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Genomic correlation, shared loci, and
causal relationship between obesity and
polycystic ovary syndrome: a large-scale
genome-wide cross-trait analysis
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Abstract

Background: The comorbidity between polycystic ovary syndrome (PCOS) and obesity has long been observed in
clinical settings, but their shared genetic basis remains unclear.

Methods: Leveraging summary statistics of large-scale GWAS(s) conducted in European-ancestry populations on
body mass index (adult BMI, Nfemale=434,794; childhood BMI, N=39,620), waist-to-hip ratio (WHR, Nfemale=381,152),
WHR adjusted for BMI (WHRadjBMI, Nfemale=379,501), and PCOS (Ncase=10,074, Ncontrol=103,164), we performed a
large-scale genome-wide cross-trait analysis to quantify overall and local genetic correlation, to identify shared loci,
and to infer causal relationship.

Results: We found positive genetic correlations between PCOS and adult BMI (rg=0.47, P=2.19×10
−16), childhood

BMI (rg=0.31, P=6.72×10
−5), and WHR (rg=0.32, P=1.34×10

−10), all withstanding Bonferroni correction. A suggestive
significant genetic correlation was found between PCOS and WHRadjBMI (rg=0.09, P=0.04). Partitioning the whole
genome into 1703 nearly independent regions, we observed a significant local genetic correlation for adult BMI
and PCOS at chromosome 18: 57630483–59020751. We identified 16 shared loci underlying PCOS and obesity-
related traits via cross-trait meta-analysis including 9 loci shared between BMI and PCOS (adult BMI and PCOS: 5
loci; childhood BMI and PCOS: 4 loci), 6 loci shared between WHR and PCOS, and 5 loci shared between WHRadjBMI
and PCOS. Mendelian randomization (MR) supported the causal roles of both adult BMI (OR=2.92, 95% CI=2.33–
3.67) and childhood BMI (OR=2.76, 95% CI=2.09–3.66) in PCOS, but not WHR (OR=1.19, 95% CI=0.93–1.52) or
WHRadjBMI (OR=1.03, 95% CI=0.87–1.22). Genetic predisposition to PCOS did not seem to influence the risk of
obesity-related traits.

Conclusions: Our cross-trait analysis suggests a shared genetic basis underlying obesity and PCOS and provides
novel insights into the biological mechanisms underlying these complex traits. Our work informs public health
intervention by confirming the important role of weight management in PCOS prevention.
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Background
Polycystic ovary syndrome (PCOS) is the most common
endocrine disorder affecting women of childbearing age,
characterized by reproductive dysfunction including
hyperandrogenism, menstrual and/or ovulatory irregu-
larity together with subfertility, and metabolic dysfunc-
tion including hyperinsulinemia, insulin resistance, and
type 2 diabetes [1, 2]. More than 50% of women with
PCOS are either overweight or obese which further
worsens all symptoms [3]. Indeed, epidemiological
studies have observed a significant association between
body mass index (BMI) and features of PCOS at all ages
[4]. Clinically, even a modest weight loss (~ 5%) leads to
meaningful improvements in the reproductive, hyperan-
drogenic, and metabolic features of PCOS [5], highlight-
ing a biological link underlying obesity and PCOS.
The development of obesity and PCOS involves strong

genetic components evidenced by recent discoveries
from large-scale genome-wide associations studies
(GWAS). These genetic data enable the utilization of a
compiled analytical strategy—genome-wide cross-trait
analysis—to determine shared and distinct genetic archi-
tecture which can provide better understandings and
novel insights into disease mechanisms [6]. Such analysis
features several analytic aspects: genetic correlation ana-
lysis to estimate overall and local genetic correlation,
cross-trait meta-analysis to identify shared loci, and
Mendelian randomizations (MR) to make causal infer-
ences. Nevertheless, these advanced statistical genetics
approaches have not been routinely applied to examine
the genetic contribution to the epidemiologic associa-
tions between PCOS and its most common comorbidity,
obesity [7, 8]. Despite three MR studies [7, 9, 10] have
been conducted to explore the role of adult BMI in
PCOS, these studies used a small number of index SNPs
(< 100 instruments vs. ~ 300 female-specific BMI instru-
ments currently identified by GWAS [11]); lacked sensi-
tivity analyses to verify model assumptions; and lacked
sex-specific analysis, i.e., using genetic data derived from
a sex-mixed population instead of using female-specific
data for a gynecological outcome PCOS.
In addition to the degree of adiposity, location and dis-

tribution of fat accumulation are informative predictors
for obesity sequelae. For example, abdominal visceral fat,
a known contributor to metabolic dysfunction including
insulin resistance and abnormal adipokine and fatty acid
release [12], is important for PCOS. Furthermore, early
life weight pattern also influences obesity and metabolic
alterations later on [13]. However, to the best of our
knowledge, genetic analysis has rarely been conducted to
examine the role of fat distribution or childhood BMI in
PCOS [7].
Therefore, we aim to extend previous findings by

providing a systematic evaluation of the relationship

between obesity-related traits and PCOS, leveraging the
hitherto largest GWAS summary statistics conducted for
each trait. We examined the role of BMI (childhood
(before age 10) (N=39,620) [14] and adult [11]), waist-
to-hip ratio [15] (WHR, adult), and waist-to-hip ratio
adjusted for BMI [15] (WHRadjBMI, adult) (all adult
measures were restricted to female participants, NFemale=
~ 400,000) in the development of PCOS (NPCOS=10,074;
Ncontrol=103,164) [7], performing analyses to quantify
overall and local genetic correlations, to identify shared
loci and to infer causal relationships. A conceptual
framework is shown in Fig. 1.

