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Endometrial cancer (EC) kills about 76,000 women worldwide, with the highest incidence
in industrialized countries. Because of the rise in disease mortality and new diagnoses, EC
is now a top priority for women’s health. Serine racemase (SRR) is thought to play a role in
the central nervous system, but its role in cancers, particularly in EC, is largely unknown.
The current study starts with a pan-cancer examination of SRR’s expression and
prognostic value before delving into SRR’s potential cancer-suppressing effect in
patients with EC. SRR may affect the endometrial tumor immune microenvironment,
according to subsequent immune-related analysis. SRR expression is also linked to
several genes involved in specific pathways such as ferroptosis, N6-methyladenosine
methylation, and DNA damage repair. Finally, we used the expression, correlation, and
survival analyses to investigate the upstream potential regulatory non-coding RNAs of
SRR. Overall, our findings highlight the prognostic significance of SRR in patients with EC,
and we can formulate a reasonable hypothesis that SRR influences metabolism and
obstructs key carcinogenic processes in EC.
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INTRODUCTION

With 417,000 new cases and 97,000 deaths in 2020, endometrial cancer (EC) is the sixth most common
cancer in women and the seventeenth most commonly diagnosed type of cancer overall (Sung et al.,
2021). There is a 10-fold difference in prevalence between regions worldwide, withNorthernAmerica and
Europe ranking highest and south-central Asia ranking lowest (Sung et al., 2021). Uterine corpus cancer
rates continue to rise (1.3% per year from 2007 to 2016), owing to declining fertility and increasing obesity
(Miller et al., 2020). Since the mid-1970s, survival rates for all cancers other than those of the cervix and
uterus have improved. EC’s most well-known risk factors are early menarche, late menopause, infertility,
obesity, polycystic ovarian syndrome, and diabetes (Miller et al., 2020). According to the International
Federation of Gynecology and Obstetrics, clinical staging is themost important predictor of EC (Xu et al.,
2021). Patients with early-stage EC have a better prognosis than those with recurring or advanced stages,
which have a poor prognosis (Giannone et al., 2019). Patients with localized disease have a 95% 5-year
survival rate, while patients with distant metastasis have a 16% 5-year survival rate (Miller et al., 2020).
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Further research focusing on genes with higher predictive value and
accelerating the transition from the molecular research phase to
clinical practice is critical for improving patients’ prognoses with EC.

Serine racemase (SRR) is a pyridoxal-phosphate-dependent
enzyme that converts free L-serine to D-serine. Apart from
racemization, it also participates in producing pyruvate and
ammonia using L-serine and D-serine as raw materials (Rani
et al., 2020). SRR is found in many central nervous system tissues
and peripheral tissues (Xia et al., 2004). The main product of
SRR’s racemization effect is D-serine, which regulates glutamate-
mediated receptor activation by interacting with the n-methyl-d-
aspartate receptor’s glycine-binding site. Previous studies have
extensively studied its physiological and pathological roles in the
central nervous system (Balu et al., 2013; Horn et al., 2013;
Ohshima et al., 2020). Unbalanced D-serine levels have been
linked to Alzheimer’s disease, stroke, amyotrophic lateral
sclerosis, and schizophrenia (Raboni et al., 2018). However,
little is known about SRR’s role in human cancer, and its role
in cancer development and tumor metabolism is unknown.

SRR’s expression and survival analysis in pan-cancer were the
starting points for this research, eventually discovering its
prognostic value in uterine corpus endometrial carcinoma (UCEC).
SRR in UCEC was then subjected to immune-related and enrichment
analyses.We also investigated the relationship between SRR and tumor
mutation burden (TMB), microsatellite instability (MSI), and mutant-
allele tumor heterogeneity (MATH), and the half-maximal inhibitory
concentration (IC50) of commonly used chemotherapy drugs in
UCEC was also investigated. Following that, we conducted clinically
relevant research using univariate and multivariate analyses to
determine whether SRR could be an independent predictor of the
prognosis of patients with UCEC. Our study focused on SRR’s
upstream regulatory non-coding RNAs (ncRNAs). We found that
ncRNA-mediated downregulation of SRR in UCEC predicted negative
outcomes andwas linked to specific pathways such as ferroptosis, DNA
damage repair, and N6-methyladenosine (m6A) methylation.

MATERIALS AND METHODS

Gene and Protein Expression Analysis
The UCSC XENA [https://xena.ucsc.edu/, derived from The Cancer
Genome Atlas (TCGA) database] was used to obtain mRNA
expression data from 33 cancer tissues and corresponding types
of normal tissues, 15,776 samples in total. The RNA sequencing data
from TCGA and The Genotype-Tissue Expression in TPM format
were processed using the Toil algorithm. These data were analyzed
and compared after log2 conversion.

The RNA sequencing data and corresponding clinical
information were obtained from TCGA database, totaling
11,093 samples. There were 587 samples, with 552 endometrial
tumor tissues and 35 adjacent normal endometrial tissues. We
obtained gene expression profiles from The Gene Expression
Omnibus database (GEO) to confirm our findings: GSE17025
(including 91 UCEC samples and 12 non-tumor samples;
platform, GEO: GPL570). The Human Protein Atlas (HPA)
(http://www.proteinatlas.org/) website confirmed SRR expression
at the mRNA and protein levels. The cell line expression matrix

for 32 cancers was obtained using the Cancer Cell Line Encyclopedia
database (https://portals.broadinstitute.org/ccle/about).

Mutation, Copy Number Variation,
Methylation, and Clinical-Relevant Analysis
of Serine Racemase
We also obtained UCEC mutation data from TCGA database and
visualized the data using the “Maftools” package (Mayakonda et al.,
2018). We performed Copy Number Variation (CNV) analysis on
The Gene Set Cancer Analysis website (http://bioinfo.life.hust.edu.cn/
GSCA/#/).We used the “CNV”mode to get data on the CNV-related
gene expression and survival analysis of SRR in UCEC. MEXPRESS
(https://mexpress.be/) investigated the link betweenDNAmethylation
and SRR expression (Koch et al., 2019).MethSurv (https://biit.cs.ut.ee/
methsurv/) is a web application that allows multivariate survival data
based on DNA methylation to be analyzed. To prepare the region-
based, methylation-related Kaplan-Meier plot, we chose the CpG site
cg03846283 and split it by best (Modhukur et al., 2018). UALCAN
(http://ualcan.path.uab.edu/) provides a comprehensive and complete
resource for cancer-related omics data analysis (Chandrashekar et al.,
2017). To collect clinically relevant data and protein expression of
SRR, we used the “TCGA” and “CPTAC” modules.

Systematic Analysis of Immune Cell
Infiltration Level in Uterine Corpus
Endometrial Carcinoma
We used the R package “immunedeconv,” which incorporated six
cutting-edge approaches to get credible estimates of immune
infiltration. We displayed the results using The Tumor Immune
Estimation Resource (TIMER) algorithm. Twelve transcripts
associated with immune checkpoints were identified, and their
expression levels were retrieved and compared. TIMER (https://
cistrome.shinyapps.io/timer/) systematically evaluated immune
infiltrates in various cancer types (Li et al., 2017). The “SCNA”
module was used to investigate the relationship between somatic
CNV and the presence of immunological infiltrates. A two-sided
Wilcoxson rank-sum test was used to compare the infiltration levels
of each SCNA group to normal.

TISIDB (http://cis.hku.hk/TISIDB/index.php) is an online
database that studies the interaction between tumors and the
immune system by combining several heterogeneous data sources
(Ru et al., 2019). Using the “subtype”module, we investigated the
relationships between SRR expression, immune subtypes, and
molecular subtypes in UCEC.

