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When deciding, we aim to choose the “best” possible outcome. This is not just selection

of the option that is the most numerous or physically largest, as options are translated

from objective value (count) to subjective value (worth or utility). We localized the neural

instantiation of the value-to-utility transformation to the dorsal anterior midcingulate

cortex (daMCC), with independent replication. The daMCC encodes the context-specific

information necessary to convert from count to worth. This encoding is not simply

a representation of utility or preference, but the interaction of the two. Specifically,

the relationship of brain activation to value is dependent on individual preference,

with both positive and negative slopes across the population depending on whether

each individual’s preference results in enhancement or diminishment of the valuation.

For a given value, across participants, enhanced daMCC activation corresponds to

diminished subjective valuation, deactivation to enhanced subjective valuation, and

non-modulated activation with non-modulated subjective valuation. Further, functional

connectivity analyses identified brain regions (positive connectivity with the inferior frontal

gyrus and negative connectivity with the nucleus accumbens) through which contextual

information may be integrated into the daMCC and allow for outputs to modulate

valuation signals. All analyses were replicated through an independent within-study

replication, with initial testing in the gains domain and replication in the intermixed and

mirrored losses trials. We also present and discuss an ancillary finding: we were unable

to identify parametric value signals for losses through whole-brain analyses, and ROI

analyses of the vmPFC presented non-modulation across loss value levels. These results

identify the neural locus of the value-to-utility transformation, and provide a specific

computational function for the daMCC in the production of subjective valuation through

the integration of value, context, and preferences.
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INTRODUCTION

In decision making, we strive to choose the best option, but
this is not simply the selection of the physically largest option
or the option with the most numerous items. We determine
the subjective valuation of each option (utility or worth) by
integrating context and history. Such subjective valuation varies
across individuals and also within individuals over time. For
example, whereas a hungry person has a high subjective value
for food, a satiated person may find the same food neutral or
aversive. In monetary decision making, individuals often show
widely varied subjective valuation, as demonstrated in individual
responses to risky gambles (uncertain outcomes). Individuals
may be willing to pay quite different prices for a lottery ticket
with an expected value of $10 (50% chances of $20 or $0).
While most individuals place their subjective valuation below
the expected value (risk aversion), others enhance the subjective
value (risk seeking). The degree and direction of their value
modulation describes the specific value-to-utility transformation
each participant is performing.

This is the first study to identify a brain region that
encodes the information necessary to perform the value-to-
utility transformation—the interaction of valuative signals and
individual preferences. This experiment extends prior studies
that identified brain regions with parametric encoding of value
(for recent meta-analyses see Bartra et al., 2013; Clithero and
Rangel, 2014), or modulation that tracks individual preference
values (for examples, see Huettel et al., 2006; Kable and Glimcher,
2007).

The value-to-utility function is defined by two pieces of
information: the value under consideration and the preference
of the individual considering it. We opted to use money as our
valuative/counting system for its cardinality, and risky decision
making as our preference domain as it has been extensively
studied behaviorally and shows significant variability across
individuals (including both enhancement or diminishment, as
in the prior example; see Kurnianingsih and Mullette-Gillman,
2015).

The value-to-utility transformation is a necessary process
for determining the context-specific utility of many of the
possible outcomes that we consider everyday. One clear example
is within numeric systems, which veridically convey objective
information between individuals and across neural systems.
We all agree that zero pencils means there are none and that
10 pencils are twice as many as 5. Critically, the objective
values of numeric systems (counts) must be converted to
subjective values (utility) in order for us to be able to
identify and select the option with the highest worth. As
monetary systems are numeric, economic decision making that
includes individual preferences (risk, temporal discounting, etc.)
requires value-to-utility transformations in order to determine
subjective valuation. However, the need for value-to-utility
transformations is not limited to numeric systems, but extends
across other systems in which consideration of possible outcomes
requires mnemonic recollection of abstracted concepts that
must incorporate context to determine their utility—a value-to-
utility transformation. While it is theoretically possible that the

brain could separately store each object-utility pair, the storage
demands are biologically implausible and amore efficient process
would be to encode these abstractions and perform value-to-
utility transformations as necessary to determine the specific
utility for the context under consideration. In this manner, the
concept of a glass of water would be stored without a specific
subjective valuation, which would be computed as needed for its
contextually varied utilities (high utility in a desert, low utility on
a sinking ship).

To identify the brain regions that contain the information
necessary to perform value-to-utility transformations, we sought
to identify a region that encodes the interaction between value
and individual preference. To do so, we employed a precise
computational model that examined nine levels of objective value
across the idiosyncratic subjective valuation of each participant.
This model leverages cardinal within-subject valuation and
between-subject variability in risk preferences to construct the
presented value-to-utility function of each participant and then
identify a brain region that encodes these functions across
participants.