Methods
We carried out the current study by leveraging large-
scale GWAS summary statistics and novel statistical
genetics approaches. We included female-specific
genetic data of adult obesity-related traits to best match
with a female-specific outcome PCOS. However, sex-
specific data for childhood BMI were unavailable. To
reduce potential bias from population stratification, all
genetic data were restricted to European population.

Obesity GWAS(s)
For adult obesity, the hitherto largest GWAS was con-
ducted meta-analyzing data from UK Biobank and
GIANT consortium totaling ~ 700,000 individuals of
European ancestry, among which 434,794 female partici-
pants with information available for BMI, 381,152 for
WHR, and 315,284 for WHRadjBMI [11, 15]. In each
participating study, SNPs were imputed to the Haplotype
Reference Consortium (HRC) reference panel and fil-
tered by imputation quality score > 0.30, call rate > 0.95,
minor allele frequency > 0.0001 and P value for Hardy-
Weinberg equilibrium > 10−6. After quality control,
genome-wide association testing was performed using a
linear mixed model adjusting for age, recruitment center,
genotyping batches, and principal components. A fixed-
effect inverse-variance-weighted meta-analysis was con-
ducted to combine effect sizes across studies. To identify
independent top-associated SNPs, a PLINK clumping al-
gorithm of P< 1×10− 9 and an LD window of ±5Mb (r2

> 0.05) were first used to obtain LD-based clumps [16],
followed by a proximal conditional and joint testing to
identify primary and secondary signals within each of
the clumping-based loci.
For childhood BMI, the hitherto largest GWAS was

conducted at the latest time point between 2 and 10
years old among 61,111 children of European ancestry
[14]. In the discovery stage, data from 26 studies (Ndiscov-

ery = 39,620) imputed to the 1000 Genomes Project or
the HRC were analyzed using a fixed-effect inverse
variance-weighted meta-analysis. Top associated SNPs
identified in the discovery stage at a P-threshold of
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5×10−6 were taken forward for replication in 15 cohorts
(Nreplication = 21,491) and results of the two stages were
combined using meta-analysis. To identify independent
top-associated SNPs, Genome-wide Complex Trait Ana-
lysis based on summary statistics with LD estimation
from the Generation R Study as a reference sample was
applied. Top associated SNPs in the combined meta-
analysis reaching a stringent P-threshold of 5×10−8 were
identified.
From these GWAS(s), we extracted the effect size and

relevant information of instrumental variables (IVs)
identified in women (281 BMI-associated index SNPs,
203 WHR-associated index SNPs, and 266 WHRadjBMI-
associated index SNPs, Additional file 1: Tables S1-3)
and children (25 childhood BMI-associated index SNPs,

Additional file 1: Table S4). We also accessed and down-
loaded the full set GWAS summary statistics.

PCOS GWAS
The hitherto largest GWAS of PCOS was conducted
based on international collaborations in 10,074 PCOS
cases and 103,164 controls of European ancestry [7].
Data from 7 cohorts were imputed to the 1000 Genomes
Project or HapMap2. Diagnosis of PCOS was based on
the NIH (2540 cases/15,020 controls) or Rotterdam cri-
teria (2669 cases/17,035 controls), or by self-reported
diagnosis (5184 cases/82,759 controls, 23andMe). A
fixed-effect inverse-variance weighted meta-GWAS was
performed adjusting for age. To identify independent
top-associated SNPs, a fixed-effect inverse-weighted-

Fig. 1 Overall study design. GWAS summary statistics on PCOS and 4 obesity-related traits (adult BMI, childhood BMI, WHR, and WHRadjBMI) were
retrieved. First, we quantified the genome-wide and local genetic correlation between PCOS and obesity-related traits. Next, we identified shared loci
contributing to PCOS and obesity-related traits, and further, conducted tissue enrichment analysis, and constructed 99% credible sets of causal variants
for these loci. Finally, we conducted a bidirectional Mendelian randomization analysis to infer causality between obesity-related traits and PCOS

Liu et al. BMC Medicine           (2022) 20:66 Page 3 of 13



variance meta-analysis was applied to obtain the per-
variant estimates from summary statistics of contribut-
ing studies. This GWAS identified 14 PCOS-associated
variants reaching a P-threshold of 5×10−8. From PCOS
GWAS, we extracted IVobesity-PCOS associations and
relevant information. We also downloaded the full set
GWAS summary statistics of PCOS in which data from
23andMe were excluded (due to data availability) (Add-
itional file 1: Table. S5).
A table summarizing the information of all included

GWASs is shown in Additional file 1: Table. S6 and a
table summarizing all participating studies is shown
Additional file 1: Table. S7. For all analyses, the human
reference genome build 37 (or hg19) was used.

