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ComPath: an ecosystem for exploring, analyzing, and curating
mappings across pathway databases
Daniel Domingo-Fernández 1,2, Charles Tapley Hoyt 1,2, Carlos Bobis-Álvarez3, Josep Marín-Llaó1,4 and Martin Hofmann-Apitius 1,2

Although pathways are widely used for the analysis and representation of biological systems, their lack of clear boundaries, their
dispersion across numerous databases, and the lack of interoperability impedes the evaluation of the coverage, agreements, and
discrepancies between them. Here, we present ComPath, an ecosystem that supports curation of pathway mappings between
databases and fosters the exploration of pathway knowledge through several novel visualizations. We have curated mappings
between three of the major pathway databases and present a case study focusing on Parkinson’s disease that illustrates how
ComPath can generate new biological insights by identifying pathway modules, clusters, and cross-talks with these mappings. The
ComPath source code and resources are available at https://github.com/ComPath and the web application can be accessed at
https://compath.scai.fraunhofer.de/.
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INTRODUCTION
The notion of pathways enables the representation, formalization,
and interpretation of biological events or series of interactions.
Cataloging biological knowledge into pathways reduces complex-
ity from all possible interacting molecular entities to a set of well-
studied and validated functional relationships between molecular
entities culminating in biological processes. Several efforts have
generated databases of pathways with varying specificity and
granularity that comprise signaling cascades, metabolic routes,
and regulatory networks from precise signatures with no more
than a couple of acting players to general pathways involving
thousands of molecular players.1–4

Simplifying biology into pathways and representation as
network models or mathematical models inevitably results in a
loss of information such as spatiotemporal information or even
entire biological entity types. The network abstraction facilitates
pathway visualization and interpretation thanks to the harmony
between biological networks and systems: nodes correspond to
molecular entities and edges to types of interactions occurring
between them (e.g., inhibition, phosphorylation, etc.). Although
networks can comprise a broad range of molecular types (e.g.,
proteins, chemicals, small molecules, etc.), they are generally
reduced to the most direct outcome of our genetic makeup - the
genetic and protein levels - so that we can mechanistically
understand their functionality. Thus, they are frequently viewed
and simplified to “gene sets”, the collection of all genes/proteins
that constitute the pathway, due to the major challenges of
incorporating network topology and translating the variety of
relationships into pathway analysis methods.
While dedicated research groups and commercial entities with

experienced curators have lead a majority of the efforts to
compile, delineate, and store biological knowledge into pathway
databases,2,5 community and crowdsourced efforts have recently

gained traction.3,6 Further, the variability in curation team
composition, database scope (e.g., signaling pathways, gene
regulatory networks, and metabolic processes), and curation
guidelines led to the adoption of different (and in many ways
incompatible) schemata and formalisms such as Biological Path-
way Exchange (BioPAX;7) and Systems Biology Markup Language
(SBML;8). These incompatibilities motivated the integration and
harmonization of resources into pathway meta-databases such as
Pathway Commons9 and PathCards,10 which focus on integrating
databases; iPath,11 which focuses on pathway visualization; and
SIGNOR, which focuses on signaling pathways.12

Even after integrating multiple pathway databases into a
pathway meta-database, it is difficult to assess the agreements,
discrepancies, redundancy, and the complementarity of their
contents because of the lack of availability of pathway mappings
(e.g., pathway A from resource X is equivalent to pathway B from
resource Y) in the original databases. These mappings are difficult
to establish because of the arbitrary and overlapping nature of
pathway boundaries as well as the absence of a common pathway
nomenclature. Several controlled vocabularies have been gener-
ated as initial attempts to standardize pathway nomenclature,13,14

but most pathway databases had already been established by the
time these ontologies were published. Therefore, consolidating
pathway knowledge is a persisting issue and it is still required to
map pathways from different resources together to improve
database interoperability.
Hierarchical clustering approaches have been presented as a