As there is no consensus on the specific format in which
the brain encodes value signals (what specific dimensions are
encoded), a potential danger is that we could select to use a
theoretical formulation that was not actually present in the brain.
To ensure the viability of the value formulation utilized, our
first step was to examine how well a few candidate formulations
were represented within the ventromedial prefrontal cortex
(vmPFC), a region that is reliably found to encode valuative
signals (for recent meta-analyses see Bartra et al., 2013; Clithero
and Rangel, 2014). We then selected one of these formulations
for our principle analyses. Subsequently, we performed post-
hoc analyses demonstrating that the results generalize across the
value formulations found to be represented within the vmPFC.

This study extends prior experiments that examined the
neural encoding of valuation, to identify the brain regions that
encode the information necessary to transform value signals
from objective to subjective representations (value to worth). The
critical difference between models to identify valuative regions
and models to identify regions that encode the information
necessary for the value-to-utility transformation are the neural
responses of the brain region across subjects. Prior fMRI studies
seeking to identify valuative regions have used analytic models
that identify brain regions whose activation is correlated with
the value presented on each trial, with a slope that is the
same across participants. Our value-to-utility transformation
analyses identify brain regions whose activation is correlated
with the value on each trial, but with a slope that varies across
participants as a function of each individual’s idiosyncratic risk
preference. This difference greatly enhances the specificity of the
computational model, resulting in mathematical orthogonality
to prior studies that have separately investigated the neural
encoding of value or risk preferences alone. Therefore, the results
of prior studies that have identified brain regions that encode
value or risk preference alone are not predictive of the brain
regions in which we may expect to identify the interaction
of the two (although they may be likely to interact in some
manner).
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Previous fMRI studies have indicated numerous brain regions
involved in value processing, including the nucleus accumbens,
striatum, and vmPFC (for recent meta-analyses see Bartra et al.,
2013; Clithero and Rangel, 2014). Several brain regions have
been identified to show variation in decision-related activation
correlated with individual differences in risk preferences, notably
including the parietal cortex and lateral prefrontal regions
(Huettel et al., 2006; Christopoulos et al., 2009). Our predictions
were that the value-to-utility information would be encoded in
a brain region that can act as an integrative hub across these
brain regions, integrating executive processes in lateral prefrontal
regions with ventral valuative regions, with notable candidates in
the caudate and cingulate cortex.

Our results demonstrate that the dorsal anterior midcingulate
cortex (daMCC) encodes the information necessary to perform
the value-to-utility transformation—the interaction of valuative
and preference information. Critically, the distribution of slopes
can account for both presented enhancement and diminishment
of subjective value (utility/worth) across participants. In addition,
functional connectivity analyses identified brain regions that
may be involved in the value-to-utility transformation (positive
connectivity with the inferior frontal gyrus and negative
connectivity with the nucleus accumbens), such as providing
contextual information for integration in the daMCC and
outputs that could modulate known valuative signals.

Of note, our methodology features independent within-study
replication. Neuroimaging analyses were first performed on
gains trials and then replicated within losses trials, allowing
for almost perfectly matched and intermixed tasks—differing
only by sign and individual preferences (uncorrelated across
domains). Post-hoc analyses also examined the generalization of
our results across variations in our model. These features provide
a high level of confidence in our results—the daMCC encodes
the interaction between valuative information and individual
preferences, the information necessary to perform the value-to-
utility transformation.

METHODS

Participants
Thirty healthy subjects (15 males, mean ± SD age = 22 ±

1.74 years old) were recruited from the National University of
Singapore as participants in this study. They were all right-
handed with no history of neurological or psychiatric disorders.
Participants provided written informed consent under a protocol
approved by the National University of Singapore Institutional
Review Board. fMRI scanning was conducted in the Duke-NUS
Medical School, Singapore.

Study Procedure
Participants participated in two sessions: a behavioral session
followed by an fMRI session (8–152 days in between).
During the behavioral session participants performed the risky
monetary decision task using a computer outside the scanner
(results published in Kurnianingsih and Mullette-Gillman,
2015). Participants whose choices did not rely on confounding
behavioral choice patterns (such as always choosing the risky

or certain option) were invited to return for the fMRI session.
During the fMRI session, participants performed the risky
monetary decision task inside the MRI scanner.

Risky Monetary Decision Task
We used a modified version of a risky monetary decision
task (Kurnianingsih and Mullette-Gillman, 2015), with an equal
number of trials evaluating the gains and losses domains,
randomly intermixed. On each trial, participants chose between
a gamble and a certain option (270 trials) or between two certain
options (74 trials) (Figure 1). For gains, the trial matrix wasmade
up of five different values of the certain option (VCertain){$3,
$4, $5, $6, $7}, with the gamble option constructed from three
probabilities of winning (pWIN){25, 50, 75%} and nine relative
expected values between the certain and gamble options (rEV =

