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Background: Eukaryotic initiation factor 3 (eIF3) is the largest translation initiation factor,

and oncogenic roles have been discovered for its subunits, including the f subunit (ie, eIF3f),

in various human cancers. However, the roles of eIF3f in the development and progression of

prostate cancer (PCa) have not been reported.

Materials and Methods: We performed in silico analysis to screen the expression of eIF3

subunits. Relevant shRNAs were used to knock down eIF3 subunits in 22Rv1 cells and cell

proliferation was analyzed. eIF3f expression in PCa specimens was confirmed by immuno-

histochemistry. eIF3f knockdown was established to evaluate the effects of eIF3f on cell

proliferation in vitro and in vivo. RNA-seq, bioinformatics analysis and Western blotting

were applied to explore the molecular details underlying the biological function of eIF3f in

PCa cells. shRNA-resistant eIF3f and myristoylated-Akt were used to rescue the effects of

eIF3f disturbance on PCa cells.

Results: Functional analyses confirmed that eIF3f is essential for PCa proliferation. Notably,

the expression of eIF3f was found to be elevated in human PCa tissues as well as in PCa cell

lines. eIF3f silencing significantly suppressed the growth of PCa cells, both in vitro and

in vivo. eIF3f expression was positively correlated with Akt signaling activity in RNA-seq

profiles and published prostate cohorts. Knockdown of eIF3f markedly reduced the levels of

phosphorylated Akt in PCa cells. Exogenous expression of shRNA-resistant eIF3f in eIF3f

knockdown cells restored Akt phosphorylation levels and cell growth. Importantly, rescue

experiments revealed that ectopic expression of myristoylated-Akt partially alleviated the

suppressive effects of eIF3f disturbance with respect to the growth of PCa cells.

Conclusion: These results suggested that eIF3f has an oncogenic role in PCa, mediated at

least partially through the regulation of Akt signaling, and that eIF3f represents a potential

target for the inhibition of PCa growth and progression.
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Introduction
Prostate cancer (PCa) is regarded as the most commonly diagnosed cancer and

the second leading cause of cancer-related death among American men, with an

estimated 174,650 new cases and 31,620 new deaths in 2019.1 Its rate in developing

countries, such as China, is also increasing.2,3 Patients with primary prostate tumors

typically undergo radical prostatectomy or radiation therapy, and some patients develop

recurrent disease. Because the growth of PCa is initially hormone-dependent, most

patients with recurrent PCa receive androgen deprivation therapy. However, a large

proportion of tumors eventually relapse to castration-resistant PCa within a few

years.4,5 Recently developed next-generation antiandrogens (e.g., abiraterone and
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enzalutamide), as well as specific chemotherapies (e.g., doc-

etaxel), are efficacious for the treatment of this lethal stage of

the disease.5,6 However, inherent or acquired resistance to

these therapies remains a major clinical challenge; therefore,

it is imperative to develop novel therapeutic approaches.

Translational control, including the regulation of trans-

lation factor levels and variations in translation activities,

is a key link in the carcinogenic process.7 Eukaryotic

initiation factor 3 (eIF3) is the largest translation initiation

factor (800 kDa) in human cells; it consists of 13 unique

subunits (a–m). eIF3 is essential for the initiation of pro-

tein translation and performance as a docking site for

establishment of the 43S preinitiation complex (PIC),

which is composed of Met-tRNAi
Met, eIF2, and the 40S

ribosomal subunit.8 The 43S PIC is recruited to mRNA via

the interaction of eIF3 with eIF4g to form the 48S PIC. In

the 48S PIC, eIF3 enables AUG recognition on mRNA.9 It

has been reported that changes in the level of a single eIF3

subunit can affect the expression characteristics of other

subunits, resulting in the formation of eIF3 subcomplexes

that promote the translation of specific mRNAs.10 eIF3

targets mRNAs involved in the control of cell growth,

via translational activation or repression.11 It has been

reported that some eIF3 subunits are involved in the initia-

tion and development of PCa. For example, the expression

of eIF3b mRNA has been associated with tumor grade,

stage, and survival in human PCa, and depletion of eIF3b

has been shown to reduce cancer cell growth in vitro.12

eIF3c plays an oncogenic role in PCa through the regula-

tion of PI3K/Akt/NF-κB signaling.13 eIF3d plays an onco-

genic role in the proliferation and invasion of PCa cells.14

eIF3h is amplified in PCa tissue and is associated with

advanced tumor stage;15–18 downregulation of eIF3h has

been shown to reduce the growth of LNCaP and PC-3

cells.19 The reduction of EGF-induced eIF3i expression

by exposure to penta-O-galloyl-β-D-glucose can suppress

the invasion of PC-3 cells in vitro.20 In LNCaP cells,

androgen can induce the palmitoylation of eIF3l and is

closely associated with the dynamic palmitoylated level of

eIF3l.21 However, the involvement of eIF3f in PCa

remains unknown.