way of grouping similar pathways based on their corresponding
gene sets in order to propose pathway mappings.10,15 Though
these approaches can systematically cluster pathways from
multiple resources, there are some limitations to consider: first,
the usual tradeoff between over/under-clustering,16 and second,
pathway nomenclature and biological context are not considered
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by the clustering algorithm; it often leaves out equivalent
pathways with low similarity and ignores the context of the
pathway (e.g., cell/disease specificity). Nevertheless, these limita-
tions can be overcome by following clustering and prioritization
methods with the manual curation required to interpret the
abstract concepts that inherent to pathway definitions (e.g.,
biological process, cellular location, condition, etc.).
Though numerous algorithms17 and tools4,18 have been

successfully applied to interpret experimental data through the
context of pathway databases,19,20 there has not yet been a
systematic comparison between the contents of various pathway
databases, an assessment of their overlaps and gaps, or an
establishment of mappings. Previous studies have only focused on
comparing a single or small set of well-established pathways
across multiple resources.21,22 For example, a comparison focused
on metabolic pathways revealed how a set of five databases only
agreed in a minimum core of the biochemistry knowledge.23

These studies demonstrate the need to connect insights
provided by each pathway database to foster a greater under-
standing of the underlying biology. Here, we present ComPath, a
web application that integrates content from publicly accessible
pathway databases, generates comparisons, enables exploration,
and facilitates curation of inter-database mappings.

RESULTS
We developed an interactive web application that enables users to
explore, analyze, and curate pathway knowledge. Below, we
present three case studies illustrating how it can be used for each
of these purposes. The figures for each were generated by
interactive, dynamic views in the ComPath web application based
on three major public pathway databases: KEGG, Reactome, and
WikiPathways (Fig. 1).

Case study I: comparison of pathway databases
Assessment of gene coverage . Analysis of the overlaps between
Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome,
and WikiPathways revealed that there are ~3800 common human

genes shared between the three databases (Fig. 2a). While at least
one common human gene was present in almost every pathway
across each database, the number of pathways with more
common human genes diminishes much more quickly in
WikiPathways and Reactome (Supplementary Figure S1). This
may be due to database properties such as pathway size (e.g., on
average, pathways contain 90 genes in KEGG, 50 in Reactome, and
42 in WikiPathways) or gene promiscuity (i.e. genes functionally
linked to many pathways) that might influence the results of
analyses using pathway resources (Supplementary Table 2). For
further investigation, the ComPath web application generates
summary tables and creates several visualizations to enable
exploration of the distributions of pathway size and gene
memberships for each database, visualizations that present an
overview of the database properties to help identify effects such
as gene promiscuity or differences the distribution of gene set
sizes (Fig. 2b).

Exploration of pathways. While the previous views produced
gene-centric summaries of the contents of pathway databases,
ComPath also enables the exploration of pathway similarity
landscape using Clustergrammer.js.24 Figure 2C illustrates how
this view can identify clusters of pathways based on their similarity
and then elucidate the hierarchical relationships between the
Metabolic pathway, the largest KEGG pathway, and other more
high-granular KEGG metabolic pathways (e.g., alpha-Linolenic acid
metabolism, Lipoic acid metabolism, and ether lipid metabolism).

Case study II: identification of pathway modules, overlaps, and
interplays using pathway enrichment
ComPath couples classic pathway enrichment analysis18,25–27 with
pathway-centric visualizations to identify modules, investigate
overlaps, and cluster pathways. This case study demonstrates their
use to investigate the roles of the pathways related to established
genetic associations in the context of Parkinson's disease (PD).
Pathway enrichment with Fisher's exact test using a gene panel

associated with PD reviewed by Brás et al.28 (the gene set will be
referenced as PDgset) yielded over 300 pathways containing at
least one of the panel's genes (Fig. 3a). We discarded pathways
with fewer than two genes from PDgset, that were larger than 300
genes, or that were not found to be statistically significant (false
discovery rate >5%) after applying multiple hypothesis testing
correction with the Benjamini–Yekutieli method under
dependency.29