Associations Between Serine Racemase
Expression and TMB, MSI, MATH, and the
IC50 of Four Chemotherapy Drugs in
Uterine Corpus Endometrial Carcinoma
Additionally, we obtained the level4 Simple Nucleotide Variation
datasets from GDC (https://portal.gdc.cancer.gov/) for all TCGA-
UCEC samples processed with MuTect2 software. Using the R
package Maftools, we calculated each sample’s TMB, MSI, and
MATH scores. Spearman’s correlation analysis determined the
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relationship between SRR expression and TMB, MSI, and MATH
scores. The R packages “ggradar” and “ggstatsplot” were used for
visualization.

Based on the publicly available pharmacogenomics database, The
Genomics of Drug Sensitivity in Cancer, we predicted each sample’s
chemotherapeutic response to doxorubicin, docetaxel, cisplatin, and
paclitaxel. The “pRRophetic” R package was used to implement the
prediction process. Ridge regression was used to calculate the IC50.
p < 0.05 was considered statistically significant.

Enrichment Analysis of Serine Racemase
Co-Expressed Genes
Using Spearman’s correlation, we found the top 800 genes in
UCEC that were positively correlated with SRR.We converted the
800 selected genes into function annotations using the
“org.Hs.eg.DB” package to identify the biological process,
cellular components, molecular function, and signaling
pathways that SRR may be involved in UCEC. The R package
“clusterProfiler” was applied (Yu et al., 2012). Furthermore,
“ggplot2” was used to visualize the results.

We used GeneMANIA software (http://www.genemania.org/)
to create a functional protein-protein interaction network to
identify proteins that might interact with SRR. LinkedOmics is
a free website that contains multi-omics data from all 32 cancer
types in TCGA (Vasaikar et al., 2018). We used Gene Set
Enrichment Analysis (GSEA) in the “Linkpreter” module of
LinkedOmics to perform Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis. The rank criterion was 0.
05, and the number of simulations was 1,000.

Predication of Upstream MicroRNAs and
Long ncRNAs in Serine Racemase
To find SRR’s upstream-binding miRNAs, we used several gene
interaction prediction programs, miRmap (https://mirmap.ezlab.
org/), miRwalk3.0 (http://mirwalk.umm.uni-heidelberg.de/),
miRDB (http://www.mirdb.org/), StarBase (http://starbase.sysu.
edu.cn/), and miRactDB (https://ccsm.uth.edu/miRactDB). A
miRNA was included in subsequent research if at least three
different programs predicted it. These miRNAs were chosen as
potential SRR-interacting candidate miRNAs.

Users could use StarBase as an encyclopedia to learn about the
interactions among ncRNAs. We used StarBase to perform
correlation, expression, and survival analysis of candidate miRNAs
to confirm our findings. This website also predicted potential
upstream lncRNAs for hsa-miR-1301-3p and hsa-miR-193a-5p
and performed expression and survival analysis in UCEC. As a
confirmation, we used data from The Gene Expression Profiling
Interactive Analysis (GEPIA2) and the TCGA-UCEC cohort. Finally,
we used the “igraph” package to create an interactive competing
endogenous RNA (ceRNA) network diagram based on SRR.

We used the lncLocator database (http://www.csbio.sjtu.edu.
cn/bioinf/lncLocator/) to predict the cellular localization of
TSPOAP1-AS1 using its sequence, which we obtained from
LNCipedia (https://lncipedia.org/).

RESULTS

Expression and Prognostic Value Analysis
of Serine Racemase Among 33 Cancer
Types
The entire workflow of this study is depicted in Supplementary
Figure S1. Our initial research focused on the various pan-cancer SRR
expression patterns. First, we compared the expression of SRRmRNA
in tumor and normal tissues. SRR mRNA was significantly lower in
ACC, BLCA, COAD, ESCA, KICH, KIRC, LAML, LUAD, LUSC,
READ, SKCM, TGCT, UCEC, and UCS when compared to normal
controls (Figure 1A). However, it was significantly overexpressed in
BRCA, CHOL, DLBC, GBM, KIRP, LGG, LIHC, PAAD, PRAD,
THCA, and THYM. SRR expression was insignificant between tumor
and normal tissues in only a few tumor types, includingCESC,HNSC,
OV, PCPG, and STAD. Different cancer cell lines had different levels
of SRR expression (Supplementary Figure S2A).

We wondered if the differential expression of SRR was related
to the prognosis of patients with different cancer types. As a
result, we used the univariate Cox method to perform overall
survival (OS), disease-specific survival (DSS), and progress-free
interval (PFI) analyses on the median expression of SRR. As
shown in Figure 1B, SRR expression significantly increased the
OS of patients in KIRC [hazard ratio (HR) = 0.57, p < 0.001],
KIRP (HR = 0.48, p = 0.022), PAAD (HR = 0.63, p = 0.030), and
UCEC (HR = 0.40, p < 0.001). The relationship between SRR
expression and DSS is shown in Figure 1C. High SRR expression
was found to be a protective factor in KIRC (HR = 0.48, p <
0.001), KIRP (HR = 0.21, p = 0.002), and UCEC (HR = 0.31, p <
0.001). In six cancer types, high SRR expression significantly
improved PFI, as shown in Figure 1D. BRCA (HR = 0.72, p =
0.047), KIRC (HR = 0.61, p = 0.003), KIRP (HR = 0.46, p = 0.006),
LIHC (HR = 0.74, p = 0.039), PRAD (HR = 0.64, p = 0.036), and
UCEC (HR = 0.44, p < 0.001). SRR may function as a tumor
suppressor gene in some cancers, such as KIRC and UCEC, based
on expression and survival analysis.

Serine Racemase is Downregulated in
Uterine Corpus Endometrial Carcinoma,
While Its Upregulation Predicts Favorable
Outcomes
In comparison to normal tissues, we used the HPA database to
confirm the mRNA and protein expression levels of SRR in
UCEC. We discovered that SRR expression was low at the
mRNA (Supplementary Figures S2B,C) and protein levels
(Figures 1E,F). In the UALCAN CPTAC samples, the
difference in protein expression was confirmed
(Supplementary Figure S3G). We then looked at SRR
expression in 552 UCEC tissues and 35 adjacent normal
tissues using the TCGA-UCEC cohort. SRR expression was
significantly low in UCEC (p = 3.9e-10), consistent with
previous findings (Figure 2A). The difference in SRR
expression in 23 paired tumors and tumor-adjacent normal
tissues supported our findings (Figure 2B). As external
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FIGURE 1 | Pan-cancer expression and survival analysis of SRR. (A) SRR mRNA expression levels in different types of cancer and their corresponding normal
tissues. (B) Forest plot demonstrating the relation between SRR expression and OS. (C) Forest plot demonstrating the relation between SRR expression and DSS. (D)
Forest plot demonstrating the relation between SRR expression and PFI. (E) SRR protein expression in HPA human normal tissues. (F) SRR protein expression in HPA
human cancer tissues. In (A), * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, ns denotes not significantly different. In (B–D), red dots represent
HR > 1, green dots represent HR < 1.
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validation, we used GSE17025 datasets, which included
12 normal and 91 tumor tissues (Figure 2C). SRR expression
was downregulated in UCEC using standard IHC labeling
collected from HPA (Figures 2E,F).

According to Kaplan-Meier survival curves, patients with
higher SRR expression had better OS, DSS, and PFI
(Figure 2D). SRR’s prognostic value in UCEC was also
confirmed using the Kaplan-Meier Plotter database. Following
the observation of 2, 5, and 10-year OS and relapse-free survival,

we discovered that increased SRR expression was favorable
(Supplementary Figures S3A–F).

Relation Between Serine Racemase and
Immunity in Uterine Corpus Endometrial
Carcinoma
We used the TIMER algorithm to determine the percentage of six
different types of immune cells in the UCEC microenvironment to

FIGURE 2 | Expression and prognostic value of SRR in UCEC. (A) SRR mRNA expression level in UCEC tissues (n = 552) compared with normal tissues (n = 35).
(B) SRRmRNA expression is lower in UCEC tissues than in paired adjacent normal tissues (n = 23). (C) Validation of SRR expression by analyzing data from GSE17025.
(D) OS, DSS, and PFI survival Kaplan-Meier curves of SRR in TCGA - UCEC patients. (E,F) Validation of SRR at the translational level using HPA database
(immunohistochemistry).