EVGamble/ VCertain){0.25, 0.50, 0.66, 0.80, 1.0, 1.25, 1.50, 2.0, 4.0}.
For certain vs. certain trials in the gains domain, the trial matrix
was constructed from five different certain values for the first
option (VCertain1){$3, $4, $5, $6, $7}, and the values of the second
option were calculated based on the combination of VCertain1 and
rEV (VCertain2 = rEV × VCertain1), with nine different relative
expected values (rEV){0.25, 0.50,.66, 0.80, 1.0, 1.25, 1.50, 2.0, 4.0}.
Note, that this process results in a small number of duplicate
trials, which were not included. The losses trials mirrored the
gains trials, with the sign of the values adjusted to negative.
Behavioral data collection and analyses were achieved using
Matlab R2010B (Mathworks, Natick, MA) with Psychtoolbox
(www.psychtoolbox.org) (Brainard, 1997) for trial presentation.
No trials were resolved before the end of the experimental
session, to prevent feedback from altering subsequent behavior
(learning). At the beginning of the session participants were
informed that their payment would be determined by the
resolution of one gains trial and one losses trial randomly selected
from each run at the end of the session (a total of 10 trials, from
four actual runs and one practice run).

fMRI Task Design
Each participant underwent four runs; each run consisted of
43 gains trials and 43 losses trials, lasting for 9min and
22 s. The trials were divided equally into four runs, with trial

FIGURE 1 | Risky monetary decision task. Each trial begins with the

presentation of two options, followed by an arrow appearing at the side of

each option (position randomly interchanged) to indicate which button should

be pressed to select that option.
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order randomized independently for each participant. Each
trial began with the presentation of the two options (2000–
3000ms) followed by arrows appearing at the left or right side
of each option (2000ms). Participants had 2000ms to respond,
by pressing the key on the button box that corresponded to the
direction of the arrow presented beside their preferred option
(position randomly interchanged). After a response was made,
the screen presentation was immediately replaced by a fixation
cross for the remainder of the 2000ms and then continued during
the inter-trial intervals (500–5500ms). In other words, quick
responses do not reduce the duration of the run but increase the
baseline time (improving the fMRI signal to noise ratio). All trials
and time intervals within each block were fully randomized for
each participant.

To ensure that participants were incentivized to not miss
trials, they were informed that if a missed trial was selected
for resolution toward their payment, an option would be
randomly selected and an additional penalty of −$2 applied.
Any such missed trials were excluded from analyses. On average,
participants missed .18 gains trials (SD= 0.52, with a range of 0–
3, mean ± SD = 0.43 ± 1.21%) and .41 losses trials (SD = 0.87,
with a range of 0–5,mean± SD= 0.96%± 2.02%). Missed trials
were excluded from analyses.

We excluded one run of one participant from fMRI analyses
due to a technical problem during data acquisition.

Practice Task
Before entering the MRI scanner, participants were given a set
of computerized practice trials. The practice task consisted of 60
risky vs. certain trials, constructed from two possible rEV{0.33,
3.0} and three possible probabilities of winning (pWIN){25, 50,
75%} in both the gains and losses domains. Trials were presented
as they would be inside the MRI scanner, but were not included
in behavioral analyses.

Behavioral Analysis. Quantifying Risk Preferences
We quantified risk preferences separately for the gains and losses
domains, by using these power functions (Tymula et al., 2013;
Kurnianingsih and Mullette-Gillman, 2015):

For gains (if V > 0) : SV = pWIN× Vα.

For losses (if V < 0) : SV = −(1− pWIN)× (−V)α.

where SV is the subjective value (utility) of the gamble, pWIN
is the probability of receiving the better outcome of the option
(assuming linear probability weighting), V is the objective value
of the option (which is the nominal value that was presented), and
α is the degree of the power function curvature that represents
the degree each participant modulates the values of the options.
In the gains domain, an α < 1 indicates value diminishment
(SV < V, risk averse), an α = 1 indicates the absence of value
modulation (SV = V, risk neutral), and an α > 1 indicates value
enhancement (SV > V, risk seeking). Due to the negative signs in
the losses domain, the opposite applies. In the losses domain, an
α < 1 indicates value enhancement (risk seeking), an α = 1 still
indicates the absence of value modulation (risk neutral), and an
α > 1 indicates value diminishment (risk averse).

In order to determine participant’s risk preference,
participant’s choice data were fitted using maximum likelihood
with a probability choice function:

Probability of choosing the gamble option =
1

1+ e−(SVG−SVC)

Where SVC is the subjective value of the certain option and SVG

is the subjective value of the gamble option.

MRI Data Acquisition
MR images were acquired on a 3T Siemens Tim Trio (Siemens,
Erlangen, Germany). Visual stimuli were back-projected
onto a screen positioned behind the scanner bore (Epsom
EMP1715, 800 × 600 pixels, 60Hz). Four runs of 283
volumes each were acquired using a gradient echo-planar
imaging (EPI) sequence with the following parameters:
repetition time (TR) = 2000ms; echo time = 30ms; flip
angle = 90 degrees; field-of-view (FoV) = 192 × 192mm;
matrix size = 64 × 64 with resolution of 3 × 3mm. Each
volume consisted of 36 slices collected in an interleaved
ascending manner. The slices were aligned to the anterior
commissure-posterior commisure (AC-PC) plane. We
also obtained a T1-weighted coplanar image and a high-
resolution T1-weighted anatomical volume (1 × 1mm)
acquired using a 3D-MPRAGE sequence to assist with image
co-registration.