Statistical analysis
Genetic correlation analysis
Genome-wide genetic correlations (rg) quantifies the
average sharing of genetic effect between two traits un-
affected by environmental confounders. The estimate
ranges from − 1 to 1, with − 1 indicating a perfect nega-
tive genetic correlation and 1 indicating a perfect posi-
tive genetic correlation. It can be quantified using
GWAS summary data through an algorithm imple-
mented in software linkage-disequilibrium score regres-
sion (LDSC) [17, 18] also described below:

E β jγ j

h i
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
rg

M
l j þ Nsrffiffiffiffiffiffiffiffiffiffiffiffi

N1N2
p

where βj and γj are the effect sizes of SNP j on traits 1
and 2, rg is the genetic covariance, M is number of SNPs,
N1 and N2 are the sample sizes for traits 1 and 2, Ns is
the number of overlapping samples, r is the phenotypic
correlation in overlapping samples, and lj is the linkage
disequilibrium score. We used pre-computed LD scores
obtained from ~ 1.2 million common SNPs in European
ancestry represented in the HapMap3 reference panel,
commonly recognized as of high imputation quality.
Genome-wide genetic correlations estimated by LDSC

quantify the genome-wide contribution of genetic vari-
ation to the correlation between two traits. It is possible
that even though two traits show negligible genome-
wide genetic correlation, genetic variations localized at a
specific genomic region contribute to the correlation be-
tween two traits. We, therefore, measured the pairwise
local genetic correlations between each of the obesity-
related traits and PCOS using ρ-HESS, an algorithm that
partitions the genome-wide genetic sharing across 1703
nearly independent linkage disequilibrium (LD) regions
of 1.5 Mb and precisely quantifies the genetic correlation
between pairs of traits due to genetic variation restricted
to these genomic regions.

Cross-trait meta-analysis
Cross-phenotype association analysis (CPASSOC) inte-
grates GWAS summary statistics from multiple corre-
lated traits to detect evidence for variants associated
with multiple traits across studies while controlling
population structure and cryptic relatedness [19]. CPAS
SOC provides two test statistics, SHom and SHet. SHom is
based on the fixed-effect meta-analysis method and is
the most powerful when genetic effect sizes are
homogenous, which is unlikely to be true especially
when multiple traits are analyzed. SHet is an extension of
SHom with improved power that allows for heteroge-
neous effects of a trait from different study designs, en-
vironmental factors, or populations, as well as
heterogeneous effects for different phenotypes, which is
more common in practice. We used pairwise SHet to
combine summary statistics for each of the obesity-
related traits with PCOS. We applied PLINK [16] clump-
ing function parameters: --clump-p1 5e-8 --clump-p2
1e-5 --clump-r2 0.2 --clump-kb 500) to obtain inde-
pendent SNPs. Significant SNPs were defined as variants
with Psingle trait< 1×10

−3 (in each single trait) and PCPAS
SOC< 5×10

−8 (in cross-traits). We used Ensembl Variant
Effect Predictor (VEP) for detailed functional annotation
for the variants identified by CPASSOC.

Fine-mapping credible set analysis
Index SNP does not necessarily represent causal vari-
ants. We further identified a 99% credible set of causal
variants through a simplified Bayesian fine-mapping
method named FM-summary (https://github.com/
hailianghuang/FM-summary) [20]. Briefly, for each of
the 16 shared loci identified as significant by the cross-
trait meta-analysis, we extracted variants within 500 kb
around the index SNP, which were used as input for
FM-summary. FM-summary then set a flat prior and
produced a posterior inclusion probability (PIP) of a true
trait/disease association for each variant using the stee-
pest descent approximation. A 99% credible set is
equivalent to ranking SNPs from largest to smallest PIPs
and taking the cumulative sum of PIPs until it is at least
99%. Details of the method were described elsewhere
[21, 22].

Functional annotation and tissue enrichment analysis
To gain putative biological insights into the shared vari-
ants identified between obesity and PCOS, we performed
GTEx tissue enrichment analysis including all genes in
clumping regions for each trait identified by CPASSOC
using software functional mapping and annotation
(FUMA), the GENE2FUNC process with 54 tissue types
from GTEx (version 8). FUMA obtained differentially
expressed gene (DEG) sets for each tissue type by using
the normalized expression (zero mean of log2(RPKM+
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1)) and conducting two-sided t-tests per gene per tissue.
Genes were defined as DEG set in a specific tissue if
Bonferroni corrected P-value<0.05 and had an absolute
log-fold change ≥ 0.58 (background DEGs). Genes iden-
tified by CPASSOC were tested against those back-
ground DEG sets by hypergeometric tests to examine if
they were overrepresented in DEG sets in specific tissue
types, thus, identifying the most relevant tissue types.
To identify tissue and cell-type-specific enrichment of

SNPs, we used LD score regression applied to specific-
ally expressed genes (LDSC-SEG) [23] which tests for
enrichment for per-SNP heritability. Pre-computed an-
notations constructed from epigenomics data from
Roadmap Epigenomics Project [24] (DNase hypersensi-
tivity, H3K27ac, H3K4me3, H3K4me1, H3K9ac, and/or
H3K36me3 chromatin marks) were used in our analysis.
The 396 cell-type annotations were further divided into
9 groups (adipose, central nervous system (CNS), digest-
ive system, cardiovascular, musculoskeletal and connect-
ive tissue, immune and blood, liver, pancreas, and
others). To correct for multiple comparison, a
Bonferroni-corrected P-threshold (0.05/396) was used.