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9062915

Cui et al. Exploring SRR’s Roles in EC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 3 | Immune-related analysis of SRR in UCEC. (A) Seven immune inhibitors significantly correlated with SRR expression using TISIDB. (B) Violin plots
showing the different immune infiltration levels in SRR high and low groups. (C) The comparison of the expression of immune checkpoint-related genes between UCEC
SRR-high expression group (red) and SRR-low expression group (blue); the number indicates the p-value. (D) Correlation between SRR expression and immune cell
infiltration levels in UCEC.
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investigate the possible involvement of SRR in the UCEC immune
microenvironment. The Wilcoxson rank-sum test revealed that
myeloid dendritic cell, T cell CD8+, and macrophage infiltration
levels were higher in the SRR high-expression group than in the SRR
low-expression group (Figure 3B). Then, as shown in Figure 3D, we
used the TIMER database to confirm that in UCEC, SRR expression
was not significantly linked with tumor purity (R = −0.104, p =
7.47e−02), but it was remarkably and positively correlated with
CD8+ T cell infiltration (r = 0.313, p = 5.42e−08) and dendritic cell
infiltration (r = 0.133, p = 2.26e−02). Moreover, in patients with
UCEC, there was an overall positive correlation between immune
cell infiltration and cumulative survival (Supplementary
Figure S4A).

As shown in Supplementary Figure S4B, deletion of SRR
at the chromosome arm level significantly reduced CD8+

T cell infiltration (p < 0.001), macrophage infiltration (p =
0.006), and dendritic cell infiltration (p < 0.001). Moreover,
we discovered that SRR expression differed between immune
and molecular subtypes. SRR expression was lowest in the C4
(lymphocyte depleted) immune subtype and highest in the C3
(inflammatory) immune subtype, with patients in the
C3 subtype having better UCEC prognoses (Supplementary
Figure S4D) (Thorsson et al., 2018). SRR was also higher in
the MSI and POLE molecular subtypes, and patients with
UCEC in these two subtypes had better prognoses
(Supplementary Figure S4E) (Urick and Bell, 2019).

CD244, CD96, CTLA4, HAVCR2, LAG3, PVRL2, PDCD1,
PDCD1LG2, SIGLEC15, TIGIT, VTCN1, and CD274 were
chosen as immune-checkpoint transcripts, and the expression
differences of these 12 genes were compared between normal and
patients with UCEC, as well as between UCEC SRR-high and
SRR-low expression groups. CTLA4, HAVCR2, PVRL2, PDCD1,
SIGLEC15, TIGIT, and VTCN1 expression levels were higher in
tumor tissues, while CD244, LAG3, PDCD1LG2, and
CD274 expression levels were found to be lower
(Supplementary Figure S4C). Additionally, patients with high
levels of SRR expression had significantly higher levels of CD244,
CD96, CTLA4, HAVCR2, PDCD1LG2, SIGLEC15, TIGIT, and
CD274 expression (Figure 3C). The TISIDB database was used to
investigate Spearman’s correlations between SRR expression and
immunoinhibitors. SRR expression was significantly correlated
with a total of seven immunoinhibitors, five of which were
positively correlated with SRR, including CD244 (rho = 0.12,
p = 4.81e−03), CD96 (rho = 0.09, p = 4.11e−02), CTLA4 (rho =
0.13, p = 1.94e−03), PDCD1 (rho = 0.10, p = 2.37e−02), and
TIGIT (rho = 0.09, p = 4.34e−02), while the remaining two were
negatively correlated with SRR, including PVRL2 (rho = −0.13,
p = 1.67e−03) and VTCN1 (rho = −0.14, p = 1.63e−03)
(Figure 3A).

Associations of TMB, MSI, MATH, and
Chemotherapeutic Drug Sensitivity With
Serine Racemase Expression in Uterine
Corpus Endometrial Carcinoma
TMB could be used as a biomarker to evaluate the efficacy of
immunotherapy in the treatment of various cancers. MSI has also

been proposed as a cancer immunotherapy prognostic
biomarker. MATH is a method for calculating the genetic
heterogeneity of a tumor. Then, as shown in Figures 4A–C,
the associations between TMB, MSI, and MATH scores and SRR
expression of each sample in UCEC were evaluated. In UCEC,
there was a significant correlation between SRR expression and
TMB (r = 0.27, p = 2.79e−04). In UCEC, SRR was positively
correlated with MSI (r = 0.29, p = 7.47e-05). The coefficient r of
Spearman’s correlation between SRR and MATH was −0.30, with
a p-value of 6.03e−05. These findings suggested that SRR could be
a promising target for immune therapy in UCEC.

We selected four commonly used chemotherapeutic agents for
UCEC based on previously published authoritative literature
(Brooks et al., 2019; Nomura et al., 2019). The IC50 of three
drugs, doxorubicin (Figure 4D), docetaxel (Figure 4E), and
paclitaxel (Figure 4I), was found to be significantly higher in
the SRR-low expression group, implying that patients with SRR-
high expression were more sensitive to these three drugs. In
contrast, there was no significant difference in the IC50 of
cisplatin between the two groups (Figure 4F).

Serine Racemase Co-Expressed Genes
Subjected to Gene Ontology, KEGG, and
GSEA in Patients With TCGA-UCEC
A correlation analysis was used to predict the likely activities
and linked pathways of SRR in UCEC. The top 50 genes that
positively and negatively correlated with SRR in UCEC are
displayed in Supplementary Figures S5B,C. The top 800 genes
with strong and positive correlations with SRR were then
analyzed for GO and KEGG enrichment. According to GO
analysis, SRR was primarily involved in cell replication and
DNA damage repair processes such as DNA replication, cell
cycle regulation, nucleotide mismatch repair, chromosome
structure, and 3′-5′-exoribonuclease activity. Additionally,
SRR’s involvement in the ubiquitination process was likely
to affect ubiquitin-protein and ubiquitin-like protein
transferase activity. Furthermore, SRR was strongly linked
to several DNA and RNA-related pathways, including
nucleotide excision repair, the mRNA surveillance system,
homologous recombination, DNA replication, RNA
transport, and mismatch repair (Figure 5A).

According to the GSEA KEGG analysis, SRR co-expressed
genes were involved in oxidative phosphorylation, peroxisome,
Parkinson’s disease, alpha-linolenic acid metabolism, fatty acid
degradation, fructose and mannose metabolism, p53 signaling
pathway, butanoate metabolism, Alzheimer’s disease, fatty acid
metabolism, and ferroptosis. However, in eukaryotes, RNA
transport and ribosome biogenesis were inhibited (Figure 5B).
Four interesting pathways were selected and were displayed in
Figure 5C.

We used GeneMANIA software to predict and visualize the
interaction network of SRR’s potential interactive proteins.
Twenty SRR-interacting proteins were discovered, and they
were found to interact closely with SDS, SDSL, FBXO22,
POLR1C, LARS1, IARS1, PRELID1, THNSL2, CBSL, CBS, and
DHRS11 (Supplementary Figure S5A).
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FIGURE 4 | Associations of TMB, MSI, MATH, and chemotherapeutic drug sensitivity with SRR expression in UCEC. (A–C) Scatterplots display the Spearman
correlation between SRR expression and TMB (A), MSI (B), and MATH (C) scores in UCEC. The abscissa represents the expression distribution of SRR gene
expression, and the ordinate is the expression distribution of the TMB/MSI/MATH scores. The density curve on the right represents the TMB/MSI/MATH score, and the
upper-density curve represents the SRR gene expression distribution trend. (D–I) Chemotherapy drug sensitivity analysis. The blue and red color represent the
UCEC SRR-high expression and SRR-low expression group, respectively. The ordinate represents the distribution of the IC50 score of doxorubicin (D), docetaxel (E),
cisplatin (F), and paclitaxel (I). *p < 0.05, ****p < 0.001, ns denotes not significantly different.
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Correlation Between SRR and RNA
Methylation Modification-Related Genes,
Ferroptosis-Related Genes, Mismatch
Repair-Related Genes, and Tumor
Suppressor Genes in UCEC
The SRR gene was primarily involved in DNA damage repair,
ferroptosis, ubiquitination, and RNA-related pathways. As a result, we
used a comprehensive and detailed analysis to understand SRR better.