Image Preprocessing and Statistical Analysis
Image processing and statistical analysis were conducted using
FSL Version 5.0.2.2 FEAT Version 6.0 (Brainard, 1997) and
MATLAB R2010B (Mathworks, Natick, MA), with visualization
of neural results using MRIcron (Rorden et al., 2007) and
MRIcroGL (http://www.cabiatl.com/mricrogl/). A total of 10
volumes were discarded to ensure sufficient time for the
scanner signal to reach equilibrium. Brain extraction of the
functional and anatomical images was performed with FSL’s
Brain Extraction Tool (BET) (Smith, 2002). Functional runs
were spatially smoothed using a 5 mm full-width-half-maximum
Gaussian kernel, filtered in the temporal domain using a
high pass filter cutoff of 30 s and motion corrected using
MCFLIRT (Jenkinson et al., 2002). Translation movements were
<1 voxel for all runs of all subjects. Functional images were
normalized using FLIRT (Jenkinson and Smith, 2001; Jenkinson
et al., 2012) by estimating the transform from individuals’ T1-
weighted coplanar (6 degree-of-freedoms) and high-resolution
T1-weighted anatomical image (7 degree-of-freedoms); the
resulting data were then aligned into MNI standard space (12
degree-of-freedoms). All reported neuroimaging main effects
and contrasts unless specified utilize a height threshold of z >

2.3 and a standard cluster probability of p < 0.05. We note, as
recently significant concerns have arisen over the assumptions
of statistical cluster-correction software (Eklund et al., 2016),
that this same paper indicates that the software package and
analyses we used, FSL with FLAME 1 (a Bayesian mixed effects
approach with randomized events), do not result in elevated false
positive rates. In addition, our experimental design, featuring a
highly specific analyses and within-study replication, safeguard
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us against growing concerns of the rate of false-positive findings
in the field of cognitive neuroscience (Szucs and Ioannidis,
2016).

General Linear Model (GLM). GLM1
The base GLM model had five predictors, each convolved using
a double gamma hemodynamic response function. This model is
a basic 2 × 2 design (risky/certain × gains/losses), with box-car
encoding of the decision phase (option onset to button press) for
each of four types of trials (#1 gains trials with risky vs. certain
options regressor, #2 losses trials with risky vs. certain options
regressor, #3 gains trials with certain vs. certain options regressor,
and #4 losses trials with certain vs. certain options regressor),
and a nuisance regressor for button presses (regressor #5, 500ms
starting at press).

GLM2 a, b, and c
These three additional models investigated value signal coding
across trials in varied theoretical formulations of [Value]. The
[Value] formulations examined were rEV (relative expected
value; expected value of the gamble divided by the value of the
certain option), CV (chosen value; the expected value of the
chosen option), and rCV (relative chosen value; the expected
value of the chosen option divided by the expected value of the
unchosen option). Separate GLMs were performed to examine
each of [Value] formulations (GLM2 a, b and c, respectively), as
the formulations are correlated across trials (Table S1).

Each of theGLM2 (a, b, and c) models featured the addition of
six additional predictors, each convolved with a double gamma
hemodynamic response function: #6 parametric regressor of
[Value] in gains trials with risky vs. certain options, #7 parametric
regressor of [Value] in losses trials with risky vs. certain options,
#8 parametric regressor of pWIN in gains trials with risky vs.
certain options, #9 parametric regressor of pWIN in losses trials
with risky vs. certain options, #10 parametric regressor of [Value]
in gains trials with certain vs. certain options, and #11 parametric
regressor of [Value] in losses trials with certain vs. certain
options. Each of these regressors (#6 to #11) encoded the entire
decision phase, from onset of option presentation to the button
press response. The pWIN regressors were both orthogonalized
with respect to the risky vs. certain options [Value] regressor
within their respective domains.

To identify the neural encoding of the value-to-utility
transformation, covariate analyses were performed separately
for the gains and losses domains by including each individual’s
risk preference values for each domain as a between-subject
covariate into the GLM model. Beta values were extracted
from a daMCC ROI (Figures 3C, 4C), constructed through a
conjunction analysis of the separate gains and losses covariate
analyses.

GLM3
This categorical model allows for the extraction of the actual
functional neural encoding of the rEV value signal. This model
consisted of GLM1 plus 18 additional categorical regressors,
encoding the nine levels of rEV presented across trials (for each
domain). The risky vs. certain trials were grouped according

to their rEV (2 domains × 9 rEVs) and each rEV value was
represented by a boxcar task regressor encoding the entire
decision phase, from option presentation to response button
press, and convolved with a double gamma hemodynamic
response function.