Three views were used to assist in the interpretation of the
remaining 29 enriched pathways: a pathway network view was
used to identify pathway modules, a pathway overlap view was
used to explore the intersections and cross-talks between
pathways, and a pathway dendrogram view was used for
clustering.
The pathway network view renders a pathway-to-pathway

network in which nodes represent pathways and weighted edges
represent their corresponding gene set similarities in a similar
fashion to PathwayConnector.30 For the PDgset, this visualization
helped us to define six different modules (i.e., groups of pathways)
by removing edges with a weight lower than 0.2 (Fig. 3b). The
largest module (labeled as M1) contained pathways related to the
processes of endocytosis and vesicle transport, both of which are
putatively disrupted in PD.31 M2 comprised pathways related to
PTK6 signaling such as the Reactome pathway, PTK6 promotes
HIF1A stabilization, whose high pathway enrichment significance
(q-value= 0.0005), as well as its role in regulating another PDgset
gene, ATP13A2,32 suggests that it may be linked to PD. ATP13A2 is
directly responsible for Kufor-Rakeb syndrome,33 a rare juvenile
form of PD, and participates in two other PD mechanisms:
lysosomal iron storage and mitochondrial stress. Because path-
ways related to these two mechanisms (i.e., Lysosome pathway

Fig. 1 The ComPath ecosystem has three main components: the
pathway database plugins, the ComPath framework, and the
ComPath web application. The ComPath framework mediates the
communication between the plugins containing the pathway
database information and the web application
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from KEGG, Pink/Parkin mediated mitophagy from Reactome, and
Mitophagy pathway from both KEGG and Reactome; M4) were also
enriched by pathway enrichment analysis, we investigated the
role of ATP13A2 in PD further.
ATP13A2 is activated by phosphatidylinositol(3,5)bisphosphate,

a particular phosphatidylinositol involved in M3 pathways
(phosphatidylinositol metabolism and signaling pathways).
Because this activation leads to a reduction in mitochondrial
stress and α-synuclein toxicity, two hallmarks of PD, ATP13A2 has
been proposed as a therapeutic target.34 Ultimately, the explora-
tion of the similarities and cross-talks between these three
modules suggests further investigation of the candidate PD gene
ATP13A2. Ultimately, this view complements pathway enrichment
in the identification of pathway modules, exploration pathway
cross-talks, and prioritization of genes for further study.
While the pathway network viewer provides an overview of the

different modules and their cross-talks, it does not reveal
information about their contained pathways' boundaries and
intersections. Therefore, we implemented the pathway overlap
view; an interactive Euler diagram that allows exploration of
pathway demarcations (Fig. 3c). We employed this view to identify
the set of genes common to all pathways in M5, a module
comprising the two Alzheimer's disease (AD) and two PD
pathways from KEGG and WikiPathways. Subsequently, we used
the ComPath pathway enrichment wizard to investigate in which
pathways the common five genes identified (APAF1, CASP3,
CASP9, CYCS, and SNCA) participate. The analysis revealed that
they are predominantly involved in apoptosis, an important
process in both AD and PD pathophysiology.35,36

The third visualization renders the results of the hierarchical
clustering approach described in Chen et al. in the form of a
dendrogram, enabling deterministic pathway grouping based on
gene set similarity. We used this view in the PDgset example to
assign the pathways without module membership to the closest
module (Supplementary Figure S2). The dendrogram proposed
merging three previously unassigned pathways into M2 (i.e.,
Allograft Rejection, MAPK Signaling pathway, and Rasp1 signaling
pathway). Additionally, the resulting dendrogram from clustering
revealed hierarchical relationships between pathways (e.g., Pink/
Parkin Mediated Mitophagy is a subset of the Reactome
Mitophagy pathway), information that can be used to establish
pathway mappings, as we show in the following case study.