The importance of RNA methylation in the occurrence and
progression of cancer has long been recognized, and there have
been over 170 different RNA chemical alterations discovered to
date, with m6A, N1-methyladenosine (m1A), and 5-
methylcytosine (m5C) being the most well-studied (Esteve-
Puig et al., 2020). From previous studies, Figures 6A–C
compile the correlations among SRR and RNA methylation
modification-related genes (Li et al., 2019; Du et al., 2020; Li

et al., 2021). According to the correlation heatmap, the m6A-
methylation-related genes covering writers (RBM15B, ZC3H13,
and RBMX), readers (YTHDC1, YTHDC2, YTHDF2, HNRNPC,
and HNRNPA2B1), and erasers (FTO and ALKBH5) showed
significant and positive correlations with one another. SRR
showed significant correlations with the 10 m6A-genes in
UCEC (Figure 6A). SRR had positive and significant
correlations with 10 m5C-genes, as shown in Figure 6B. SRR
had significant associations with all m1A-genes except
TRMT61A and ALKBH3, as shown in Figure 6C.

Ferroptosis, a unique mode of cell death, is linked to cancer
initiation, progression, and suppression (Wang Y et al., 2020).
Mismatch repair genes are involved in suppressing cancer-
causing mutations and the induction of protective mechanisms in
response to the challenge of irreversible DNA damage (Ijsselsteijn
et al., 2020). Genes associated with ferroptosis and genes involved in
mismatch repair were selected from previous studies (Deshpande

FIGURE 5 | Functional enrichment analysis. (A) Bar plot displays the GO and KEGG analysis of the top 800 genes, which show the most positive correlation with
SRR by data from TCGA. LinkedOmics-based gene set enrichment analyses (GSEA) of SRR-associated pathways are shown in (B) and (C).
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FIGURE 6 | Correlation analysis of SRR with m6A RNA methylation-related genes (A), m5C RNA methylation-related genes (B), m1A RNA methylation-related
genes (C), ferroptosis-related genes (D), and mismatch repair-related genes (E) in UCEC. Red shows positive correlation, and blue shows negative correlation. The
stronger the correlation, the darker the color. *p < 0.05, **p < 0.01.
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FIGURE 7 |Mutation and copy number variation of SRR in UCEC. (A) Oncoplot displaying the somatic landscape of the UCEC cohort. Genes are ordered by their
mutation frequency, and samples are ordered according to SRR expression indicated by the annotation bar (bottom). The waterfall plot shows the mutation information
of each gene within each sample. (B) Cohort summary plot displaying the distribution of variants according to variant classification, type, and SNV class. The lower part
depicts mutation load for each sample and variant classification type. A stacked bar plot shows the top 10 mutated genes. (C) The distribution of SRR CNV type in
UCEC patients. Different colors represent different CNV types.
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et al., 2020; Liu Z et al., 2020). FANCD2 was negatively correlated
with SAT1 and CDKN1A in SRR and ferroptosis-associated genes,
while SAT1 had no significant correlation with TFRC, CS, and
ACO1, and the remaining correlations were all significant and
positive (Figure 6D). As shown in Figure 6E, SRR and five
mismatch repair genes are closely and positively correlated.

Moreover, we included over 200 DNA damage repair genes
(Jinjia et al., 2019).We prepared a ring heat map (Supplementary
Figure S6A) after calculating their correlation with SRR in
UCEC, indicating that SRR is likely involved in the DNA
damage repair process. In UCEC, TIMER2.0 was used to
investigate the relationship between SRR and 30 common
tumor suppressor genes (Supplementary Figure S6B). The
significant and positive correlations suggested that SRR, like
many other tumor suppressor genes, may work together to
fight cancer, especially in UCEC.

Finally, we divided patients with TCGA-UCEC into two
groups based on median SRR expression. We included more
ferroptosis and m6A methylation-related genes in the expression
comparison between the two groups. In most of these genes, we
found significant and differential expression between the two
groups (Supplementary Figures S7A,B).

Serine Racemase Mutation, Copy Number
Variation, and Methylation Analysis
The mutation data were visualized and analyzed using the R
package Maftools. PTEN, PIK3CA, TTN, ARID1A, and
TP53 were the top five genes with the highest mutation rate in
UCEC. In all UCEC samples, the SRR mutation rate was 2%
(Figure 7A). Missense mutation and single nucleotide
polymorphism were the most common variant classifications
and variant types. The top single nucleotide variant class was
C > T (Figure 7B). The CNV alteration frequency of SRR in
UCEC was approximately 28%, the vast majority of which were
heterozygous deletions and amplifications (Figure 7C). The
bubbles represent the percentage of heterozygous and
homozygous CNV in Supplementary Figures S8A,B. SRR
CNV in UCEC was positively correlated with mRNA RESM,
with a Spearman correlation of 0.5, false discovery rate (FDR) <
0.0001 (Supplementary Figure S8C). In UCEC, the survival
difference between CNV and wild type groups is summarized
in Supplementary Figure S8D. The CNV and wild-type groups
had significant log-rank p-values for all prognosis-related
parameters, including OS, DSS, disease-free interval (DFI), and
progression-free survival (PFS) (Supplementary Figure S8D).

Patients with UCEC were divided into two groups based on SRR
median expression: high and low.A bar chart was plotted to depict the
mutation frequency difference between the two groups for the top five
mutated genes. PTEN, PIK3CA, TTN, and ARID1A mutation
frequencies were higher in the SRR-high expression group, and
the results were statistically significant. However, in the SRR-high
expression group, the TP53 gene was less frequently mutated
(Supplementary Figure S9A).

We hypothesized that DNA methylation was responsible for
SRR’s downregulation. The relationship between SRR expression
and its promoter methylation level was then determined using

MEXPRESS. Four CpG islands were significantly associated with
SRR expression: cg02945294, cg22556056, cg21745320, and
cg03846283. The first two had significant and negative
associations with SRR expression (Supplementary Figure
S9B). According to Methsurv online tool, patients with higher
methylation levels in the promoter region of cg02945294 had a
poor prognosis, with an HR = 3.113 and a likelihood ratio (LR)
test p-value = 1e−04 (Supplementary Figure S9C). This result
supported our previous conclusion that high SRR expression
predicted a better prognosis in patients with UCEC.

Association Between Serine Racemase
Expression and Clinicopathological
Variables
In UCEC, we found a link between SRR expression and clinical
characteristics. Age (p < 0.001), histological type (p < 0.001),
histologic grade (p = 0.044), menopause status (p = 0.002), and
residual tumor (p= 0.014) were all found to be significantly related to
SRR. Additionally, SRR was only marginally related to the clinical
stage (p = 0.067) (Supplementary Table S1). Furthermore, patients
of normal tissues (Figure 8A), Asian race (Figure 8B), age <60 years
(Figure 8C), histological type of endometrioid (Figure 8D), normal
weight (Figure 8E), earlier clinical staging (Figure 8F), TP53-
nonmutant status (Figure 8G), and pre-menopause (Figure 8H)
were found to have higher levels of SRR. SRR expression was also
negatively and weakly correlated with the clinical stage (Spearman’s
r = −0.1, p = 2.52e−02) (Supplementary Figure S10B) and grading
(Spearman’s r = −0.164, p = 1.46e−04) (Supplementary Figure
S10D) in the TISIDB database, indicating that SRR expression
decreased as clinical stage and grading increased.

