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1.  INTRODUCTION

Where well-matched donors are unavailable, transplant centers 
may resort to mismatched donors, most often haplo-identical 
family donors [1–3]. Such transplants will inevitably cause lethal 
acute graft-versus-host disease (GvHD) unless T-cells are aggres-
sively depleted. The price for overzealous T-cell depletion, on the 
other hand, is graft failure, relapse due to lack of immunological 
control of residual blasts (graft-versus-leukemia, GvL), morbid-
ity and mortality from opportunistic infections and dramatically 
delayed immune reconstitution [4–7]. The search for the ideal 
protocols providing GvHD control and useful immune function 
has been ongoing for approximately four decades, but achieving 
good separation of GvHD from GvL immune response is noto-
riously difficult. The initial haplo-identical transplant required 
mega-doses of CD34+ cells [8,9], immunomagnetically selected 
by, at the time, several competing technologies [10–12]. The dis-
appointing clinical outcomes, with long-term survival rates of not 
much more than 20% [7], have largely curbed the enthusiasm for 
allogeneic “naked haplo” transplantation without immediate or 
delayed co-transplantation of an alloreactivity-attenuated T-cell 
product [7]. The use of CD34+ selected products is limited to  

correction of poor graft function following allogeneic hemato-
poietic stem cell transplantation [13–16]. In the autologous set-
ting, CD34 selected transplants retain some relevance for tumor 
cell purging, such as in neuroblastoma [17,18]. The rationale for 
CD3/CD19 depletion of haplo-identical allogeneic grafts was the 
expectation that co-transplanted mature cells, especially Natural 
Killer (NK)-cells, might provide relevant benefit [19–21]. We will 
not dismiss the possibility that after the much less efficient T-cell 
depletion provided by CD3/CD19 depletion (more than one log 
compared to CD34 selection) therapeutically relevant T-cell doses 
might remain in the product. Despite strong evidence of (GvHD-) 
safety and quite satisfactory clinical outcomes with CD3/CD19 
depleted transplants, typically supplemented with CD34-selected 
grafts to achieve the desired hematopoietic stem and progenitor 
cell (HSPC) megadoses without exceeding the targeted T-cell dose 
of 50,000/kg body weight [21,22], CD3/CD19-depleted HSPCs 
have not become a mass product. Several reasons have likely con-
tributed, including the high cost of the transplant and the advent 
of alternative haplo-identical transplants, such as TCRab /CD19 
depleted HSPCs [23,24] or unmanipulated bone marrow in com-
bination with post-transplant intermediate-dose cyclophospha-
mide, which is safe and provides reasonable immune reconstitution 
[25–30]. We propose that inconsistent cell processing results during 
CD3/CD19 depletion, as demonstrated by the analyses reported 
here, may have contributed to its limited adoption. These incon-
sistencies arise despite use of quality-controlled devices, reagents 
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A B S T R AC T
Aggressive T-cell depletion, in vitro or in vivo, is a prerequisite for survival of haplo-identical stem cell transplantation. The 
classical T-cell-depleted transplant, immunomagnetically enriched CD34+ cells, is very safe with respect to graft-versus-host 
reactivity, but associated with very high transplant-related and relapse mortality with an overall probability of survival of 
only 20%. Protocols for T- and B-cell depletion were therefore developed, reasoning that transplantation of the majority of 
Natural Killer (NK) cells and the substantial dose of residual T-cells might improve survival, which was, in principle, confirmed. 
Anecdotal reports of frequent failure to achieve adequate T-cell depletion prompted review of the aggregate data for transplant 
quality at our center. The first observation is the relative paucity of combined CD3/CD19 depletion processes as PTCy protocols 
have made inroads, 13 depletions in 8 years. Median T- and B-cell log-depletion were −3.89 and −1.92, respectively; instead of, 
CD34+ cell recovery was generally high (median 92%), as was NK-cell recovery (median 52%). However, the process failed to 
yield satisfactory T- and B-cell depletion in two out of 13 preparations, of which one product could be rescued by a second round 
of depletion, at the expense of CD34+ cell recovery. In our hands, the process is thus insufficiently robust for routine clinical use. 
Assuming similar observations in other centers, this may explain implementation of alternative protocols, such as TCRab /CD19 
depletion or transplantation of unmanipulated grafts with subsequent in vivo depletion.
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and consumables, with multiply validated, Good Manufacturing 
Practice (GMP) compliant, rigid manufacturing protocols dis-
seminated by the manufacturer of the materials, in the hands of  
a professional GMP-team consistently successfully manufacturing 
a host of other, much more complex products.