Mendelian randomization analysis
To test for the causal relationship between each of the
obesity-related traits and PCOS, we conducted a two-
sample MR. We applied an inverse-variance weighted
(IVW) approach [25] as our primary MR analysis, an
MR-Egger regression [26], and a weighted-median esti-
mator approach [27] to examine the robustness of our
findings under relaxed model assumptions.
We performed important sensitivity analyses to validify

MR model assumptions. We excluded palindromic IVs
with strand ambiguity (A/T or G/C SNPs with the same
pair of letters on the forward and reverse strands, intro-
ducing ambiguity into strand identity) and pleiotropic
SNPs (SNPs associated with potential confounding traits
other than exposure and outcome of interest) according
to GWAS catalog (https://www.ebi.ac.uk/gwas/, accessed
on 03/18/2021). We conducted a leave-one-out analysis
where we removed one IV each time and performed
IVW using the remaining IVs to identify outlying instru-
ments. We also examined a scenario through MR-Clust
[28] where several distinct causal mechanisms may
underlie the obesity-PCOS relationship (i.e., a risk factor
influences outcome with different magnitudes and direc-
tion of causal effect). MR-Clust divides IVs into distinct
clusters such that all variants in the cluster have similar
causal estimates. To examine the causal effect of the
genetic predisposition to PCOS on obesity, we finally
performed a bidirectional MR analysis where instru-
ments for outcomes were used to evaluate whether the
“outcome” (here, PCOS) caused the “exposure” (here,
obesity-related exposures). The 14 PCOS-associated

independent loci with genome-wide significance were in-
cluded as IVs in our reverse direction MR and their ef-
fects were extracted from the respective obesity
GWAS(s).

Results
Genetic correlations between obesity-related traits and
PCOS
We first estimated the overall genetic correlation be-
tween obesity-related traits and PCOS using cross-trait
LDSC. After correcting for multiple testing (P< 0.05/4),
we found a strong genetic correlation between BMI and
PCOS (adult BMI: rg=0.47, P=2.19×10−16; childhood
BMI: rg=0.31, P=6.72×10

−5) (Table 1). A significant re-
sult was also observed for WHR and PCOS (rg=0.32, P=
1.34×10−10). Given the complex interplay between BMI
and WHR [29], we continued to investigate
WHRadjBMI, a residual component of WHR in which
the effect of BMI was removed. Perhaps not surprisingly,
when the effect of BMI was removed from WHR
(WHRadjBMI), the prior positive genetic correlation be-
tween PCOS and WHR was attenuated to null
(WHRadjBMI: rg=0.09, P=0.04).
Motivated by these findings, we further explored

the local genetic correlation using ρ-HESS. As shown
in Fig. 2 and Additional file 2: Fig. S1, after correct-
ing for multiple testing (P< 0.05/1703), a significant
local genetic correlation was only observed for adult
BMI and PCOS at chr18: 57630483–59020751, a gen-
etic region harboring MC4R, a locus previously re-
ported to be associated with adult BMI, childhood
BMI and obesity in PCOS [14, 30–33].

Cross-trait meta-analysis of obesity-related traits and
PCOS
To identify individual SNPs affecting both obesity-
related traits and PCOS, we next conducted a pairwise
CPASSOC analysis. As shown in Table 2, in total we
identified 9 independent loci shared between BMI and
PCOS (adult: 5 loci, rs10938397, rs705696, rs1569979,
rs10142183, and rs11672660; childhood: 4 loci,
rs12641981, rs10987375, rs8050136, and rs7228430), 6
independent loci shared between WHR and PCOS

Table 1 Genome-wide genetic correlation between PCOS and
obesity-related traits

Trait 1 Trait 2 rg rg_SE P value

PCOS BMI 0.4694 0.0572 2.19×10−16

PCOS WHR 0.3198 0.0498 1.34×10−10

PCOS WHRadjBMI 0.0931 0.0447 0.0371

PCOS CBMI 0.3109 0.0078 6.72×10−5

rg, genetic correlation; SE, standard error; BMI, adult body mass index; PCOS,
polycystic ovary syndrome; WHR; waist-to-hip ratio; WHRadjBMI, waist-to-hip
ratio adjusted for body mass index; CBMI, childhood body mass index
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(rs3767846, rs13032835, rs188488867, rs7774737,
rs1421085, and rs310011) and 5 independent loci shared
between WHRadjBMI and PCOS (rs3767846,
rs13032835, rs7774737, rs11057429, and rs310011) (all
these SNPs fulfilled Psingle trait< 1×10