Logistic regression analysis was used to confirm the relationship
between SRR expression and clinicopathological variables using the
SRR high-low dichotomy. High SRR expression was found to be
significantly and positively correlated with stage I/II [odds ratio
(OR) = 1.617, p = 0.011], G1/2 (OR = 1.540, p = 0.014),
histological type of endometrioid (OR = 4.448, p < 0.001), age ≤
60 (OR = 2.241, p < 0.001), R0 (OR = 2.938, p = 0.005), and pre- and
peri-menopause status (OR = 2.766, p = 0.001) (Supplementary
Table S2). As a result, the results of logistic regression were very
similar to what we had previously discussed.

Additional Investigation of the Clinical and
Prognostic Significance of Serine
Racemase in Patients With Uterine Corpus
Endometrial Carcinoma
First, we used a ROC curve to assess the sensitivity and specificity
of the SRR gene in predicting its diagnostic value of UCEC. SRR’s
area under the curve was 0.815, indicating significant predictive
power in predicting UCEC and normal (Figure 9A). A univariate
Cox proportional hazards regression analysis assessed the factors
influencing patients’ OS. Higher clinical stage (III/IV) (HR =
3.543, p < 0.001), age >60 years (HR = 1.847, p = 0.01), serous type
of histology (HR = 2.646, p < 0.001), higher histologic grade (G3)
(HR = 3.281, p < 0.001), lower SRR expression (HR = 2.494, p <
0.001), and without radiation therapy (HR = 1.684, p = 0.018)
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were among the clinicopathological factors linked to shorter OS
(Supplementary Table S3). Following that, we performed a
multivariate Cox regression analysis and discovered that lower
SRR expression was still an independent risk factor (HR = 2.027,
p = 0.007), along with clinical stage (HR = 3.107, p < 0.001), age
(HR = 1.873, p = 0.029), histologic grade (HR = 2.695, p = 0.001),
and radiation therapy (HR = 2.218, p < 0.001) (Supplementary
Table S3; Figure 9B). Both univariate and multivariate analyses
were performed at the DSS and PFI levels. Clinical stage,
histological grade, SRR expression, and radiation therapy were
independent prognostic factors for DSS (Supplementary Figure
S11C; Supplementary Table S4). Clinical stage, SRR expression,
and surgical approach were independent prognostic factors for
PFI (Supplementary Figure S11D; Supplementary Table S5).

Finally, a prognostic nomogram for 1-, 3-, and 5-year OS
patients with UCEC was created using the previously described
results from multivariate Cox regression analysis. A point scale
was used to assign points to these variables, and the sum of the
points assigned to each variable was rescaled to a range of
0–100 using multivariate analysis. By adding the points from

each variable, the total points were calculated. The nomogram
model had a C-index of 0.764 (95% confidence interval:
0.734–0.794, p < 0.001) (Figure 9C). The 1-, 3-, and 5-year
calibration curves were close to the ideal line, indicating that the
predicted and observed values were aligned (Figures 9D–F). All
patients were divided into low- and high-risk score groups based
on the median value of the nomogrammodel’s risk score. Kaplan-
Meier analysis revealed that patients with a high-risk score had a
worse prognosis (HR = 3.52, p < 0.001) (Supplementary Figure
S11B). The distribution of the risk score and the survival status of
patients with UCEC is shown in Supplementary Figure S11A. As
the risk score increased, it was observed that patients’ survival
time decreased and their risk of death increased.

Prediction of Upstream MiRNAs That May
Interact With Serine Racemase
MicroRNAs play an important role in regulating gene expression in the
human body. They work post-transcriptionally to suppress protein
synthesis inmost cases (Fabian et al., 2010).We discovered 72miRNAs

FIGURE 8 | Associations between SRR expression and different clinicopathological variables including sample types (A), patient’s race (B), patient’s age (C),
histological subtypes (D), patient’s weight (E), cancer stages (F), TP53 mutation status (G), and menopause status (H) in TCGA UCEC patients using the UALCAN
datasets.
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FIGURE 9 | Diagnostic and prognostic value of SRR in UCEC patients. (A) ROC analysis of SRR shows good discrimination power between tumor and normal
tissues. (B) Forest plot shows the results of the multivariate Cox regression analysis of the clinicopathological characteristics affecting the OS of UCEC patients. (C) A
nomogram for predicting the 1-, 3-, and 5-year OS probability for UCEC patients. (D–F) Calibration curves of 1-, 3-, and 5-year OS of UCEC patients. The ordinate
represents the actual OS, while the abscissa represents the nomogram-predicted OS.
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after predicting the upstream miRNAs of SRR. We then investigated
and visualized their correlations inFigure 10A, based on the hypothesis
that there should be a negative relationship between SRR and miRNA

expression. With a p-value of 0.05, 14 miRNAs could potentially
interact with SRR, and 10 were strongly and negatively linked with
SRR (Figure 10B, Supplementary Figure S12A).

FIGURE 10 | Identification of hsa-miR-193a-5p and hsa-miR-1301-3p as the most potential upstream miRNAs of SRR in UCEC. (A) A miRNA-SRR regulatory
network in UCEC is constructed. (B) A total of 14 miRNAs showing significant correlations with SRR in UCEC are discovered by StarBase. Expression and survival
analysis of hsa-miR-193a-5p (C) and hsa-miR-1301-3p (D) in UCEC patients conducted through StarBase.
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We then looked at the expression differences in normal and
tumor tissues using StarBase miRNA expression data, and we
confirmed the results using TCGA. Seven miRNAs, including
hsa-miR-18a-3p, hsa-miR-128-1-5p, hsa-miR-193a-5p, hsa-miR-
505-5p, hsa-miR-584-5p, hsa-miR-1301-3p, and hsa-miR-1913,
showed significant upregulation in tumor tissues
(Supplementary Figures S12B,C).

Finally, StarBase was used to determine the prognostic power
of the seven miRNAs in UCEC. As presented in Supplementary
Figure S12D, only high expression of hsa-miR-193a-5p (HR =
1.70, Log-Rank p = 0.014) and hsa-miR-1301-3p (HR = 1.72, Log-
Rank p = 0.012) was negatively linked with patients’ OS (Figures
10C,D). We used TCGA survival data to verify and confirm the
prognostic value of hsa-miR-193a-5p and hsa-miR-1301-3p at
OS, DSS, and DFI and plotted Kaplan-Meier curves as presented
in Supplementary Figures S12E,F. To conclude, the upstream
miRNAs hsa-miR-193-5p and hsa-miR-1301-3p may be
suppressing SRR expression in UCEC.

Prediction of Upstream lncRNAs That May
Interact With Hsa-miR-193a-5p or
Hsa-miR-1301-3p
The upstream lncRNAs of hsa-miR-193a-5p or hsa-miR-1301-3p
were investigated further using StarBase. For hsa-miR-193a-5p
and hsa-miR-1301-3p, the total number of predicted lncRNAs
was 97 and 153, respectively. After combining the results from
StarBase, GEPIA2, and TCGA-UCEC, a total of 13 upstream
lncRNAs of hsa-miR-193a-5p were identified, including
AC008969.1, LINC00963, C1RL-AS1, XIST, SNHG7,
AC008443.1, TTN-AS1, LINC01278, SLC25A21-AS1,
AC024075.2, HEIH, AL662795.1, and LINC00294
(Supplementary Figures S13A–C) and 19 lncRNAs of hsa-
miR-1301-3p, including MATN1-AS1, RAMP2-AS1,
MIR99AHG, SH3BP5-AS1, MBNL1-AS1, AC008443.1,
MUC20-OT1, LINC02381, AL590705.5, AC068888.1,
AC015712.2, TSPOAP1-AS1, ILF3-AS1, AC012313.3,
AC012531.2, AL137058.2, AC015871.3, AL662795.1, and
LINC00294 (Supplementary Figures S14A–C) were chosen as
being significantly downregulated lncRNAs in UCEC when
compared to normal controls.