Case study III: establishing mappings between pathway databases
ComPath, as well as other tools, have demonstrated the benefits
of integrating pathway knowledge from diverse resources to
improve biological functional analysis.9,10,18 However, even after
overcoming the technical hurdle of harmonizing different formats
used by different databases, these integrative approaches must be
complemented by mappings at a pathway level in order to have

cross references between databases; thus, improving their
interoperability. Such information could then be used to first link
related pathways and then investigate their interplays, explore the
consistency of their boundaries, calculate their discrepancies and
agreements, or simply contextualize the knowledge around a
certain biological process.
In order to address this, ComPath introduces a curation

environment in which users from the scientific community can
propose and maintain a collection of established mappings
between pathways from various databases. This laborious task is
facilitated by the interactive visualizations (i.e., a dendrogram view
and a similarity landscape heatmap) presented in the previous
case studies as well as dedicated pathway pages where the
content, descriptions, references, and the established mappings
can be examined (Fig. 4a). Furthermore, ComPath suggests the
most similar pathways based on this information so users can
propose new mappings. This new mappings are included into the
mapping catalog that serves as a search interface as well as a
distribution platform for mappings (Fig. 4b). In addition, the
mapping catalog promotes community engaging incorporating a
voting system where authenticated users can agree or disagree on
mappings; this way, proposed mappings with a net sum of votes
>3 are automatically registered as accepted.
After an exhaustive investigation of all possible mappings

between pathways in KEGG, Reactome, and WikiPathways (see
Methods), we identified 58 equivalencies between KEGG and
Reactome, 64 between Reactome and WikiPathways, and 55
between KEGG and WikiPathways. Of these equivalent pathways,
21 are shared between the three resources (Fig. 5 and
Supplementary Table 4). We also identified 247 hierarchical
relationships between KEGG and Reactome, 597 between KEGG
and WikiPathways, and 564 between Reactome and WikiPathways.
After considering these, approximately 26% of KEGG, 70% of
Reactome, and 35% of WikiPathways did not share any mappings
with any other database (Supplementary Figure S4). The high
uniqueness observed in Reactome could be attributed to several
factors: its small pathway sizes, its high granularity, and its high
coverage of HGNC (Fig. 2a).
The results of this curation effort are distributed at

https://github.com/ComPath/resources and https://compath.scai.
fraunhofer.de/ so they can be revised, updated, and exploited by
the research community hoping that this work serves as a first
endeavor towards unifying pathway knowledge.

DISCUSSION
The lack of a lingua franca in systems biology hampers the
harmonization that would enable the exploration of the coverage,
agreements, or discrepancies in the pathway knowledge. Harmo-
nizing this information is an important step to better comprehend
and model biology as well as improve the bioinformatics pipelines

Fig. 2 a An Euler diagram summarizing the human gene-centric coverage of KEGG, Reactome, and WikiPathways compared to the universe of
all genes from HGNC (more details in Supplementary Table 1). b Histogram views present gene promiscuity or pathway size distributions. c
The pathway similarity landscape of KEGG visualized as a heatmap
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Fig. 3 a Results of pathway enrichment using the PDgset as input using the ComPath pathway enrichment wizard. We would like to remark
that enrichment results might change over time since ComPath regularly updates their underlying pathway databases. In order to promote
reproducibility, the current version of the databases is displayed in the ComPath overview page and older versions can be provided upon
request. b The Pathway Network Viewer displays the similarity around a selection of pathways. c The Pathway Overlap View depicts the
overlaps and intersection of pathways enriched from the PDgset
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Fig. 4 a The pathway info view introduces basic pathway information such as its participating molecular entities, references, or mappings and
enables automatic mapping suggestions based on different similarity metrics. Furthermore, the mappings of the selected pathway can be
visualized with a dynamic view that enables exploration of multiple levels of its hierarchy (Supplementary Figure S3). b The mappings view
allows users to browse established mappings, propose new mappings, and give feedback on putative mappings
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that utilize this knowledge to elucidate biological insights. As a
first step towards closing this gap, we have implemented an
environment capable of accommodating the pathway knowledge
from multiple databases in order to facilitate its exploration and
analysis through a web application. The flexibility of ComPath
enables the incorporation of additional databases as well as
dynamic update of its resources; the latter of which is often
neglected, but can have a significant effect on derived analyses.37

