging, and lum-
bar puncture every 2 to 3 months.
Combined modality therapy

Intrathecal (IT) therapy, typically methotrexate
(MTX), has been frequently studied in the treatment of
LMD and has been nonrandomly combined with RT in
multiple studies. A prospective randomized trial of IT
MTX with or without cytosine arabinoside included the
nonrandomized use of LMD-directed RT in half of the
study participants.73 This study found a significant
improvement in response rate and survival when concur-
rent RT was used, but the decision to use RT was princi-
pally governed by prior irradiation of the cerebrospinal
axis. An analysis of sequentially performed, single-arm
prospective studies demonstrated no survival advantage
for RT plus IT MTX, while documenting symptomatic
delayed leukoencephalopathy in 20% compared with 0%
treated with RT without IT MTX.74 A prospective study
of patients with LMD from breast cancer randomized
treatment to IT MTX or non-IT treatment, while includ-
ing nonrandomized use of LMD-direct RT in approxi-
mately half of the patients.75 This study did not report on
the relationship between use of RT and outcome but
noted significantly higher rates of treatment-related neu-
rologic complications in the IT treatment group. Another
prospective trial randomized patients to IT MTX or IT
thiotepa, showing similar efficacy and toxicity, but the
study did not report on RT-related outcomes.76 A recent
randomized trial of IFRT given concurrently with IT
MTX or IT cytarabine is listed as completed with 53 study
participants, but no published results are available for
review (National Clinical Trial [NCT] 03082144).
Although patients who respond to treatment with RT and
IT MTX survive longer than nonresponders,73,77 treat-
ment-related neurologic complications are a concern for
patients treated with this combination.74,75,78

Other therapeutics have been investigated for IT admin-
istration concurrently with RT. Before manufacturing dis-
continuation of liposomal cytarabine, 2 retrospective
studies evaluated the safety profile of concurrent CNS-
directed RT.79,80 One study enrolled patients to receive IT
liposomal cytarabine with concurrent or sequential WBRT
(NCT00854867), although the results of this study have not
been published. A phase 1/2 trial of IT pemetrexed and
concurrent IFRT analyzed the safety profile of this combi-
nation,81 which is being investigated in an ongoing ran-
domized trial (NCT05305885) (Table 1). A phase 1/2 trial
of IFRT followed by IT trastuzumab and pertuzumab is
actively recruiting (NCT04588545). Given the lack of ran-
domized studies examining benefit, as well as the potential
for neurologic toxicity, IT therapy combined with RT is
not recommended outside of clinical trials.

Limited work has been completed on the combination
of novel systemic therapies and RT for LMD. In a retro-
spective study of patients with epidermal growth factor
receptor mutant NSCLC, a combination of WBRT and
TKI did not extend survival compared with TKI therapy
alone.28 Other retrospective studies of osimertinib com-
bined with RT have not demonstrated a high likelihood of
survival benefit.82,83 The safety of combined WBRT and
checkpoint inhibition with avelumab has been explored in
an early-stage clinical trial that recently closed accrual and
reported preliminary safety results (NCT03719768).84 For
patients with PI3K pathway alterations, an ongoing trial is
evaluating safety of WBRT combined with paxalisib
(NCT04192981). A single case report documents treatment
with combined WBRT and trastuzumab emtansine for
LMD, but this combination has not been evaluated pro-
spectively or retrospectively.85
Radioisotopes

IT or intraventricular administration of radioisotopes
has the theoretical benefit of a large therapeutic index from
highly localized dose delivery.86 Various radioisotopes have
been explored in preclinical models, including auger elec-
tron, a-particle, and b-particle emitters, which primarily
differ in their energy, linear energy transfer, range in tissue,
half-life, and production process.87-89 Delivery of radioiso-
topes can be facilitated through molecular targeting via
conjugation to a monoclonal antibody or encapsulation,
such as with a nanoliposome.86,90-92 Clinical data on the
use of radioisotopes in the treatment of LMD from non-



Table 1 Studies listed as active or recruiting on ClinicalTrials.gov, which relate to the use of RT in leptomeningeal disease from solid tumors originating outside of the
CNS