The present study showed that eIF3f expression was

upregulated in PCa cells and PCa tissues both in The

Cancer Genome Atlas (TCGA) PRAD Dataset22 and pros-

tate cancer specimens. We screened for eIF3 subunits upre-

gulated in PCa tissues in the TCGA PRAD Dataset, which

could affect the proliferation of PCa cells. The results indi-

cated that silencing of eIF3f expression by lentiviral

transfection significantly repressed tumor growth of PCa

cells, both in vitro and in vivo. Disruption of eIF3f in PCa

cells markedly inhibited the phosphorylation of Akt, whereas

overexpression of sheIF3f-resistant wild-type eIF3f in eIF3f

knockdown PCa cells restored both cell viability and Akt

phosphorylation. Furthermore, ectopic expression of consti-

tutively activated Akt partially rescued growth inhibition that

had been induced by eIF3f knockdown. Taken together, the

results of this study suggested that eIF3f plays an oncogenic

role in the proliferation of PCa cells.

Materials and Methods
Cell Culture
The PC3 PCa cell line was obtained from the American

Type Culture Collection (Manassas, VA, USA). The

22Rv1 PCa cell line was kindly provided by the Stem

Cell Bank, Chinese Academy of Sciences (Shanghai,

China). The 22Rv1 and PC3 cells were cultured in RPMI

1640 medium (Corning Inc., Corning, NY, USA) with

10% fetal bovine serum (Gemini, Woodland Hills, CA,

USA), 1% HEPES (Corning, Inc.), and 1% penicillin/

streptomycin (Gibco, Grand Island, NY, USA). All cells

were grown at 37°C in a 5% CO2 humidified incubator.

Plasmids and Lentivirus Infection
Short hairpin RNA (shRNA) expression sequences were as

follows:

sheIF3f#1 (5′-GTGGCTGTTGACATGGAATTT-3′)

sheIF3f#2 (5′CACAATGAGTCAGAAGATGAA-3′)

sheIF3m (5′-CTTCAGATTGGAGCTGATGAT-3′)

sheIF3g (5′-CGATGTCTCTATGACGTTCAT-3′)

sheIF3j (5′-ACCTCGAATTAGCAAAGGAAA-3′)

These sequences were cloned into the pLKO.1 vector.

Plasmids for sheIF3f#1-resistant wild-type eIF3f and consti-

tutively active Akt (ie, myristoylated-Akt) were cloned into

the pLVX-IRES-ZsGreen1 vector with a C-terminal 3*Flag

tag. Plasmids were transfected into HEK293FT cells using

PEI 25K (23966–1; Polysciences, Warrington, PA, USA), in

accordance with the manufacturer’s instructions. PC3 and

22Rv1 cells were transduced with lentivirus, and stable

transformants were isolated with puromycin (5 µg/mL)

(Sigma-Aldrich, St. Louis, MO, USA) for 7 days.

Real-Time PCR Analysis
RNA was isolated from cultured cells using TRIzol

reagent (Invitrogen, Carlsbad, CA, USA), in accordance

with the manufacturer’s instructions; RNA was then
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reverse transcribed into cDNA using a PrimeScript™ 1st

Strand cDNA Synthesis Kit (6110A; TaKaRa, Kyoto,

Japan). qRT-PCR was performed using TB Green®

Premix ExTaq™ (Tli RNaseH Plus) (RR420; TaKaRa)

on an ABI7500 System (Applied Bio Systems, Foster

City, CA, USA). The relative expression levels of the

assayed genes were calculated using the 2−ΔΔCt method.