The prognostic values of the selected lncRNAs were then
assessed. None of the predicted 13 lncRNAs of hsa-miR-193a-
5p showed significant OS, DSS, or PFI, as shown in
Supplementary Table S6. We discovered that only patients
with higher TSPOAP1-AS1 expression had better survival
outcomes among the 19 lncRNAs of hsa-miR-1301-3p, and
the results analyzed through GEPIA2 (Figures 11C,D) were
validated in StarBase (Supplementary Figure S14D) and
TCGA (Supplementary Figure S14E). Supplementary Table
S7 contains detailed prognostic data for the 19 lncRNAs of
hsa-miR-1301-3p. GEPIA2 and StarBase were used to compare
the expression of TSPOAP1-AS1 in tumor and normal tissues, as
shown in Figures 11A,B, respectively.

As is well known, lncRNAs frequently act as “sponges” for
miRNAs, reducing the miRNA’s suppressive effect on target
mRNAs and thus increasing mRNA expression. As a result,

lncRNA and miRNA expression will be negatively correlated,
while lncRNA and mRNA expression will be positively
correlated. We found no significant correlation between hsa-
miR-193a-5p and the corresponding 13 lncRNAs (Figure 12B).
The expression of TSPOAP1-AS1 was significantly and negatively
correlated with hsa-miR-1301-3p. Simultaneously, it was
significantly and positively correlated with SRR (Figure 12D).
TSPOAP1-AS1 could be the potential upstream lncRNA of hsa-
miR-1301-3p in UCEC, based on expression analysis, survival
analysis, and correlation analysis.

Finally, because different cellular localizations of lncRNAs
determine different mechanisms, we looked at TSPOAP1-AS1’s
subcellular location. Figure 12A shows that all seven TSPOAP1-
AS1 transcripts were primarily found in the cytoplasm, indicating
that TSPOAP1-AS1 could act as a ceRNA to boost SRR
expression by competitively sponging hsa-miR-1301-
3p. Figure 12C shows a molecular interaction network
diagram for better visualization.

DISCUSSION

UCEC, unlike other cancers, has an increasing incidence and
associated mortality (Lu and Broaddus, 2020). Hence, elucidating
the underlying mechanisms of UCEC carcinogenesis and
discovering new biomarkers help address the rising number of
UCEC cases and improve patient outcomes. Through multi-
omics analysis, we focused on the function of SRR in EC and
found that SRR could be a promising biomarker for accurate
diagnosis and targeted therapy.

SRR is an enzyme that catalyzes the conversion of L-serine to
D-serine. Many previous studies have been conducted on its role
in the central nervous system. According to Rani et al., D-serine
acts as a co-agonist of the N-methyl D-aspartate receptor. SRR
hyperactivation may cause many neurological disorders. They
also showed that incorporating SRR changed the dangerous
functions of harmful proteins. It could also produce pyruvate
and ammonia after an elimination reaction with L-serine and
D-serine (Rani et al., 2020). Only a few studies have recently
looked into its potential role in cancer. Ohshima et al. (2020)
discovered that SRR promoted colorectal cancer cell proliferation
by contributing to the pyruvate pool. In osteosarcoma 143B cells,
Gorska-Ponikowska et al. (2017) observed an anticancer effect of
high concentrations of glycine and D-serine. SRR’s metabolic
activities differ in cancer types, explaining some of these
discrepancies.

Our study discovered that SRR expression was low in UCEC,
but that higher expression predicted better OS, DSS, and PFI. The
expression of SRR decreased as tumor grading and staging
increased. Additionally, SRR expression could be an
independent predictor of OS, DSS, and PFI. All this suggested
that SRR plays a protective role in UCEC. According to our GSEA
enrichment results, SRR expression was linked to manymetabolic
pathways, including fatty acid degradation and fructose
metabolism, lipoic acid metabolism, valine, tyrosine, and
leucine isoleucine. Furthermore, our GO enrichment analysis
revealed that SRR was linked to various cell cycle and DNA
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replication-related processes, which had previously been
suggested as prospective targets for the precision treatment of
patients with EC (Lheureux and Oza, 2016). As a result, it is not
difficult to believe that SRR expression influences many critical
metabolic and DNA replication pathways involved in EC cell
proliferation and migration.

The existence of L-isomers of the most nutritionally important
amino acids in the human body is widely acknowledged. When
D-amino acid (the mirror-image enantiomer of L-amino acid) is

substituted in a protein, the protein’s function and structure are
altered (Pundir et al., 2018). Many previous studies have reported
L-serine’s carcinogenic effect in cancers, such as its proliferative
effect on breast cancer cells (Pollari et al., 2011; Amelio et al.,
2014; Yang and Vousden, 2016). L-serine deficiency also
increased drug sensitivity in lymphoma, leukemia, and liver
cancers (Maddocks et al., 2017). As previously stated, SRR is
involved in the metabolism of L-serine, and the decrease of
L-serine may result in a reduced one-carbon metabolism

FIGURE 11 | TSPOAP1-AS1 is downregulated in UCEC, while its high expression predicts favorable outcomes. Expression analysis of TSPOAP1-AS1 using
GEPIA2 (A) and StarBase (B). * indicates p < 0.05. Survival analysis of TSPOAP1-AS1 in terms of overall survival (C) and disease-free survival (D) of UCEC patients.
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FIGURE 12 | Construction and correlation analysis of the ceRNA network. (A) Cellular localization of seven different transcripts of TSPOAP1-AS1 predicted using
LncLocator. (B,D) Expression correlation analysis of the ceRNA network visualized through a heatmap. *p < 0.05, **p < 0.01. (C) LncRNAs-miRNAs-SRR interaction
network.
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source, which has been linked to tumor growth (Amelio et al., 2014;
Newman and Maddocks, 2017). This result is consistent with our
GSEA, which revealed that SRR was negatively correlated with the
one-carbon pool. Moreover, SRR has been linked to glucose
homeostasis in peripheral tissues. Because of the lack of
synthesized D-serine, Lockridge et al. (2016) claimed that SRR
knockout mice secreted more insulin. Similarly, Suwandhi et al.
(2018) reported that chronic D-serine supplementation reduced
insulin secretion, affecting systemic glucose metabolism. Insulin
resistance and hyperinsulinemia are important events that occur
at the start of hyperplasia, and they can trigger EC (Papatla et al.,
2016). Insulin promoted EC growth and progression in vivo by
activating the InsR/IRS-1/PI3K-Akt pathway. By activating the PI3K/
Akt pathway, insulin stimulation may enhance cancer cell
proliferation and inhibit apoptosis in vivo (Wang et al., 2012;
Tian et al., 2017). According to a comprehensive systematic
review and meta-analysis, higher fasting insulin was also linked to
EC (Hernandez et al., 2015).We hypothesized that the higher level of
SRR, the more L-serine was converted to D-serine. On the one hand,
lower L-serine levels in cancerous endometrial tissuemeant a low risk
of cancer; on the other hand, higher D-serine levels in tumor tissue
could regulate glucose homeostasis, preventing the activation of key
cancer pathways.