2.  MATERIALS AND METHODS

Mobilized apheresis products from haplo-identical family donors 
were collected by the apheresis services supporting the respec-
tive transplant centers, subjected to quality control in agreement 
with locally specified quality attributes and released by a Qualified 
Person. The products were hand-carried by designated couriers 
at 4–8°C in temperature-controlled containers. Products were 
processed within 24 h of the end of the apheresis. Product qual-
ity varied widely, reflecting typical donor variability but, more 
importantly, the 10-fold difference in recipient weight (median, 
45 kg, interquartile range 27–54 kg, range 8.4–83 kg) and accord-
ingly, difference in target doses for CD34+ and T-cells. In most 
cases, apheresis products were asymmetrically divided, for one 
part to be subjected to CD3/CD19 depletion, and the remain-
der to CD34 selection. Collection of sufficient cells provided, the 
fraction slated for CD3/CD19 depletion reflected the maximum 
cell dose for total cells, T- or B-cells allowed by the manufac-
turer (Miltenyi Biotech (MACS), Bergisch Gladbach, Germany) 
for reagent kits and tubing set, whichever cell population turned 
out to be limiting. The remainder was subjected to CD34 selec-
tion and is not considered here. CD3/CD19 depletion followed 
company-provided protocols as previously described, without any 
modifications, using commercially available reagents through-
out. In brief, platelets were removed from the apheresis product 
by soft-spin, the white blood cells (WBCs) were re-suspended in 
MACS buffer, albumin-supplemented saline. Antibody-bead-
complex was added as manufacture-recommended. A depletion 
tubing set 161-01 (Miltenyi Biotech) was used with the cognate 
Depletion program on CliniMACS (Miltenyi Biotech). Depicted in 
Table 1 are the attributes of the fraction subjected to CD3/CD19  

depletion. The process was initiated on the morning after the 
apheresis, approximately 18 h after its end; in one case, the prod-
ucts from two successive aphereses were combined and subjected 
to CD3/CD19 depletion, at which time the first apheresis prod-
uct was 24-h old. Quality controls were performed on incoming 
apheresis products and target cell bags. The volume was assessed 
by gross product weight corrected for tare and assuming 1 g = 1 mL. 
Concentrations of WBC and five-way differential were measured 
with Sysmex XT1800i (Norderstedt, Germany), although eosino-
phils and basophils were neglected for the purpose of these analyses. 
CD34+ cells (HSPCs) in the apheresis product and end product, as 
well as T-cells in the apheresis product were enumerated by single- 
platform flow cytometry, using Becton-Dickinson (BD) Canto II 
(BD, Heidelberg, Germany) with Diva software. CD20+ and CD56+ 
cells before and after depletion as well as T-cells after depletion 
were enumerated using an in-house generated multi-parametric 
flow cytometry panel containing anti-CD45, anti-CD34, anti-CD3, 
anti-CD20, anti-CD56 and anti-CD14, as well as 7-aminoactino-
mycin (7AAD) as a viability dye (all antibodies and 7AAD:BD). 
The latter panel is optimized and formally validated for enumeration 
of very low frequencies of T- and B-cells, whereby T- and B-cells 
are quantified by normalizing their frequency against International 
Society for Hematology and Graft Engineering (ISHAGE, now 
ISCT)-gated CD34+ cells according to the multi-color panel and 
the concurrently analyzed CD34+ concentration from the single 
platform assay (Stem Cell Enumeration (SCE), BD) [31]. Sterility 
was assessed using the European Pharmacopoeia (EP)-conforming 
rapid test “BacT/Alert” (BioMérieux, Marcy-l’Étoile, France) as 
described [32]; all products were negative for microbial growth.

Data were extracted in a pseudonymized fashion from the batch 
records. Analyses represent our regulatory and JACIE-mandated 
efforts at periodic product quality review. The Goethe University 
Medical School ethics committee has confirmed that such exercise 
does not require specific donor consent. Log-depletion was calcu-
lated as log10 (total cell number after depletion/total cell number 
before depletion). Descriptive statistics were calculated and graphs 
drawn in Excel 2010 (Microsoft, Redmond, WA).

Table 1 | Product properties: median, interquartile range (IQR) and range for product-defining values before and after 
manipulation are presented for all consecutive CD3/CD19-depletion performed between 2012 and 2020

Apheresis product Depleted product

Median (IQR/range) Median (IQR/range)