Additionally, an embedded curation interface allow users to curate
and establish mappings between pathways. Accordingly, we used
ComPath to conduct extensive curation work to link the pathways
from three major pathway databases in order to evaluate their
similarities and differences. This mapping catalog serves as a first
effort towards unifying and linking pathway information across
databases that can later be adopted by the original databases or
to create ontologies that store these mappings. Because
databases regularly add new pathways and update gene
identifiers, we plan to update ComPath biannually as well as
curate mappings for these newly added pathways – current
mappings do not have to be updated since the focus of the
pathway does not change.
The common genes between KEGG, Reactome, and WikiPath-

ways covered the majority of pathways, indicating that their
pathway knowledge is partially biased towards this shared gene
set, even while there are still thousands of genes that have not yet
been functionally annotated to pathways. Furthermore, our
curation effort revealed that a surprisingly low number of
pathways (21) were equivalent between KEGG, Reactome, and
WikiPathways. On the other hand, the number of mapped
pathways increased significantly when the hierarchical mappings
were considered, revealing the inconsistent granularity employed
to delineate pathway boundaries.
Although the absence of topological pathway information in

ComPath is an irrefutable limitation in this study, gene-centric
approaches enable a reduction of complexity in pathway
comparison as well as integration of resources which do not
provide topology information.10 Furthermore, recent studies
revealed significant differences across a large sample of
topology-based pathway analysis methods,38 and highlighted
that gene sets alone might be sufficient to detect an enriched
pathway under realistic circumstances.39 Hence, even if the
abstraction of pathways as gene sets might not exploit all the

existing pathway information, it is sufficient to drive an investiga-
tion of the pathway knowledge.
The established inter-database mappings allowed to link

pathways from three major databases, opening the door towards
a better integration of the pathway knowledge. In the future,
these links can be used to complement and fill pathway
knowledge as well as to conduct a precise evaluation of
equivalent or related pathways by exploiting the available format
converters such as the converter from Reactome to WikiPath-
ways.40 Furthermore, ComPath have been designed to accom-
modate multiple types of molecular entities participating in
pathways (i.e. Reactome chemical information); thus, enabling to
replicate the analyses presented with lipid or metabolite
databases such as LIPEA41 or HMDB.42

In summary, we demonstrated that ComPath serves as an
exploratory, analytic, and curation framework for pathway
databases. Furthermore, we showed how the ComPath web
application can complement enrichment approaches to elucidate
and prioritize pathways and genes related to interesting biological
phenomenon. Finally, we hope that the implementation of a
curation ecosystem and the first mapping efforts conducted in
this work pave the way towards unifying the pathway knowledge.

METHODS
ComPath framework
At its core, ComPath is a framework for integrating pathway and gene set
databases. We defined a set of guidelines for implementing wrappers
around the processes of downloading data, transforming it into a common
data model, and making queries. These guidelines are encoded in an
abstract class with the Python programming language such that new
plugins can be quickly implemented for new resources. Each implementa-
tion must have a mapping between genes and pathways as well as
functions for exporting pathways as gene sets, performing pathway
enrichment analysis, and performing reasoning/inference over pathway
hierarchies.

Compath plugins
We implemented plugins for four major public pathway databases: KEGG,
Reactome, WikiPathways, and MSigDB.1–4 They can be used individually as
a way of extracting, updating, and exploring the pathways contained
within the database. Additionally, they can be used jointly in the ComPath
web application where the pathways from multiple databases are
integrated for their exploration, analysis, and curation.

ComPath web application
The web application was implemented in the Python programming
language using the Flask microframework and a suite of its extensions. The
compatibility between Flask and the data models defined in all pathway
plugins allows the integration and harmonization of the pathway
knowledge in an extensible manner. To illustrate the flexibility of ComPath,
we have included plugins for the Alzheimer’s disease and Parkinson’s
disease gene sets associated with disease-specific mechanisms from
NeuroMMSig43 in the public version of the ComPath web (https://compath.
scai.fraunhofer.de/).
ComPath leverages a variety of state-of-the-art libraries for visualization

and exploration of pathway knowledge. We chose Bootstrap for the design
of the website since its responsive design retains full compatibility across
all devices. Interactive visualizations are generated using several Javascript
libraries, including D3.js, Clustergrammer.js,24 and Cytoscape.js.44

We implemented a RESTful API documented with an OpenAPI
specification that can be accessed through the ComPath instance released
at https://compath.scai.fraunhofer.de/apidocs. The API enables users to
programmatically extract mapping information and perform queries using
different genes or pathways identifiers.