Psychophysiological Interaction (PPI) Analysis
This analysis was performed to examine brain regions that have
task-related functional connectivity with the daMCC during the
decision period. We utilized the daMCC ROI produced as the
conjunction of the voxels found to contain the value-to-utility
transformation information across both the gains and losses
domains. For each individual, an average time series of the voxels
within the daMCC seed ROI was computed from the voxels for
each trial type. A GLM model was estimated by adding in eight
additional regressors to GLM1 model (two additional regressors
for each trial type). These additional regressors were the time
course of the seed ROI averaged across the ROI voxels, and the
interaction between the time course regressor and boxcar trial
type regressor for each trial type.

RESULTS

Behavior
Risk preferences were quantified for each participant, separately
for the gains and losses domains. In the gains domain, on average
participants were risk averse (utility less than value, mean ± SD
α = 0.84 ± 0.21). In the losses domain, on average participants
were risk neutral (mean ± SD α = 1.04 ± 0.26). There was no
significant correlation between individual risk preferences across
the gains and losses domains (r28 = 0.26, p = 0.16), concurring
with recent studies (Kurnianingsih and Mullette-Gillman, 2015;
Kurnianingsih et al., 2015; Mullette-Gillman et al., 2015a,b). For
further consideration of this and additional behavioral analyses
we point the reader to Kurnianingsih and Mullette-Gillman
(2015), which features a larger sample (including the individuals
in this study) performing the same task with slightly more trials
(30 additional trials by sampling two additional levels of rEV).

Contrasting Decision Types within and
across Gains and Losses
We determined gross differences in brain activations between
the trials in which participants chose between risky and certain
options and those trials in which they chose between two certain
options, examined separately within the gains and losses domains
(Table S2). We also identified differences in the brain activations
between gains and losses for each trial type (Table S3).

Identifying the Neural Encoding of Value
Signal for Gains
Numerous studies have shown that activation within the vmPFC
is parametrically modulated by the value presented on each trial
(Bartra et al., 2013; Clithero and Rangel, 2014). While this result
is robust across numerous studies, it is still unclear how value
is specifically represented in the brain. As we sought to utilize
a value signal as a component of our localization of the value-
to-utilty information, we first tested three different formulations
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to parameterize value on each trial, in order to identify the one
most robustly represented in the vmPFC during decisionmaking.
These three formulations were: 1) the ratio of the expected value
of the gamble to the value of the certain option (EVgamble/Vcertain,
which we will refer to as rEV); 2) the expected value of the chosen
option (which we will refer to as CV); and 3) the ratio of the
expected value of the chosen option to the expected value of
the unchosen option (EVchosen/EVunchosen, which we will refer
to as rCV). Each of these value formulations was tested with an
independent general linear model (GLM), examining the whole-
brain encoding of parametric value signals within the trials in
which participants chose between risky and certain options in the
gains domain (Figure 2; Table S4; utilizing GLM2).

We found clear evidence that the vmPFC encodes parametric
value signals for both the rEV and CV value formulations,
with large overlap in the voxels identified for each of the two
models (Figure 2A). We compared the quality of the fits for these
formulations by extracting the beta values for each parametric
value regressor from an unbiased 10 mm spherical vmPFC
region-of-interest (ROI) (x = −2, y = 40, z = −8), centered
on the peak coordinate of parametric value signals reported
in a meta-analysis study by Bartra et al. (2013) (Figure 2B).
The strengths of the representations of the rEV and CV value
formulations were not significantly different from one another
(t29 = 0.15, p = 0.88). The rCV formulation resulted in no
significant voxels at the whole-brain level, and the ROI analyses
confirmed that the strength of the encoding was not significantly
greater than zero (t29 = 1.46, p = 0.15) and was significantly less
than the rEV and CV formulations (rEV t29 = 2.03, p = 0.051;
CV t29 = 2.90, p= 0.007).

Given the design of our task, with 15 trials for each of
the 9 levels of the rEV formulation, we were able to visualize
the actual neural encoding of the rEV formulation within the
vmPFC ROI by extracting the beta values for each level of the
rEV formulation (utilizing GLM3). The encoding of gains value
signals in the vmPFC demonstrated a clear positive relationship
between value and brain activation (Figure 2C). As the rEV and
CV formulations equally well captured the value signals within
the vmPFC, we chose to first focus analyses on the rEV factor.

Post-hoc analyses demonstrate the congruence of results across
both the rEV and CV formulations (below).

Identifying the Neural Encoding of the
Value-to-Utility Transformation, in Gains
The principle purpose of this project was to localize the neural
mechanisms of the value-to-utility transformation. To do so
required precisely quantifying the value-to-utility transformation
that each participant was performing, as captured based on their
risk preference as expressed by their choices [modeled as the
degree of curvature (α) of their individual utility function, a
power function (Tymula et al., 2013)]. In the gains domain,
participants were on average risk averse (utility less than value,
mean ± SD α = 0.84 ± 0.21), with a wide range of preference
values including individuals who were risk seeking (utility greater
than value, α > 1) (Figure 3A).