Volume [mL] 258 (193–310/130–380) 206 (155–224/99–292)
WBC [´109] 61 (57–74/30–105) 35 (30–44/18–77)
CD34+ frequency [% CD45+] 0.78 (0.65–0.92/0.13–2.3) 1.0 (0.86–0.1.50/0.15–4.13)
CD34+ total dose [´106] 529 (246–577/131–809) 408 (200–534/119–594)
CD34+ dose [´106/kg] 20.06 (8.71–15.14/3.43–66.47) 9.42 (6.90–10.34/3.15–60.70)
CD3+ frequency [% CD45+] 24 (21–28/12–36) 0.006 (0.005–0.016/0.002–0.079)
CD3+ total dose [´106] 15,473 (14,629–16,586/10,354–29,934) 2.2 (1.8–3.1/0.9–13.1)
CD3+ dose [´106/kg] 443 (316–549/232–1755) 0.053 (0.049–0.093/0.034–0.386)
Monocytes [% CD45+] 22 (18–29/15–32) 30 (27–35/22–51)
Granulocytes [% CD45+] 31 (27–34/16–38) 7.6 (4.7–14.3/2.2–25.9)
CD56/16+ frequency [% CD45+] 4.6 (3.8–6.2/2.4–22.8) 4.6 (3.8–8.9/1.6–25.5)
CD56/16+total dose [´109] 3.2 (2.5–4.0/1.4–9.5) 2.5 (1.1–3.2/0.4–6.0)
CD56/16+ dose [´106/kg] 71 (60–199/25–574) 39 (21–96/13–385)
CD20+ frequency [% CD45+] 4.4 (3.5–5.3/1.7–8.1) 0.1 (0.01–0.17/0.01–0.27)
CD20+ total dose [´106] 2604 (2305–3358/1322–4595) 32.4 (8.2–59.6/1.6–135.2)
CD20+ dose [´106/kg] 68 (64–79/21–547) 0.889 (0.388–1.673/0.059–3.210)
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3.  RESULTS AND DISCUSSION

A total of 13 products from 14 aphereses were processed over 
the course of 8 years. All preparations initially proceeded with-
out planned or unplanned deviations. In two cases, a far less than 
the expected −3.5 to −4.0 log T-cell depletion was achieved. In 
one of these, the product was subjected to a second round of anti-
body incubation and column separation. The successive deple-
tion cycles succeeded in reducing T-cell dose to a more typical 
−3.47 log-depletion, to 18,000 T-cells/106 CD34+ cells. A root 
cause analysis failed to identify reasons for the process failure; all 
reagents were, of appropriate quality, cell numbers in the apher-
esis product were well within the manufacturer-suggested range 
for the antibody dose and column capacity; a handling error was 
not apparent. The typical, and after the second depletion cycle 
markedly above-average, depletion of B-cells from the product 
support the impression that handling and device function during 
both runs were flawless. Unidentified product or donor properties 
seem to be responsible. Inconsistent antibody quality would be 
an alternative explanation. In their reply to our customer com-
plaint, the manufacturer reported that no other complaints had 
been received for the batch, rendering deficient CD3 reagent an 
unlikely explanation. The re-depletion was recorded as a devi-
ation; the product was released as within specification. For the 
second inefficiently T-cell depleted product, a second depletion 
was not attempted, since the bulk of the desired CD34+ cell dose, 
3.5 × 106/kg, could be administered as a CD34-selected graft, 
topped up with part of the CD3/CD19-depleted graft containing 
only 1.5 × 106/kg CD34+ cells, for a total dose of T-cells from both 
products combined of the targeted 50,000/kg (and of 5 × 106/kg 
of HSPCs). The practice of combining CD34-selected and CD3/
CD19-depleted product to achieve the desired HSPC doses with-
out exceeding the targeted T-cell dose was previously reported, 
as was the occasional need to perform a second round of column 
purification [22].

On average, approximately 80% of the CD34+ cells and 55% of 
the NK-cells were recovered, similar for CD34+ cells and slightly 
inferior for NK-cells than in a previously reported series [22]. 
The one outlier for CD34+ cells, with a recovery of only 52%, is 
the product which, because of insufficient T-cell depletion, had 
been subjected to two depletion cycles. Excessive cell loss would 
indeed be expected, given the many centrifugation cycles, two 
CliniMACS runs, temporally extended processing and repeated 
quality control sampling which all removed some cells. The next 
worst recovery for CD34+ was 69%, a figure well within the range 
of what is also achieved with CD34 selection, i.e. recovery for 
12/13 depletions was perfectly adequate. Average log depletion of 
T-cells approached −4, and of B-cells −2. T-cell depletion was thus 
in a similar range, possibly marginally more efficient, than in the 
aforementioned series [22], while B-cell depletion was markedly 
less effective. The average residual T-cell dose per million CD34+ 
cells was 5700; the typically targeted dose of 5 million CD34+ 
cells/kg of the recipient thus contained 28,500 T-cells/kg, well 
below the targeted dose of 50,000 T-cells/kg. Irrespective of the 
T-cell dose, T-cell add-back to reach the targeted dose was not 
requested by the clinicians. As shown in Figure 1, eight out of 13 
products contained fewer than 10,000 T-cells/million CD34+ cells 
so that patients could have been transplanted with the CD3/CD19-
depleted grafts alone. However, clinicians typically requested at 
least part of the concurrently CD34-selected graft, even if the 

T-cell content of the CD3/CD19-depleted graft was very low, with 
the aim of maximizing the HSPC dose.