The following primers were used:

eIF3f forward, 5′-ACGGGCCATGACATCACAG-3′;

eIF3f reverse, 5′- AAGTGCTGACGTAGGCTTTGA-3′;

eIF3m forward, 5′-TCAGAAGAGAA CTCGGAAGGTG-

3′; eIF3m reverse, 5′-ACCACACTGTTCATCACACTTT-3′;

eIF3g forward, 5′-TCAAGATTGTCCGCACCTTCA-3′;

eIF3g reverse, 5′-CTGGCAGTTCAGGTCCTCTTT-3′;

eIF3j forward, 5′-GTCAAGGATAACTGGGATGACG-3′;

eIF3j reverse, 5′-CGAGGTCTGACTCTTCCTGTAA-3′.

The GAPDH gene was used as an internal control for qRT-

PCR with the following primers: GAPDH forward, 5′-

TCCTGTTCGACAGTCAGCCGCA-3′; GAPDH reverse, 5′-

ACCAGGCGCCCAATACGACCA-3′.

Western Blotting Analysis
Cells were washed twice with phosphate-buffered saline

and solubilized in lysis buffer. Aliquots of approximately

40 µg of protein were separated by sodium dodecyl sul-

fate–polyacrylamide gel electrophoresis and then trans-

ferred onto polyvinylidene fluoride membranes; the

membranes were blocked with 5% bovine serum albumin

in Tris-buffered saline with Tween, then incubated with

primary antibodies at 4°C overnight. Subsequently, the

membranes were hybridized with horseradish peroxidase-

conjugated secondary antibodies at room temperature for

1.5 hours, then washed in Tris-buffered saline with Tween.

The signal density was visualized on FluorChem

E (ProteinSimple, San Jose, CA, USA). The following

antibodies were used: eIF3f (A7023; ABclonal, Wuhan,

China), pAkt (4058S; Cell Signaling Technology, Danvers,

MA, USA), Akt (9272S; Cell Signaling Technology), vin-

culin (ET1705-94; Huaan, Hangzhou, China), and β-actin
(sc-47778; Santa Cruz Biotechnology, Dallas, TX, USA).

Cell Growth Assay
Cell growth was assessed using Cell Counting Kit-8

(CK04; Dojindo, Kumamoto, Japan). A total of 1500

cells/well were seeded in 96-well plates; after cells had

adhered to the wells, the CCK8 reagent was added to 100

µL of RPMI 1640 medium with 10% FBS in each well and

cells were incubated at 37°C for 3 hours. Absorbance was

then detected at 450 nm (A450) using a microplate reader

(Tecan, Mechelen, Belgium).

Colony Formation Assay
Cells were cultured in 6-well plates (2000–3000 cells per well)

in complete medium for 7–12 days, depending on the sizes of

the colonies. The cells were then fixed with methanol for 15

minutes and stained using 0.1% crystal violet for 1 hour.

Animal Experiments
Aliquots of approximately 3×105 lentivirus-infected

22Rv1 cells were suspended in Matrigel (volume, 1:1;

356234; Corning, Inc.) and implanted subcutaneously

into 6-week-old male athymic nude mice (n=9). All mice

were killed 37 days later, and the xenografts were dis-

sected and weighed. All animal experiments were

approved by the Experimental Animal Ethics Committee

of East China Normal University (m20190401), and per-

formed according to the regulations for Laboratory Animal

Center, East China Normal University.

Immunohistochemistry (IHC)
The sections were deparaffinized, rehydrated and incu-

bated in 3% hydrogen peroxide at room temperature for

10 minutes. Antigens were retrieved in 0.01 mol/L citric

buffer (pH 6.0) at 95°C to 98°C for 25 minutes. Slides

were cooled down for 1 hour before blocked with

a preferred blocking solution for 30 minutes at room

temperature. Staining with primary antibodies was per-

formed at 4°C overnight. Each sample was measured by

the intensity (0: negative, 1: weak, 2: moderate, and 3:

strong) and the percentage of positive cells (0: 0%, 1: 1%-

25%, 2: 26%-50%, 3: 51%-75%, and 4: 76%-100%). The

final IHC scores = intensity score × percentage score. The

following antibodies were used for IHC: eIF3f (A7023;

ABclonal, Wuhan, China) and Ki67 (A2094; ABclonal).