Trial number Study type Status
Actual or estimated
enrollment Experimental arm Comparator arm Primary outcome

NCT03719768 Phase 1 Active,
not recruiting

16 IV avelumab (fixed dose) concur-
rently with 30/10 Gy WBRT

N/A Dose-limiting toxicities
(3 mo)

NCT04192981 Phase 1 Recruiting 36 PO paxalisib (dose escalation)
concurrently with 30/10 Gy
WBRT

N/A Maximal tolerated dose

NCT04343573 Phase 2 Active,
not recruiting

102 30/10 Gy proton CSI 30 Gy/10 photon
IFRT

CNS progression- free
survival (2 y)

NCT04588545 Phase 1/2 Recruiting 39 20/5 or 30/10 Gy IFRT followed
by IT trastuzumab (fixed dose)
and pertuzumab (dose escala-
tion)

N/A Maximum tolerated dose
of pertuzumab (phase
1); overall survival (1 y,
phase 2)

NCT05034497 Phase 1 Recruiting 18 Intraventricular Rhenium-186
NanoLiposome (dose escala-
tion)

N/A Adverse events and
dose-limiting toxicities
(12 mo)

NCT05305885 Phase 2 Recruiting 100 IT/intraventricular pemetrexed
(fixed dose) concurrently with
40 Gy/20 IFRT

IT/intraventricular
pemetrexed (fixed
dose)

Clinical response rate
(up to 6 mo); adverse
events (up to 6 mo)

Abbreviations: CNS = central nervous system; CSI = craniospinal irradiation; IFRT = involved-field RT; IT = intrathecal; IV = intravenous; NCT = National Clinical Trial; PO = by mouth; RT = radiation ther-
apy; WBRT = whole brain RT.
RT prescriptions written as dose/fractions.
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Figure 1 Algorithm for workup and management of leptomeningeal disease.
Abbreviations: CNS = central nervous system; CSF = cerebrospinal fluid; CSI = craniospinal irradiation; IFRT = involved-
field RT; IMRT = intensity modulated RT; IT = intrathecal; MRI = magnetic resonance imaging; RT = radiation therapy;
VMAT = volumetric-modulated arc therapy.
*Consider IMRT/VMAT vertebral-body sparing photon CSI where proton therapy is unavailable.
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CNS, solid tumors are sparse and typically limited to case
reports or studies of pharmacokinetics and
dosimetry.86,90,93,94 One of the largest series reporting clini-
cal endpoints included 9 patients with lung, breast, mela-
noma, and ovarian primary tumors, finding a complete
response in 3 patients and 1 treatment-related death.95

Ongoing clinical trials include a study of a nanoliposome-
encapsulated radioisotope that demonstrated reduction in
CSF cell count in the first 2 study patients.92 Given the
paucity of research on radioisotopes, their use is limited to
clinical trials, with a single active study recruiting patients
(NCT05034497) (Table 1).
Conclusion
With only 1 randomized trial evaluating the role of RT
for LMD, optimal management of LMD with RT remains
reliant upon expert opinion. For patients with good per-
formance status and extra-CNS disease that is absent,
well-controlled, or has adequate remaining systemic ther-
apy, CSI should be considered with the goal of compre-
hensive CNS and CSF disease control (Fig. 1), with a
preference towardproton CSI where available, or confor-
mal photon-based techniques/IMRT that maximizes bone
marrow-sparing where proton CSI is not available. Fur-
ther work on proton CSI is required to refine patient
selection and to understand proper sequencing with sys-
temic therapy. For patients with goals of symptom pallia-
tion/local CNS disease control or who are not appropriate
for CSI, focal and IFRT remain essential palliative thera-
pies. There is no strong evidence to support use of radioi-
sotopes or combined modality treatment at this time,
such as RT with IT or systemic therapy, but clinical trials
are ongoing. Given the lack of prospective data on the
treatment of LMD with RT, and a recent trial demonstrat-
ing a significant benefit of treatment with RT, this patient
population presents a significant opportunity for future
research. For standardization of radiographic response
assessment in clinical trials, the use of Response Assess-
ment in Neuro-Oncology group’s revised criteria is rec-
ommended, which has been previously employed.14,96
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