SRR was primarily involved in RNA modification, ferroptosis,
andDNAdamage repair processes in our enrichment analyses. RNA
modifications are gaining more attention these days, and mounting
evidence suggests that disruption of RNA epigenetic processes plays
a role in developing human illnesses like cancer (Barbieri and
Kouzarides, 2020). According to our findings, in most cases, SRR
and RNA modification genes were strongly and positively linked in
UCEC. The SRR-high expression group had a more active m6A
modification situation. According to Liu et al. (2018), EC had low
levels of m6A mRNA methylation, and that reduced m6A
methylation promoted cancer cell proliferation. We could
reasonably conclude that SRR plays a role in the positive
regulation of m6A RNA methylation in EC, thereby exerting its
anticancer effects. Ferroptosis is a non-apoptotic, novel type of
programmed cell death that serves as an adaptive mechanism for
eliminating malignant cells, and it represents a new pathway for
tumor suppression (Li et al., 2020; Fan et al., 2021a). Previous studies
have found a link between ferroptosis and the growth and
proliferation of UCEC. According to Janeiro et al., ferroptosis
was dysregulated in low-grade, early-stage EC (López-Janeiro
et al., 2021). Wang et al. (2021) discovered that silencing
PTPN18 promoted ferroptosis, decreased proliferation, and
induced apoptosis in KLE cells by targeting the p-P38/GPX4/xCT
axis. Furthermore, Zou et al. (2020) and Kuganesan et al. (2021)
found that the peroxisome and p53 were crucial for ferroptosis
sensitization in EC cells (Liu and Gu, 2021). SRR was positively
correlated with the peroxisome, the p53 signaling pathway, and the
ferroptosis process, and the SRR-high expression group had
upregulated ferroptosis-related genes. As a result, we reasoned
that SRR might positively regulate peroxisome and p53 signaling
in UCEC, causing an active ferroptosis state and suppressing tumor
cell biological behavior. DNA damage repair includes a variety of
mechanisms that are essential to genome integrity and proper
function (Jinjia et al., 2019). Cancer cells have a lower capacity

for DNA repair and DNA damage signaling than normal cells, and
cancer can upregulate DNA repair pathways and drive
tumorigenesis in certain circumstances (Brown et al., 2017).
Moreover, it was reported that the ability to identify and repair
DNA mismatches contributed to better outcomes in patients with
EC. In contrast, the loss of DNA mismatch repair was linked to
adverse outcomes (Cohn et al., 2006). In our study, SRR expression
was significantly and positively correlated with most DNA damage
repair-related genes in patients with UCEC, indicating that SRR is
likely to play a role in the DNA damage repair process, contributing
to favorable prognoses. Positive correlations between SRR andmany
other tumor suppressor genes were discovered in UCEC, indicating
that they may act synergistically as cancer inhibitors.

Immune cells and cytokines can be found in large numbers in
EC tissues, stimulating an endogenous antitumor immune
response (Cao et al., 2021). In our study, SRR expression was
significantly and positively correlated with the levels of CD8+

cytotoxic T cells and dendritic cell infiltration. Dendritic cells in
EC were found to phagocytize and process tumor-associated
antigens, resulting in a CD8+ T cells response that killed EC
cells directly (Chen et al., 2020). Meanwhile, studies have shown
that CD8+T cells and dendritic cells have tumor-suppressing and
survival-enhancing properties (De Felice et al., 2019; Li andWan,
2020; Wang G et al., 2020; Rousset-Rouviere et al., 2021). This
suggested that SRR was important in regulating tumor immunity
and, therefore, influenced patient prognoses.

We then looked at using SRR as a marker for chemotherapy
and immune therapy in patients with UCEC to see if it could be
used in clinical treatment. Immunotherapy is more likely to
benefit EC than other types of gynecological malignancies
(Cao et al., 2021). TMB and MSI were predictive markers for
immune checkpoint inhibitors. It was widely assumed that higher
TMB and MSI indicated better immunotherapy response
(Schrock et al., 2019; Mazloom et al., 2020; Salem et al., 2020).
In the present study, SRR was found to have positive correlations
with TMB and MSI in UCEC. Furthermore, the correlations
between SRR and some immune inhibitors, such as PDCD1 and
CTLA4, which have been reported to enhance the immune
responses, were striking (Fan et al., 2021b; Lu et al., 2022).
Immune checkpoint expression also differed between the SRR-
high and SRR-low expression groups. These findings suggested
that SRR could be used to predict immunotherapeutic response.
Doxorubicin, docetaxel, paclitaxel, and cisplatin have become
popular in the treatment of advanced and recurrent endometrial
cancer (Brooks et al., 2019; Nomura et al., 2019). We discovered
that the IC50 of doxorubicin, docetaxel, and paclitaxel was higher
in the SRR-low expression group than in the SRR-high expression
group, implying that patients with SRR-high expression were
more sensitive to these drugs. Because chemotherapy drugs can
have serious adverse effects, it is vital to screen people who are
sensitive to them so that adverse reactions are minimized (Fan
et al., 2021b; Lu et al., 2022). SRR expression could also be used as
a biomarker to screen patients with UCEC for chemotherapy,
according to our findings.

Four distinct molecular subgroups with prognostic significance
were previously identified in the genetic landscape mapping of
patients with EC. POLE-ultramutated, MSI-hypermutated, copy-
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number low, and copy-number high were all found in them. The
first group exhibited the best PFS, followed by the MSI-
hypermutated group, and patients with a high copy number had
the worst PFS (Le Gallo and Bell, 2014; Auguste et al., 2018). Many
other studies were consistent with the above view (Church et al.,
2015; Van Gool et al., 2015; Mcconechy et al., 2016; Bell and
Ellenson, 2019; Imboden et al., 2019). SRR expression was higher
in the POLE-ultramutated and MSI-hypermutated groups in our
study. In contrast, it was lowest in the copy number-high group,
confirming the link between SRR expression and UCEC patient
survival. Thorsson et al. (2018) also identified six immune subgroups
spanning multiple tumor groups, including EC, based on differences
in macrophages or lymphocytes. Patients in the C3 (inflammatory)
subgroup had the best prognoses. In contrast, those in the C2 (INF-
gamma dominant) and C1 (wound healing) subgroups had less
favorable outcomes, and those in the C4 (lymphocyte depleted) and
C6 (TGF-b dominant) subgroups had the worst outcomes
(Thorsson et al., 2018; Mullen and Mutch, 2019). We found that
SRR was significantly higher in the C3 group and significantly lower
in the C4 group, indicating that SRR may influence the tumor
microenvironment and benefit patient survival.

In terms of somatic mutations in UCEC, our study found that
patients in the SRR-low group had lower PTEN, PIK3CA, TTN,
and ARID1A mutation frequencies, while having a higher
TP53 mutation frequency. Liu J et al. (2020) previously
identified a cell cycle-related signature in patients with UCEC,
finding that samples with high risk scores (poor survival
outcomes) had lower mutation rates of PTEN, TTN ARID1A,
and PIK3CA and a higher mutation rate of TP53. This was nearly
identical to our findings. The discovery that ARID1A and
TP53 may cooperate in a complex system could explain why
TP53 mutations were mutually exclusive with ARID1A (Wang
et al., 2011; Bosse et al., 2013; Wu et al., 2014). Additionally,
activating PIK3CA mutations were frequently found alongside
PTEN mutations (Cheung et al., 2011). Furthermore, PTEN
mutation was associated with a better prognosis than the
PTEN non-mutation group (Tao and Liang, 2020). These
perspectives may offer plausible explanations for the difference
in mutation frequencies of specific genes between SRR-high and
SRR-low expression groups.

MicroRNAs repress multiple genes at the mRNA and
translation level, which is how they perform their biological
function. Our study discovered that hsa-miR-193a-5p and hsa-
miR-1301-3p could be potential miRNAs upstream of SRR.
Previous studies have suggested that hsa-miR-193a-5p may
play a role in the invasiveness of malignant pleural
mesothelioma cells (Jotatsu et al., 2020), and a significant
reduction in hsa-miR-193a-5p level was observed after
irradiation of the colorectal cancer cell line HCT116 (Yu et al.,
2021). Similarly, Pu et al. (2016) reported that hsa-miR-193a-5p
contributes to osteosarcoma metastasis by suppressing SRR
expression. Another candidate miRNA, hsa-miR-1301-3p, was
upregulated in early-stage nasopharyngeal carcinoma (Zheng
et al., 2021). However, no studies have investigated the target
genes and mechanisms of both hsa-miR-1301-3p and hsa-miR-
193a-5p in the context of UCEC. The potential lncRNAs of the
hsa-miR-193a-5p/SRR or hsa-1301-3p/SRR axis should be

antineoplastic in UCEC, according to the ceRNA
hypothesis, and the most eligible one turned out to be
TSPOAP1-AS1. Zheng et al. (2020) identified TSPOAP1-
AS1 as protective against cervical cancer. Tang et al. (2021)
and Giulietti et al. (2018) reported that higher TSPOAP1-AS1
expression in pancreatic cancer was associated with a better
prognosis. TSPOAP1-AS1 plays a significant role in LUAD,
READ, and THYM. While in UCEC, they calculated the HR to
be 0.441 and the p-value to be 0.176 after dividing the patients
into two groups with the median expression of TSPOAP1-AS1,
which was not entirely consistent with our results. It is possible
that different datasets were used in the different studies as an
explanation. However, TSPOAP1-AS1 increased VEGFA
expression and accelerated tube formation in hepatocellular
carcinoma cells, promoting angiogenesis (Wang et al., 2019).
To summarize, our findings suggest that hsa-miR-193a-5p and
hsa-miR-1301-3p may regulate SRR expression in UCEC and
that the TSPOAP1-AS1/hsa-miR-1301-3p/SRR axis could be a
promising therapeutic target. Regardless, the detailed
mechanism needs to be investigated further.