Armed with the behaviorally derived quanitification of each
individual’s value-to-utility transformation, we sought the neural
instantiation by covarying the value on each trial (here, the rEV
regressor; below, post-hoc analysis of the CV regressor) against
each individual’s risk preference. This between-subject covariate
analysis identifies neural regions that encode a linear value signal
across trials, whose slope varies across participants (positive to
negative) based on the degree and direction of the value-to-utility
transformation each individual is using to make their choices
(Figure 3B). Whole-brain analyses revealed a significant fit to
this function in voxels within the dorsal anterior midcingulate
cortex (daMCC) (Bush, 2009) (Figure 3C; Table 1), in a region
also referred to as the anterior midcingulate cortex (aMCC)
(Vogt, 2005) or more generally as part of the dorsal medial
prefrontal cortex (dmPFC).

To examine the nature of the relationship between these
indicated voxels and the value-to-utility transformation, we
performed ROI analyses on the daMCC cluster to illustrate
the whole-brain identified linear relationship between individual
subjective value modulation and the extracted beta values from
the covariate analysis (r28 = −0.73, p < 0.0001) (Figure 3D). As
the extracted beta values are derived from a parametric regressor
(9 levels of rEV) they indicate the slope of the relationship

FIGURE 2 | Neural encoding of value signals for gains. (A) Whole brain analyses localizing value signals with three different value regressors (relative expected

value, rEV; chosen value, CV; relative chosen value, rCV). The white circle indicates the unbiased 10mm spherical vmPFC ROI (x = −2, y = 40, z = −8). (B) vmPFC

ROI analyses demonstrate the strength of the encoding for each of the three tested formulations of trial value (*significantly different from 0; **significantly different from

each other). (C) Extracted functional relationship between vmPFC activation and each gain rEV category, extracted from the vmPFC ROI.
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FIGURE 3 | Value-to-utility transformation for gains. (A) Distribution of risk preferences in the gains domain as measured by power function values (α). (B)

Distribution of individual value-to-utility transformations revealed by individual preferences. (C) Neural regions encoding the value-to-utility transformation. (D)

Relationship between individual preferences and extracted daMCC beta values (slopes) from the covariate analysis. Note that the points are extracted from a

whole-brain identified ROI, and are meant to illustrate the already-identified relationship. (E) Relationship between individual preferences and extracted daMCC betas

values (activation) from the categorical model.

between that regressor and daMCC activation. Interestingly, the
resulting distribution of beta values is zero-centered with positive
betas (slopes) for value diminishment and negative betas (slopes)
for value enhancement.

Given the complexity of the covariate analyses, we sought to
clearly describe the relationship between daMCC activation and
the value-to-utility transformation—how modulated daMCC
activation/deactivation corresponds to reduced/enhanced
subjective valuation. We anticipated finding the same zero-
centered negative relationship as apparent in the covariate
ROI analysis. To confirm this relationship, for each participant
we extracted their daMCC activation level for each of the
9 levels of the categorical rEV regressors (from GLM3),
and across participants, regressed these values against each
individual’s risk preference (a 270 point fit). The solution
was significant [F(1, 268) = 13.02, p < 0.001] with a slope of
−.13 (SEM = 0.036) and an intercept of.11 (SEM = 0.031).
The negative slope confirms the overall relationship between
daMCC activation and the value-to-utility transformation—
the more activated the daMCC is the more diminished the
subjective value will be (and the reverse). Further, based
on the intercept we can calculate the daMCC activation at
risk neutrality (α = 1) to be −0.02, which is within 1 SEM
from zero, confirming the zero-centeredness of this function
(Figure 3E).

Enhanced activation in the daMCC corresponds to
diminished subjective valuation, deactivation of the daMCC

corresponds to enhanced subjective valuation, and baseline
daMCC corresponds to non-modulation of subjective valuation
(utility = value). This near-zero-centered bi-directional
function provides a perfect substrate for the value-to-utility
transformation.

Replicating the Neural Encoding of the
Value-to-Utility Transformation, in Losses
For the within-study replication, we repeated our analyses in
the intermixed losses trials. On average, participants were risk
neutral (mean ± SD α = 1.04 ± 0.26) (Figure 4A), with
a range of preferences. There was no significant correlation
between individual risk preferences across the gains and losses
domains (r28 = 0.26, p = 0.16), concurring with recent studies
(Kurnianingsih andMullette-Gillman, 2015; Kurnianingsih et al.,
2015; Mullette-Gillman et al., 2015a,b). We then replicated
our analyses to identify the regions encoding the value-to-
utility transformation, covarying the rEV value regressor by
individual preferences (Figure 4B). These whole brain analyses
identified a significant cluster within the daMCC encoding the
value-to-utility transformation each individual was performing,
replicating the results in the gains domain (Figure 4C, Table 1).
ROI analysis within the daMCC revealed a clear linear
relationship between value modulation (risk preference) and
daMCC betas (losses: r28 = 0.64, p < 0.001) (Figure 4D).
In near-perfect agreement with the function found for gains,
positive daMCC betas correspond to value diminishment,
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TABLE 1 | Neural encoding of the value-to-utility transformation across

gains and losses.