−3 and PCPASSOC<
5×10−8). Notably, none of these 16 SNPs identified by
CPASSOC were previously reported to be associated
with PCOS at genome-wide significance (0 out of 16
SNPs), while most of them were associated with obesity-
related traits (14 out of 16 SNPs). For adult BMI and
PCOS, the most significant shared SNP was rs10938397,
(PCPASSOC=1.25×10

−49) located at an intergenic region.
The second most significant shared SNP (rs11672660,
PCPASSOC=1.87×10

−32) was located near GIPR, a gene as-
sociated with BMI and glucose tolerance [34, 35], and
MIR642A, a gene involved in post-transcriptional regula-
tion of gene expression. Notably, among the 5 adult
BMI-PCOS shared SNPs, rs705696 was near ERBB3, a
locus known to be associated with PCOS. For childhood
BMI and PCOS, the most significant shared SNP
(rs8050136, PCPASSOC=1.56×10

−21) was near FTO, a
locus known to affect BMI and the predisposition to
childhood and adult obesity [36, 37]. Similarly, the most
significant shared SNP for WHR and PCOS (rs1421085,
PCPASSOC=1.97×10

−51) was also near the FTO locus.
Among the 6 variants associated with both WHR and
PCOS, 4 were also found to be shared between
WHRadjBMI and PCOS (rs3767846, rs13032835,
rs7774737, and rs310011). For example, rs3767846 was
near PROX1, a locus associated with fasting glucose-
related traits [38]. The most significant variant shared by
WHRadjBMI and PCOS (rs13032835, PCPASSOC=
2.74×10−30) was located near genes SLC38A11 and
RNA5SP111. SLC38A11 encodes a protein that belongs to
the solute carrier family and has a role in sodium and
amino acid transportation [39], and RNA5SP111 is a 5S
ribosomal pseudogene [40]. Detailed annotations of each
variant are shown in Additional file 1: Table. S8. Of note,

some of the CPASSOC-identified significant SNPs were
not mapped to any genes (7 out of 16).

Functional annotation and tissue enrichment analysis
We attempted to understand the underlying biological
mechanisms by identifying relevant tissues using FUMA.
As shown in Additional file 2: Fig. S2, for the expression of
genes shared by adult BMI and PCOS, although failing to
pass multiple correction, we observed enrichment in coron-
ary artery tissue, digestive tract tissues including salivary
gland, stomach, and colon, as well as both visceral omen-
tum and subcutaneous adipose tissues. For WHR-PCOS
and WHRadjBMI-PCOS shared genes, stomach showed the
most significant enrichment although notwithstanding
multiple correction. No significant tissue enrichment was
identified for childhood BMI and PCOS. For LDSC-SEG
enrichment analysis, as shown in Additional file 2: Fig. S3,
despite significant enrichment of SNPs in adipose, brain,
muscle tissues identified for obesity-related traits, none of
the tissue/cell-type-specific enrichment withstood multiple
correction (P< 0.05/396) for PCOS.

Fine-mapping credible set analysis
For each of the 16 shared loci identified as significant by
the cross-trait meta-analysis, we identified a 99% cred-
ible set of causal variants. Lists of credible set SNPs in
each shared locus for obesity-related traits and PCOS
from fine mapping are shown in Additional file 1: Table.
S9. We identified 39 SNPs in the 99% credible set for
adult BMI and PCOS, 122 SNPs for childhood BMI and
PCOS, 40 SNPs for WHR and PCOS, and 27 SNPs for
WHRadjBMI and PCOS providing candidates for down-
stream experimental analysis.

Mendelian randomization analysis of obesity-related traits
and PCOS
Finally, we conducted a bidirectional two-sample
Mendelian randomization analysis to test for the causal

Fig. 2 Local genetic correlation, genetic covariance, and SNP heritability between adult BMI and PCOS. Colored bars represent loci that have
significant local genetic correlation and covariance after multiple testing adjustment. BMI, adult body mass index; PCOS, polycystic
ovary syndrome
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relationship between obesity-related traits and PCOS. As
shown in Figure 3, we observed an almost threefold in-
creased risk of PCOS per-SD increment (4.8 kg/m2) in
adult BMI (IVW OR=2.92, 95% CI=2.33–3.67) using 278
female-specific IVs. The effect did not alter using MR-
Egger (OR=4.33, 95% CI=2.26–8.32) or weighted median
(OR=3.06, 95% CI=2.14–4.36) approach. We did not ob-
serve any sign of horizontal pleiotropy (P for MR-Egger
intercept=0.21). Sensitivity analysis removing palin-
dromic SNPs or pleiotropic SNPs (Fig. 3, Supplementary
Tables 1-4) revealed similar findings.
Consistent with results from the adult population, we

observed a strong causal link with PCOS using 25 child-
hood BMI-associated IVs (IVW OR=2.76, 95% CI=2.09–
3.66)—a less than 10% number of IVs compared to adult
BMI. Unfortunately, and perhaps not surprisingly, we
were underpowered to perform sensitivity analyses for
this trait due to the limited number of IVs. Directional
consistent results were observed in MR-Egger analysis
although the significance was attenuated to null (MR-
Egger OR=1.98, 95% CI=0.79–4.96) (Fig. 3).
On the contrary, we did not find any significant associ-

ation between genetically predicted WHR and risk of
PCOS (IVW OR=1.19, 95% CI=0.93–1.52; MR-Egger OR=
1.04, 95% CI=0.57–1.90; weighted median OR=0.84, 95%
CI=0.6–1.18). Our results imply a causal role of BMI but
not WHR in the development of PCOS. We anticipate ob-
serving a null effect of WHRadjBMI with PCOS after elim-
inating the positive association of BMI from the null
association of WHR. As expected, we did not identify any
increased risk of PCOS with WHRadjBMI with all effect
sizes close to 1.00 (IVW OR=1.00, 95% CI=0.87–1.22;