Code availability
The source code for ComPath and its plugins can be found on GitHub
(https://github.com/ComPath and https://github.com/Bio2BEL) under the
MIT license. Both the plugins and the web application can be installed with

Fig. 5 Venn diagram illustrating the overlaps of equivalent path-
ways between KEGG, Reactome, WikiPathways resulting from the
curation exercise. Note: the number of overlapping pathways in the
Venn diagram do not exactly match the number of equivalent
mappings since there are equivalent pathways within WikiPathways
that, when mapped to another database, could have more than one
equivalent pathway. For example, there are two equivalent Wnt
signaling pathways in WikiPathways that are both mapped to their
corresponding Reactome pathway. This is resolved to a unique in
the Venn diagram. A list of intra-database equivalent pathways is
presented in the Supplementary Table 3
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PyPI (https://pypi.org), the main packaging system for Python. Further-
more, we have included a Dockerfile to enable reproducing the ComPath
environment with Docker (https://www.docker.com/). Finally, documenta-
tion is included in each GitHub repository and it is also accessible at Read
the Docs (https://readthedocs.org).

Estimating pathway similarity
While a variety of indices (e.g., Jaccard, Sørensen–Dice, Tversky) have been
used to assess the similarity between sets, the Szymkiewicz-Simpson
coefficient (Eq. 1) is most appropriate for comparing sets widely varying in
size. Similarly to previous studies, we have chosen this index to not only
calculate pathway similarity but also reveal contained pathways (i.e., when
most of the nodes from a small pathway are in a larger pathway) to
indicate potential hierarchical relationships.10,45–47

S X;Yð Þ ¼ X \ Yj j
min Xj j; Yj jð Þ

Equation 1. The Szymkiewicz-Simpson coefficient calculates the similarity
between two sets (X and Y) where 0 ≤ S ≤ 1. The similarity is the size of the
intersection of the two sets divided by the size of the smaller.

Curation of pathway mappings
Here, we describe a semi-automatic curation procedure we used in order
to systematically generate equivalency and hierarchical mappings
between the human pathways originating from KEGG, Reactome, and
WikiPathways. Here, it is important to note that we have only focused on
generating mappings for the pathways originating from each of the three
resources, not their imported pathways from other databases (e.g.,
WikiPathways imported Reactome pathways that are evidently equivalent
to the ones in Reactome). First, we define two types of mappings:

1. equivalentTo. An undirected relationship denoting both pathways
refer to the same biological process. The requirements for this
relationship are:

● Scope: both pathways represent the same biological pathway
information.

● Similarity: both pathways must share at minimum of one
overlapping gene.

● Context: both pathways should take place in the same context
(e.g., cell line, physiology).

2. isPartOf. A directed relationship denoting the hierarchical relation-
ship between the pathway 1 (child) and 2 (parent). The require-
ments are:

● Subset scope: the subject (pathway 1) is a subset of pathway 2
(e.g., reactome pathway hierarchy).

● Similarity: same as above.
● Context: same as above.

We generated all possible mappings between pathways in each
database (KEGG-WikiPathways, KEGG-Reactome, and WikiPathways-Reac-
tome) and prioritized them based on the follow two independent metrics
that have been proposed to calculate pathway similarity:10

1. Lexical similarity between each pair of pathways' names was
calculated using the Levenshtein distance.48

2. Content similarity between each pair of pathways' genes was
calculated using the previously described Szymkiewicz-Simpson
coefficient.

After prioritization, our three curators from different areas of expertize
(neuroscience, medicine, and biology) independently evaluated both
similarities and the scope and context included in the pathway
descriptions to assign the mapping types and to remove false positives.
Furthermore, we investigated possible intra-database mappings within
KEGG and WikiPathways since these resources do not yet contain
hierarchical relationships. Finally, our curators combined the results and
re-evaluated them to generate a consensus mapping file. It is available at
https://github.com/ComPath/resources under the MIT License.
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