# Voxels Regions Hemisphere Peak z-stat

Coordinates

x y z

Gains

rEV × α

794 Paracingulate Gyrus

(referred to as daMCC,

aMCC, or dmPFC)

L −2 32 26 3.91

R 2 26 36 3.87

mid 0 32 30 3.83

301 Supramarginal Gyrus R 46 −44 56 3.21

R 44 −42 46 3.1

R 52 −46 54 2.99

Losses

rEV × α

1055 Frontal Orbital Cortex L −44 30 12 3.32

Frontal Pole L −28 54 0 3.83

Inferior Frontal Gyrus L −42 14 24 3.29

683 Paracingulate Gyrus

(referred to as daMCC,

aMCC, or dmPFC)

L −6 28 26 3.73

L −2 22 38 3.57

Superior Frontal Gyrus L −14 16 48 3.64

482 Insular Cortex L −34 18 −6 3.79

Frontal Orbital Cortex L −30 30 −10 3.56

L −44 28 −20 3.15

362 Postcentral Gyrus L −42 −22 30 3.23

L −50 −14 38 3.2

Precentral Gryus L −48 −14 46 3.08

1645 Lingual Gyrus R 20 −56 2 4.06

Occipital Fusiform

Gyrus

R 34 −66 −22 3.85

Hippocampus R 22 −26 −10 3.78

1545 Supramarginal Gyrus L −28 −64 4 3.94

L −4 −62 −8 3.68

L −24 −56 −24 3.6

675 Lateral Occipital Cortex R 18 −68 58 3.77

R 8 −72 60 3.18

Procuneous Cortex R 14 −64 33 3.19

763 Lateral Occipital Cortex L −28 −80 42 3.33

L −14 −74 58 3.19

L −10 −70 60 3.12

rEV, relative expected value; α, alpha; daMCC, dorsal anterior midcingulate cortex;

aMCC, anterior midcingulate cortex; dmPFC, dorsomedial prefrontal cortex.

Regions are labeled based upon their Harvard-Oxford Atlas designations, with

parenthetical inclusion of labels from text.

The coordinates for the three peak activations are provided for each cluster, in MNI space

(in mm).

negative betas correspond to value enhancement, and daMCC
betas of zero correspond to no value modulation (α = 1).

Critically, these results confirm that the information for
the value-to-utility transformation localizes to the daMCC

(Figure 4E). Across both our initial investigation within the gains
domain and the replication in the losses domain, we not only
identified the same brain region across whole-brain analyses but
also independently identified the same zero-centered functional
relationship between the daMCC (slopes and activation) and the
degree/direction of the value-to-utility transformation.

Identifying Brain Regions Involved in the
Value-to-Utility Transformation through
Functional Connectivity Analyses
We examined the network of brain regions that communicate
during the value-to-utility transformation, through functional
connectivity analyses. To identify brain regions that have task-
related functional connectivity with the daMCC during risky
choices, psychophysiological interaction (PPI) analyses were
performed separately for the decision periods of risky gains
and losses trials, with a seed ROI from the daMCC (produced
through a conjunction analysis across gains and losses, between
Figures 3C, 4C). This analysis identified only two brain regions
with significant functional connectivity with these daMCC voxels
during the decision phase. The daMCC is positively connected
to the left inferior frontal gyrus (IFG) and negatively connected
to the nucleus accumbens (NAcc). Specifically, we found whole-
brain significant positive connectivity to the left IFG for both
gains and losses and negative connectivity to the NAcc for losses
(Figure 5A and Table S5). We then performed ROI analyses
on the identified IFG and NAcc voxels (IFG ROI derived as
the conjunction of gains and losses, NAcc ROI as the voxels
significant in losses). ROI analyses confirmed the whole-brain
significances (Figures 5B,C) (gains IFG, mean ± SD beta:.067
± 0.063, different from 0 t29 = 5.80, p < 0.0001; losses IFG,
mean± SD:.067± 0.055, different from 0 t29 = 6.67, p < 0.0001;
losses NAcc, mean ± SD: −0.070 ± 0.056, different from 0 t29 =
6.78, p< 0.0001), and revealed significant functional connectivity
between the daMCC and NAcc for gains (gains NAcc, mean ±

SD:−0.056± 0.061, different from 0 t29 = 4.98, p < 0.0001).

Post-hoc Replication of the Value-to-Utility
Covariate Analyses with Alternative Value
and Preference Metrics
Our analyses demonstrate that the daMCC encodes the
information necessary for the value-to-utility transformation.
These results were obtained using a specific formulation for the
value on each trial (rEV) and a common measure of individual
risk preferences (α). To test the robustness and generalizability
of the encoding of value subjectifcation in the daMCC, we
repeated our analyses using an alternative formulation of value
(chosen value, CV) and an alternative metric for quantifying
individual risk preferences (risk premium, a linear formulation;
Stanton et al., 2011; Kurnianingsih and Mullette-Gillman, 2015;
Kurnianingsih et al., 2015; Mullette-Gillman et al., 2015a,b).
These alternatives extend our analyses from simply across gains
and losses to an additional 2 × 2 space across risk preferences (α
and premium) and value formulations (rEV and CV). The goal is
to examine whether the relationship between daMCC activation
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FIGURE 4 | Value-to-utility transformation for losses. (A) Distribution of risk preferences in the losses domain as measured by power function values (α). (B)