MR-Egger OR=0.97, 95% CI=0.66–1.42; weighted median
OR=0.96, 95% CI=0.71–1.28).
Our findings were corroborated by the results of two

important sensitivity analyses. The leave-one-out ana-
lysis demonstrated the observed BMI-PCOS causal asso-
ciation (for both childhood and adult) was not driven by
outlying variant. As shown in Additional file 2: Fig. S4,
when iteratively removing one IV at a time and perform-
ing IVW using the remaining IVs, BMI-PCOS associa-
tions centered around an OR of 2.5–3.0, while WHR/
WHRadjBMI-PCOS associations aggregated closely to
1.0. In the subsequent clustering analysis (Additional file
2: Fig. S5), for both childhood and adult BMI, we ob-
served a clear linear trend in which BMI-increasing IVs
also increased the risk of PCOS. On the contrary, no
such pattern was observed for WHR or WHRadjBMI
with PCOS, consistent with a null association.
Genetic predisposition to PCOS did not seem to affect

any of the obesity-related traits in our reverse-directional
MR (adult BMI beta = − 0.01, 95% CI = − 0.03–0.02;
childhood BMI beta = 0.01, 95% CI = − 0.04–0.05; WHR
beta = 0.01, 95% CI = − 0.02–0.04; WHRadjBMI beta =
0.02, 95% CI = − 0.01–0.04) (Fig. 4).

Discussion
To the best of our knowledge, this is the first large-scale
genome-wide cross-trait analysis that investigates the
shared genetic basis underlying obesity and PCOS. We
found a positive overall genetic correlation between both
adult and childhood BMI and PCOS. The significantly
shared genetic basis between WHR and PCOS seems to
be driven by BMI given the null finding of WHRadjBMI

Fig. 3 Estimates of causal effect sizes for genetically predicted obesity-related traits on PCOS using all genome-wide significant SNPs, excluding
pleiotropic SNPs and excluding palindromic SNPs. Inverse-variance weighted approach was used as the primary analysis, MR-Egger and weighted
median approaches were used as sensitivity analysis. BMI, adult body mass index; PCOS, polycystic ovary syndrome; WHR, waist-to-hip ratio;
WHRadjBMI, waist-to-hip ratio adjusted for body mass index; CBMI, childhood body mass index
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and PCOS. In local genetic correlation analysis, when
the genome was partitioned into small regions, we iden-
tified one genomic region at chr18: 57630483–59020751
that showed a positive local genetic correlation between
adult BMI and PCOS. Using cross-trait meta-analysis,
we identified multiple shared loci between obesity and
PCOS. Finally, MR analysis highlighted the causal role of
adult BMI and childhood BMI in the development of
PCOS.
Findings from our study are largely in line with those

from the conventional epidemiological studies yet pro-
vide novel insights in several aspects. In line with the
positive overall genetic correlation identified for adult
BMI and PCOS (rg=0.34, P=8.21×10

−18) by Day et al. [7],
our results (adult BMI: rg=0.47, P=2.19×10

−16) improved
statistical power by using an enlarged sample size
(434,794 female vs. 339,224 individuals) as well as re-
duced heterogeneity by using sex-specific adult BMI
GWAS summary statistics, both of which previous stud-
ies did not have a chance for. Findings on the [41] over-
all and local genetic correlation between adult BMI and
PCOS suggest a shared genetic basis underlying these
two traits, which is either directly through variants af-
fecting both traits (pleiotropy), or through the causal ef-
fect of one trait on the other. Our MR analyses
exploring the causal relationships are in line with three
existing MR(s) [7, 9, 10] conducted on BMI and PCOS
while greatly extending those results. Firstly, we used the
largest GWAS conducted in BMI with > 270 BMI-
associated IVs—a more than three times augmented
number of instruments (> 270 vs. 92) compared with
previous analyses [7, 10]. Incorporating additional IVs
substantially improves the strength of genetic

instruments as well as both the accuracy and precision
of our MR estimates. With the current sample size of
outcome (N=113,238, 9% cases) and assuming pheno-
typic variance of the exposures explained by IVs to be
around 4%, our study had 80% power to detect an asso-
ciation of 15% change for the risk of PCOS with BMI.
Secondly, to ensure the validity of MR results, exposure
and outcome samples should preferably be from the
same underlying population. We conducted our analysis
restricting to female participants—making it possible to
utilize female-specific genetic instruments to study a fe-
male outcome PCOS, which previous analyses did not
have the opportunity for. Finally, we conducted several
sensitivity analyses to verify MR model assumptions. We
selected the most significant SNPs (independent GWAS
signals at a stringent P-threshold of 5×10−9) so all were
robustly associated with exposure of interest, guarantee-
ing the “relevance” assumption. We excluded SNPs asso-
ciated with potential confounders on the exposure-
outcome relationship to satisfy the “exclusion restric-
tion” assumption.
In addition to adult BMI, childhood BMI appears to