Our study does, without a doubt, have some limitations. Due
to the lack of prognostic information on patients with UCEC in
other datasets, such as GEO and the International Cancer
Genome Consortium, we could not use external datasets to
validate the survival results. Additionally, in vivo and in vitro
studies are required to confirm our findings.

In summary, we show that SRR expression is low in many
cancer types, including UCEC, and that higher SRR expression
in patients with UCEC indicates a better prognosis.
Additionally, SRR expression raises immune infiltration in
patients with UCEC. SRR expression is linked to some
immune checkpoints and TMB and MSI scores, suggesting
that it may influence the immune microenvironment and serve
as a therapeutic target for patients with UCEC. Furthermore,
our findings indicate that SRR may inhibit cancer by activating
ferroptosis, m6A methylation, and DNA-damage repair
processes. Finally, the hsa-miR-193a-5p/SRR axis and
TSPOAP1-AS1/hsa-miR-1301-3p/SRR axis are the most
likely regulatory targets of SRR. Our discussion spans all
the possible mechanisms in great detail. Nevertheless,
fundamental investigations and thorough clinical trials will
be required in the future to confirm our findings.
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functioning of SRR generated from GeneMANIA. Different colors of connecting
lines denote the diverse functions. (B) The top 50 genes most positively associated
with SRR are shown in a heatmap. (C) The top 50 genes most negatively associated
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Supplementary Figure S6 | (A) Spearman correlation analysis of SRR expression
with DNA damage repair-related genes in TCGA UCEC patients. *p < 0.05, **p <
0.01, ***p < 0.001. (B) Spearman correlation analysis of SRR expression with
30 tumor suppressor genes in UCEC and pan-cancer using TIMER2.0 database.

Supplementary Figure S7 | Distribution of m6A methylation (A) and ferroptosis
(B)-related genes in UCEC SRR-high expression (group 2, color red) and SRR-low
expression (group 1, color blue) groups. The expression value of each gene is
converted by z-score, with red representing high expression and blue representing
low expression. *p < 0.05, **p < 0.01, ***p < 0.001.

Supplementary Figure S8 | Copy number variation (CNV) analysis of SRR in UCEC.
(A,B) Bubbles represent the percentage of homozygous and heterozygous CNV in
patients with UCEC. The bubble size positively correlates with percentage. Blue
represents deletion, and red represents amplification. (C) Bubble plot representing

the SRR expression profile at the mRNA expression and CNV level. Red bubbles
represent positive correlations. The deeper the color, the higher the correlation.
Bubble size positively correlates with FDR significance. The black outline border
indicates FDR ≤ 0.05. (D) Survival difference between CNV groups. Bubble color and
size represent the Log-rank p-value. The bubble color represents the significance of the
Log-rank p-value, and the bubble size positively correlates with the significance of the
Log-rank p-value. The black outline border indicates Log-rank p-value ≤ 0.05.

Supplementary Figure S9 | Comparative mutation and methylation analysis of SRR.
(A) The horizontal axis represents the UCEC SRR-low and SRR-high expression groups.
The vertical axis represents the gene mutation distribution, and different colors represent
different mutation types. (B) The correlation between SRR expression and DNA
methylation of the SRR promoter region from MEXPRESS in UCEC. The correlation
coefficient and p-value on the right indicate the relationship between SRR expression and
DNA methylation of the promoter. *p < 0.05, ***p < 0.001. (C) The Kaplan-Meier survival
associated with the promoter region cg02945294. Blue represents lower methylation
status, and red represents higher methylation status.

Supplementary Figure S10 | Associations between SRR expression and clinical
stage (A) and grade (C) across human cancers. The horizontal coordinates indicate
different tumor types, and the vertical coordinates indicate the p-value
after −Log10 conversion. Red color shows significant and negative correlation,
while dark shows significant and positive correlation. (B) Higher SRR expression is
associated with a lower stage in UCEC. (D) Higher SRR expression is associated
with a lower grade in UCEC.

Supplementary Figure S11 | (A) Validation of the multivariate cox regression
model. The risk score of each sample is ranked from smallest to largest, with red and
blue colors representing the high and low groups of risk score. Blue circle shows a
living patient, while red triangle indicates death. (B) Risk score-based survival
analysis of UCEC patients, with red line denoting high-risk score group and blue
denoting low-risk score group. Forest plots showing the results of the multivariate
Cox regression analysis of clinicopathological characteristics affecting the DSS (C)
and PFI (D) of UCEC patients.

Supplementary Figure S12 | Expression, correlation, and survival analysis of the
upstream miRNAs of SRR. (A) Correlation analysis of the 10 miRNAs showing
significantly negative correlations with SRR in UCEC by StarBase. (B) Seven out of
the 10miRNAs are significantly highly expressed in UCEC compared with normal tissues
through StarBase. (C) Validation of the expression differences of the 10 miRNAs by
analyzingdata obtained fromTCGA. *p<0.05, **p<0.01, ***p<0.001. (D)OSanalysis of
the seven overexpressed miRNAs in UCEC patients by StarBase. OS, DSS, and PFI
analysis of hsa-miR-1301-3p (E) and hsa-miR-193a-5p (F) through TCGA.

Supplementary Figure S13 | Expression analysis of the upstream lncRNAs of hsa-
miR-193a-5p. Expression analysis of the consistently predicted 13 significantly
downregulated upstream lncRNAs of hsa-miR-193a-5p by StarBase (A),
GEPIA2 (B), and TCGA (C). *p < 0.05, **p < 0.01, ***p < 0.001.

Supplementary Figure S14 | Expression analysis of the upstream lncRNAs of hsa-
miR-1301-3p. Expression analysis of the consistently predicted 19 significantly
downregulated upstream lncRNAs of hsa-miR-1301-3p by StarBase (A),
GEPIA2 (B), and TCGA (C). *p < 0.05, **p < 0.01, ***p < 0.001. (D) OS analysis
of TSPOAP1-AS1 in StarBase. (E) OS, DSS, PFI analysis of TSPOAP1-AS1
through TCGA.

Supplementary Table S1 | Correlation analysis between SRR expression and
clinicopathological variables in EC based on TCGA database.

Supplementary Table S2 | SRR expression correlates with clinicopathological
characteristics through logistic regression. The lower part shows full forms of all
abbreviations in this article.

Supplementary Table S3 | Univariate and multivariate analyses of factors
influencing patients’ OS in UCEC.

Supplementary Table S4 | Univariate and multivariate analyses of factors
influencing patients’ DSS in UCEC.

Supplementary Table S5 | Univariate and multivariate analyses of factors
influencing patients’ PFI in UCEC.

Supplementary Table S6 | Survival analysis of the upstream lncRNAs of hsa-miR-
193a-5p.

Supplementary Table S7 | Survival analysis of the upstream lncRNAs of hsa-miR-
1301-3p.
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