From 2018 to 2019, ninety surgical specimens from

patients (58 PCa tissues and 32 adjacent normal tissues)

were collected by Shanghai Fifth People’s Hospital, Fudan

University with the donor being informed completely and

with their consent. The research protocol was approved by

Medical Ethics Committee of Shanghai Fifth People’s

Hospital, Fudan University (2018LL028). All experiments

were conducted following the guidelines and regulations

of Medical Ethics Committee of Shanghai Fifth People’s

Hospital, Fudan University.
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RNA Sequencing and Analysis
Total RNA extracted from the indicated groups of 22Rv1

cells was subjected to RNA sequencing (RNA-Seq) per-

formed by Majorbio Biopharm Technology (Shanghai,

China). The sequencing reads were analyzed with the

free online Majorbio Cloud Platform (www.majorbio.

com) to obtain expression profiles. The resulting sequence

data have been submitted to the Gene Expression Omnibus

database (GEO, GSE140526). Gene set enrichment analy-

sis (GSEA) used the GSEA software provided by the

Broad Institute (http://www.broadinstitute.org/gsea/index.

jsp), in accordance with the instructions provided by the

Broad Institute. Hallmark gene sets were used within the

Molecular Signatures Database version 7.0.

Published Datasets and Analysis
TCGA expression profiles were downloaded from UCSC

Xena (http://xena.ucsc.edu/). Fred Hutchinson Cancer

Research Center23 expression profiles were downloaded from

cBioPortal24,25 (http://www.cbioportal.org/). GSE6287226

expression profiles were downloaded from the Gene

Expression Omnibus database. When published datasets

were assessed by GSEA, the Pearson metric was used for

ranking genes and the phenotype permutation type was used;

for all other parameters, default settings were used.

Statistical Analysis
Student’s t test or Mann–Whitney tests were performed to

evaluate differences between two or multiple groups.

Kaplan-Meier survival analysis was used to analyze the

tumor-free survival. Data are presented as the mean ± SD

of three independent experiments. All statistical analyses

were performed with GraphPad Prism (version 7;

GraphPad Software, La Jolla, CA, USA). For all analyses,

P<0.05 was considered to indicate statistical significance.

Results
eIF3f Was Identified as a Regulatory

Factor in PCa
To categorize possible oncogenes in eIF3 subunits, we

performed vitro analysis to filter the expression levels of

eIF3 subunits in normal or tumor tissues of the prostate

(Figure 1A). We screened four eIF3 subunits that were

predicted to be highly expressed in human PCa tissues,

compared to normal prostate tissues (genes marked red in

Figure 1A); notably, the functions of these genes in PCa

development and progression have not been confirmed.

We silenced each eIF3 subunit by using a relevant

shRNA and the efficiencies of shRNAs were examined

by qRT-PCR (Figure 1B). The proliferation rates of

shRNA lentivirus-infected PCa cells indicated that eIF3f

knockdown markedly decreased the proliferation of PCa

cells (Figure 1C). In the TCGA published dataset, the

mRNA levels of eIF3f were markedly upregulated in

PCa tissues, compared to adjacent non-tumor tissues

(Figure 1D). Next, we detected eIF3f expression in normal

tissues (n=32) and PCa tissues (n=58) using IHC. The

staining of normal prostate tissues was weaker than PCa

tissues (Figure 1E). The stain scores of tumor tissues were

significantly higher than normal tissues (Figure 1F).

Consistent with the results of published datasets, eIF3f

expression was elevated in PCa tissues. Western blotting

revealed that eIF3f also showed higher expression levels in

four types of PCa cell lines, compared to human prostatic

RWPE-1 cells (Figure 1G). Taken together, these results

suggested that eIF3f may play a role in the development

of PCa.

eIF3f Was Essential for Growth of PCa

Cells
To examine the function of eIF3f in PCa cell proliferation

in vitro, we disrupted eIF3f with two individual shRNAs

targeting eIF3f in 22Rv1 and PC3 cells. We confirmed the

knockdown efficiency of eIF3f by Western blotting

(Figure 2A). CCK-8 assay results showed that the loss of

eIF3f markedly affected cell growth in the tested PCa cells

(Figure 2B). Consistent with these observations, colony for-

mation assays showed that eIF3f deletion significantly

reduced cell clone formation, in comparison to the control

group (Figure 2C-D). Furthermore, we found that ectopic

expression of sheIF3f#1-resistant wild-type eIF3f rescued

the proliferation rate of eIF3f knockdown cells (Figure 2E).