The first take-home message, therefore, is that CD3/CD19 deple-
tions are requested quite infrequently, in spite of the fact that our 
center exclusively serves at least three transplant programs with 
these products. With respect to the possibility of a learning (or 
unlearning) effect, for none of the outcome parameters considered, 
i.e. CD34 cell recovery, T- and B-cell depletion, was an order effect 
suggested, and the two inefficient T-cell depletions were observed 
in years 2 and 8. The preparations were done by highly experienced 
GMP personnel; the operators performing the two inefficient 
depletion runs were, if anything, the more experienced in the team. 
Operators had maintained proficiency by regularly performing the 
much more frequent CD34 selections with the same technology. As 
mentioned above, a root cause analysis failed to suggest a reason for 
the inefficient depletions, whether process- or product-inherent.

A second message is that, despite conscientious use of well- 
validated standard operating procedures, the degree of depletion is 
quite variable, and a relevant number of depletions fail to achieve 
desired outcomes. We posit that failure to consistently produce 
largely T- and B-cell-free transplants with the CD3/CD19 deple-
tion technology is likely an underreported phenomenon which is, 
at least in part, responsible for the relatively poor adoption of this 
product.

Thirdly, inefficient depletions can be rescued by repeating the pro-
cess, which was previously also suggested by Huenecke et al. [22], 
although significant excess HSPC attrition should be regularly 

Figure 1 | Outcomes of CD3/CD19-depletions: CD34+ cell recovery 
(A), CD3+ cell depletion (B), number of T-cells per 1 million CD34+ 
cells (C), CD20+ cell depletion (D) and CD56/16+ cell recovery (E) are 
depicted. Recovery and depletion are calculated as the total number of 
post-depletion cells divided by pre-depletion cells, thus accounting for 
all cell loss during processing and due to quality control sampling. T-cell 
dose per million CD34+ cells, arguably the most patient-relevant value, 
is calculated as post-depletion T-cells (total) divided by CD34+ cells 
(total/106). Each dot represents one depletion process, the bar marking the 
median (n = 13 depletions).
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expected. Because of the paucity of selections, it is not possible 
to stock “rescue antibody” and kits. These must thus be ordered 
as immediate delivery which, besides considerable costs, will see 
the product age for an additional day, with the expected additional 
cell loss. Thirdly, it is apparent that T-cell- and particularly B-cell-
depletion by CD3/CD19-depletion is markedly less efficient than 
by CD34 selection, by approximately one and two common log. 
Depletion of T-cells in CD34 selected grafts was shown in several 
studies to lie in the range of −5 to −6 log depletions [22,33,34], 
whereas T-cell depletion in CD3/CD19 depleted grafts did not 
exceed −4 log depletion [22].

Even though the manufacturer does not disclose the antibody 
clone for either CD34+ selection or CD3/CD19 depletion, given 
the availability of the technology, implicates that the monoclonal 
antibodies used for immunomagnetic manipulations are of high 
and consistent quality. Moreover, the CD3 and CD19 antigens are 
strongly and selectively expressed on T- and B-cells, respectively, 
much stronger than the CD34 antigen is on stem/progenitor cells, 
rendering weak labeling as a cause of failed depletion a less likely 
possibility. One difference potentially affecting marking and reten-
tion probability is the frequency of the cells being labeled in both 
procedures. CD34+ cells account for approximately 1% of all nucle-
ated cells in an apheresis product, whereas T- and B-cells can add 
up to 40% and more of the WBCs in a given apheresis product. 
Overloading of the column with labeled cells was shown to influ-
ence the outcome of the procedure [35].

It is impossible to apply established criteria for robust processes 
[36,37] in pharmaceutical manufacturing to procedures done as 
seldom as 13 times in 8 years. Nevertheless, failure to achieve the 
desired T-cell depletion in 15% (two out of 13) of the manufactured 
products suggest inconsistency in the process, especially because 
a root cause analysis did not yield any result, and since essentially 
similar processes (CD34+ cell selection) provide more consistent 
results.

Clinical evidence with CD3/CD19-depleted grafts teaches us that 
with use of anti-thymocyte globulin during conditioning and 
effective GvHD prophylaxis severe GvHD is typically avoided, and 
post-transplant lymphoproliferative disease is not an excessively 
frequent occurrence [19–21]. The quality of the typical CD3/CD19 
depleted graft is thus obviously suitable.

In summary, we are reporting inconsistent outcomes for T- and 
B-cell depletion by CD3/CD19 depletion with the CliniMACS 
technology, despite a rigorous manufacturing process, which is 
undesirable given the irreplaceability of these products.
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