influence the risk of PCOS later on [42, 43]. Findings
from earlier observational studies including nearly 3000
participants from the Australian Childhood Determi-
nants of Adult Health study (N=1516) and the biracial
USA Babies substudy of the Bogalusa Heart Study (N=
1247) have suggested an association between greater
childhood BMI and PCOS among the white population
(RR=4.05, 95% CI=1.10–14.83; RR=2.93, 95% CI=1.65–
5.22) [43]. Our results of positive overall genetic, shared
loci, and causal effect identified for childhood BMI with
PCOS confirmed the observational association and pro-
vided genetic evidence for such association. For the null
local genetic correlation, we note that the sample size of
childhood BMI GWAS (N=39,620) is not sufficiently
large for ρ-HESS recommendation (which 50,000 sam-
ples are preferably required). Future studies with larger
sample sizes are warranted to replicate our findings.
Using WHR as a proxy to abdominal fat, we did not

find any significant causal association for this trait with
PCOS. Raw WHR is likely to be confounded by BMI as
indicated by our previous genetic correlation analysis
[29]. Dissecting the effect of BMI from WHR, the nega-
tive WHRadjBMI-PCOS causal association together with
genetic correlation further confirmed the validity of our
results. However, these results do not necessarily mean
that abdominal visceral fat is not important in PCOS.
While BMI is found to be highly correlated with excess
fat mass (r=0.94) and abdominal visceral fat (r=0.71)
[44], results for the association between fat distribution
and PCOS from observational studies were contrasting.
A study including 110 PCOS patients and 112 weight-
matched controls assessed fat quantity and distribution

Fig. 4 Estimates of causal effect sizes for genetical predisposition to
PCOS on obesity-related traits using all genome-wide significant SNPs.
Inverse-variance weighted approach was used as the primary analysis,
MR-Egger and weighted median approaches were used as sensitivity
analysis. BMI, adult body mass index; PCOS, polycystic ovary syndrome;
WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted for body
mass index; CBMI, childhood body mass index
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using total-body dual x-ray absorptiometry concluded
that women with PCOS had a higher quantity of central
abdominal fat compared to weight-matched controls
[45], however, recent imaging studies using a gold stand-
ard approach of magnetic resonance-based methodology
demonstrated an equivalent visceral fat depot between
women with PCOS and their BMI-/fat mass-matched
controls [46–48]. Indeed, WHR poorly predicts the ac-
cumulation of visceral fat [49], which may explain our
significant findings with BMI rather than with WHR.
Moreover, studies have shown that waist circumference
(WC) presents the highest correlation with magnetic res-
onance imaging measured abdominal visceral adiposity,
the gold standard approach, as well as the best sensitivity
and specificity in the receiver operating characteristic
curve [50]—therefore is considered as a better indicator
for abdominal obesity than WHR. Investigating WC and
PCOS leveraging recently published female WC GWAS
would be a future direction on this topic [51].
Genetic correlation provides genetic insights into the

observational associations by estimating the degree of
pleiotropy or causal overlaps shared by two traits while
MR analysis infers causal relationships. We additionally
performed a cross-trait meta-analysis to further dissect
the complex genetic relationships between obesity and
PCOS. Using cross-trait meta-analysis, we identified 16
SNPs shared between obesity-related traits and PCOS,
indicating shared biological mechanisms underlying
obesity and PCOS. Among these shared loci, we high-
light the locus of ERBB3, FTO, PROX1, GIPR, and
MC4R in relation to potential pathogenesis. ERBB3 en-
codes epidermal growth factor receptors (EGFRs) and
has been reported to be associated with PCOS by a
meta-GWAS [7]. Studies have shown that gonadotropins
upregulate ERBB3 expression and EGFR signaling medi-
ates LH-induced steroidogenesis, which plays an import-
ant role in follicular development [52]. EGFRs are also
closely involved in obesity—experimental studies have
shown that EGFRs are transactivated by leptin, a hor-
mone of an elevated concentration in patients with obes-
ity/metabolic syndrome [53]. For gene FTO, despite a
large number of studies that have confirmed its contri-
bution to adult obesity, childhood obesity, and obesity-
related traits [36, 54–56], its role in PCOS remains con-
troversial. Some studies have observed a positive associ-
ation between FTO and PCOS whereas others have not
[37, 57–59]. The association between FTO and PCOS
may partially be mediated through obesity. Indeed, the
most evident association between FTO and PCOS was
observed in obese PCOS women, which was attenuated
when adjusting for BMI [59]. Moreover, the impact of
FTO on lipid oxidation in PCOS women might also con-
tribute to the mechanism underlying the comorbidity of
obesity and PCOS [60]. PROX1 encodes one of the