These observations ruled out the possibility that the inhibi-

tion of proliferation had been caused by off-target effects.

Overall, our results support the hypothesis that eIF3f plays an

important role in the growth of PCa cells.

eIF3f Knockdown Suppressed the

Growth of PCa Tumor Xenografts
To explore the function of eIF3f in the growth of PCa cells

in vivo, we subcutaneously injected 22Rv1 cells stably expres-

sing shRNA targeting eIF3f (sheIF3f#1 and sheIF3f#2) or

vector control (shCON) into 6-week-old nude mice. Thirty-

seven days later, we sacrificed the mice and dissected the
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xenografts for measurement. The xenografts of the control

group were significantly larger and had significantly greater

mass than those in the eIF3f knockdown group (Figure 3A and

B). In addition, the inhibition of eIF3f expression led to

delayed tumor onset and improved tumor-free survival rates

in nude mice (Figure 3C). The IHC analysis of the xenograft

tissues exhibited that inhibiting eIF3f reduced Ki67 expres-

sion, indicating decreased proliferation of tumor cells

(Figure 3D-F). These results confirmed that the inhibition of

eIF3f significantly blocked PCa cell growth in vivo.
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eIF3f Downregulation Inhibited

Phosphorylation of Akt in PCa Cells
To investigate the mechanism underlying the inhibitory

effects of eIF3f silencing on PCa cell growth, we performed

RNA-Seq analysis of 22Rv1 cells, with or without eIF3f

knockdown. GSEA of the gene expression profiles of

22Rv1 cells, with or without eIF3f knockdown, revealed

that genes upregulated by the activation of the PI3K/Akt/

mTOR pathway were distinctly enriched in the control group

(Figure 4A). In clinical specimens, the gene set that reflected

activity of the PI3K/Akt/mTOR pathway was also signifi-

cantly increased in cohorts with high eIF3f expression

(Figure 4B and C). To further characterize the role of eIF3f

in PCa cell growth, we investigated the expression of pro-

teins involved in the Akt pathway by Western blotting; we

found that the level of Akt phosphorylation at Ser473 was

downregulated in eIF3f knockdown groups (Figure 4D).

Ectopic expression of sheIF3f#1-resistant eIF3f restored

Akt phosphorylation in cells expressing sheIF3f#1

(Figure 4E).

Akt Reactivation Partially Restored PCa

Cell Proliferation Under Conditions of

eIF3f Silencing
To confirm that Akt activation is involved in the regulation

of PCa cell proliferation by eIF3f, we overexpressed myr-

istoylated Akt (Myr-Akt) under conditions of eIF3f silen-

cing to explore whether Akt reactivation could counteract

the effects of eIF3f knockdown. The expression levels of

eIF3f and pAkt were evaluated by Western blotting

(Figure 5A). We analyzed cell growth by using CCK-8

and colony formation assays. Although Myr-Akt-

expressing cells remained susceptible to eIF3f knockdown,

Akt reactivation partially restored the proliferation and

colony formation abilities of eIF3f silenced cells (Figure

5B–D). These results indicated that eIF3f knockdown

caused inhibition of PCa cell proliferation at least partially

through the suppression of Akt phosphorylation.

Discussion
There have been a number of reports regarding the roles of

eIF3 subunits in cancer,27 which indicate that eIF3 sub-

units are crucial for the development of PCa. Previous

studies indicated that eIF3 subunits b, c, d, h, and i are

involved in the development of PCa.12–14,18–20,28 In the

present study, we showed that deletion of eIF3 subunits g,

j, m, and f resulted in marked suppression of PCa cell

proliferation. In silico analyses suggested that eIF3f may

promote the progression of PCa.

eIF3f is an indispensable subunit of the eIF3 molecule,

which participates in formation of the mammalian eIF3

functional core.29 Notably, eIF3f regulates skeletal muscle

size through interaction with the mTOR/raptor complex,

thereby promoting the phosphorylation of S6K1 and reg-

ulating downstream effectors of mTOR.30–32 eIF3f has

also been reported to play roles in various cancers. Most

investigations have shown that eIF3f acts as a tumor sup-

pressor. Notably, the eIF3f level was reportedly reduced in

pancreatic cancer, and overexpression of eIF3f in pancrea-

tic cancer cells resulted in apoptosis;33 moreover, eIF3f

promoted rRNA degradation and inhibited translation.34

eIF3f has been shown to act as a tumor suppressor in

melanoma.35,36 In patients with gastric cancer, reduced

expression of eIF3f was associated with poor prognosis,

and eIF3f presumably plays an important role in gastric

cancer recurrence.37–39 However, it remains controversial

whether eIF3f acts as an oncogene or a suppressor. eIF3f

knockdown in A549 cells was shown to inhibit cell pro-

liferation and induce apoptosis.40 Esteves et al41 reported

that eIF3f interacted with STAT3 and increased snail2

expression, thereby promoting lung cancer metastasis.

Shi et al42 used eIF3f cDNA as a probe in a cancer profil-

ing array for assessment of eIF3f expression in diverse

human tumor samples; they reported that eIF3f was upre-

gulated in colon cancer and rectum cancer, compared to

normal tissues. Overall, the results of these studies indi-

cated that eIF3f plays diverse roles in tumors.

Our study is the first to investigate the role of eIF3f

in prostate cancer. According to the shRNA-based

screen, disturbing eIF3f remarkably affected PCa cells

proliferation. We found that eIF3f was significantly upre-

gulated in PCa tissues compared to normal prostate tis-

sues in TCGA PRAD dataset and clinical specimens.

eIF3f was highly expressed in PCa cell lines compared

to normal prostate epithelial cells RWPE-1. We con-

firmed that the loss of eIF3f reduced the proliferation

of PCa cells, both in vitro and in vivo. The RNA-seq

data using 22Rv1 cells and published datasets both

revealed that the disruption of eIF3f suppressed PI3K/

Akt/mTOR signaling. Previous studies43–45 have shown

that the Akt pathway is frequently activated during PCa

progression; the efficacy of PI3K/Akt inhibitors has been

confirmed in PCa preclinical models. Using Western

blotting, we confirmed that phosphorylated Akt levels

were reduced in eIF3f knockdown cells. Furthermore,
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Figure 3 Knockdown of eIF3f impeded PCa tumor growth in vivo. 22Rv1-shCON, 22Rv1-sheIF3f#1, and 22Rv1-sheIF3f#2 cells (3×105) were suspended in Matrigel

(volume, 1:1) and subcutaneously implanted into nude mice (n=9). (A) The mice were killed 37 days later, and the volumes of the xenograft tumors were determined. (B)
The weights of the xenograft tumors are shown. Error bars represent mean ± standard deviation (Mann–Whitney test; n=9). (C) Kaplan–Meier analysis of tumor onset (log-

rank). (D) eIF3f expression is shown as an IHC score (Mann–Whitney test). (E) Ki67 expression is shown as number of positive cells. (F) Hematoxylin-eosin (HE) staining

and eIF3f and Ki67 immunohistochemical staining in tumor xenografts (scale bar: 200μm). *P<0.05; ***P<0.001.

Li et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2020:133746

http://www.dovepress.com
http://www.dovepress.com


ectopic expression of shRNA-resistant eIF3f in eIF3f

knockdown cells restored Akt phosphorylation levels

and cell growth. We found that ectopic expression of

constitutively active Akt partially rescued the obstructed

proliferation caused by eIF3f knockdown. Interestingly,

eIF3f expression was elevated by ectopic expression of

constitutively active Akt in eIF3f knockdown cells. This

results indicated that Akt signaling might upregulate the

expression level of eIF3f in PCa cells. We guessed that

the regulating relation between Akt and eIF3f might

influence the growth of PCa cells and the restoration of

the effects of eIF3f knockdown by overexpressing Myr-

Akt might partially depend on upregulating eIF3f.

Additional work is required to establish if Akt signaling

activates eIF3f expression in prostate cancer. Besides,

further studies are required to identify other molecular

mechanisms underlying the roles of eIF3f in the progres-

sion of PCa.

In summary the findings of this study suggested that

eIF3f may play important roles in the development of PCa.

The mechanisms underlying the effects of eIF3f in the

progression of PCa, as well as the precise role of eIF3f

in Akt signaling, require further investigation, and the

findings of future studies may facilitate the development
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of novel therapeutic approaches against the progression

of PCa.
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