proteins of the homeobox transcription factor family,
which plays an essential role in organ development dur-
ing embryogenesis [61]. Results from both large-scale
population study and mice models have shown that
PROX1 was associated with visceral fat accumulation
[62, 63]. PROX1 has also been found to be differently
methylated in adipose tissue in PCOS women and con-
trols [64]. In addition to its role in obesity, PROX1 has
also been linked to glycemic alteration (fasting glucose
and type 2 diabetes) [38]—another important feature of
PCOS. Similarly, GIPR influences glycemic traits includ-
ing 2-h glucose level and insulin secretion [35]. GIPR en-
codes a G-protein coupled receptor for gastric inhibitory
polypeptide (GIP), which has been demonstrated to
stimulate insulin release in the presence of elevated glu-
cose. Evidence has suggested that modulation of GIPR
affects progesterone synthesis and expression of many
progestogenic factors and enzymes that may involve in
the subfertility feature of PCOS [65]. Notably, the shared
region chr18: 57730096–57914679 (top SNP rs7228430)
identified for childhood BMI and PCOS overlaps with
the local genetic correlation identified for adult BMI and
PCOS at chr18: 57630483–59020751, indicating shared
biology underlying these traits. This region harbors
MC4R, a gene previously found to be associated with
higher adult BMI and childhood BMI. Using BMI-
matched samples or BMI-adjusted statistical models,
studies have found MC4R to be associated with an ele-
vated BMI in PCOS [31, 66]. MC4R encodes melanocor-
tin 4 receptor that plays an important role in central
melanocortin neuronal pathways [67]. Furthermore, a
study using PCOS rats models has also found an over-
expression of the MC4R gene in the brain hypothalamus
which may link to metabolic disorders [32].
Results from GTEx tissue enrichment analysis should

be interpreted with caution due to the limited number
of shared genes identified between obesity and PCOS.
Similarly, the null findings from LDSC-SEG do not ne-
cessarily indicate a negligible shared biological mechan-
ism given the limited sample size of PCOS GWAS and
the positive findings identified by our other analyses.
We acknowledge several limitations. First, PCOS, as a

complex disease, is classified into four phenotypes
according to the presence or absence of ovulatory
dysfunction, hyperandrogenism, and polycystic ovarian
morphology [68]. Our study was not able to perform
phenotype-specific analysis due to limited data availabil-
ity. In addition, PCOS occurs in both obese/overweight
and lean women, our findings of the role of obesity in
PCOS may not be applicable to lean women with PCOS.
A recent study using unsupervised clustering analysis
suggested distinct genetic architecture underlying PCOS
subtypes. Using biochemical and genotype data, PCOS
can be classified into a “reproductive” subtype which
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presents higher luteinizing hormone (LH) and sex
hormone-binding globulin (SHBG) levels with relatively
low BMI, and a “metabolic” subtype which presents
higher BMI, glucose, and insulin levels with lower SHBG
and LH levels [69]. Our work was limited by the avail-
ability of subtype-specific PCOS GWAS, future work is
needed to understand the role of BMI in lean PCOS.
Second, the strong link between BMI and PCOS seems
to be consistent across ethnicities, for example, using 78
BMI IVs discovered by a GWAS of Biobank Japan and
4,386 PCOS cases (8,017 controls) of East Asian ances-
try, a twofold risk of PCOS was observed for heightened
BMI (OR=2.21, 95% CI=1.54–3.17, P=1.8×10−5) [70],
However, the generalizability of our findings of the
shared genetic basis of obesity and PCOS is restricted to
European population. Further genome-wide association
studies on this topic leveraging data from other ethnici-
ties are warranted. Third, despite our study being the (so
far) largest in sample size, compared to adult obesity
GWASs, PCOS has a much smaller sample size (4790
cases/20,405 controls vs. ~ 400,000 female), future stud-
ies with enlarged sample size are needed. Fourth, while
our study identified genes relevant to obesity and PCOS,
more data are needed to understand the underlying
pathophysiological mechanisms.
Our work investigated the shared genetic basis underlying

obesity and PCOS. Future work should be to perform large,
prospective longitudinal clinical studies to define whether
PCOS women carrying a specific genotype are at increased
risk for developing, e.g., cardiovascular disease, type 2 dia-
betes, non-alcoholic fatty liver disease, and link to mortality.
Of outmost importance, our study confirmed the causative
role of BMI in PCOS prevention, future studies on whether
medical weight reduction or bariatric surgery alleviates
PCOS-related comorbidities are needed. Moreover, the use
of gene-modified mice, e.g., knock-in/knock-out of obesity/
PCOS risk genes is of importance to define the role of iden-
tified specific genes and rare genetic variants and would
provide novel insights into the biological mechanisms
underlying these complex traits.

Conclusions
In conclusion, leveraging the largest sex-specific GWAS
summary statistics to date, the current study furthered our
understanding of the observational association between
obesity and PCOS by showing evidence of genetic correl-
ation, revealing shared loci, and inferring causal relation-
ships, all of which may provide insights into the biological
pathways. Our work informs public health intervention by
confirming the important role of weight management from
childhood through adulthood in PCOS prevention.
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