Distribution of individual value-to-utility transformations revealed by individual preferences. (C) Neural regions encoding the value-to-utility transformation. (D)

Relationship between individual preferences and extracted daMCC beta values (slopes) from the covariate analysis. Note the inverted relationship between risk

preference and value modulation across gains and losses (compare x-axes of Figures 3D, 4D) resulting in matched relations between daMCC beta values and the

sign and degree of the value-to-utility transformation. (E) Overlap of regions encoding the value-to-utility transformation information across gains (Figure 3C) and

losses (Figure 4C).

and value subjectification is robust across these alternative ways
of quantifying components of value subjectification.

Alternative Risk Preference Measure: Risk Premium
We additionally quantified each individual’s risk premium
using psychophysical indifference point analyses (for details
see Kurnianingsih and Mullette-Gillman, 2015; Kurnianingsih
et al., 2015; Mullette-Gillman et al., 2015a,b), which measures
the degree and direction of value subjectification in a zero-
centered multiplicative/linear form (as compared to the one-
centered power function form of the α risk preference metric).
Although these metrics have different theoretical assumptions,
we find strong correlations between them in this study (gains:
r26 = −0.74, p < 0.0001; losses: r27 = −0.45, p < 0.0001)
and previous studies (Stanton et al., 2011; Kurnianingsih and
Mullette-Gillman, 2015; Kurnianingsih et al., 2015; Mullette-
Gillman et al., 2015a,b).

Alternative Value Regressor: Chosen Value
The CV regressor was constructed as the value of the chosen
option on each trial, and was previously included in GLM2b and
ROI analyses comparing the degree to which the vmPFC encodes
different formulations of value regressors. Of note, these analyses
indicated that the vmPFC equally encodes both the rEV and CV
formulations of valuation.

ROI Analyses
In our main analyses, we identified a daMCC region as the
conjunction of value subjectification across both the gains and
losses domains. We performed ROI analyses on this region
to visualize the relationship between daMCC beta values and
value subjectification. We then repeated this analysis three more
times, to produce a 2 × 2 set of analyses, defined by the
selected formulation of value on one side and the selected risk
preference metric on the other. Within each of these four cells,
we examined the relationship independently for the gains and
losses domains—resulting in a total of eight scatterplots and
correlations (Figure 6).

Robustness of Value Subjectification in the daMCC
In the gains domain, we find significant correlations between
daMCC beta values and individual risk preferences for all four
pairings of value metrics and risk preference metrics (Figure 6;
Table S6). In the losses domain, statistical significance is only
present for the initially performed rEV and power function
pairing, however, all four of the losses pairings show the
same relationship between value subjectification (enhancement
or diminishment) and daMCC beta values, with correlation
coefficients greater than |.2|. This clear consistency across
metrics demonstrates the robustness of the encoding of value
subjectification in the daMCC.

Frontiers in Neuroscience | www.frontiersin.org 9 November 2016 | Volume 10 | Article 507

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kurnianingsih and Mullette-Gillman Neural Mechanisms of Value-to-Utility Transformation

FIGURE 5 | Functional connectivity of the daMCC during decision making. (A) Brain areas with decision-related functional connectivity to the daMCC. (B)

Connectivity between daMCC and IFG, extracted from the conjunction of the significant voxels in the IFG for both gains and losses. (C) Connectivity between daMCC

and NAcc, extracted from the losses NAcc region (for boxplot: red line is median, blue solid box indicates the 25–75 percentile, error bar indicates the range of

non-outlier extreme values, “+” indicates outliers).

FIGURE 6 | Relationship between individual preferences and daMCC betas (slopes) across alternative formulations of value and risk preference.

Results from Figures 3C, 4C (in top left cell; gains in green and losses in red) were tested for robustness across a 2 × 2 space. Note that the relationship between

risk preference and value subjectification is inverted across gains and losses, and also across the two risk preference measures. For each graph, the relation of the

preference metric and value subjectification is shown in color at the bottom. Of note, all eight subplots show the same relationship between daMCC betas and value

subjectification—increasing for value diminishment and decreasing for value enhancement.
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FIGURE 7 | Neural encoding of value in losses. (A) ROI analyses measuring the encoding of three different value formulations (relative expected value, rEV;

chosen value, CV; relative chosen value, rCV). (B) Functional encoding of value in the ventromedial prefrontal cortex (vmPFC), across gains and losses. Beta weights

indicate vmPFC activation for each rEV value. (C) Distributions of the correlation between each individual’s beta weights against the rEV values (*mean).

Specificity of the Value-to-Utility
Processes: Absence during Simple
Mathematical Comparisons?
Post-hoc, we sought to strengthen the evidence that the daMCC
is involved in the value-to-utility transformation by testing
the context-specificity of its encoding of the value-to-utility
transformation during trials in which the participant should not
have been engaging in a conversion from count to worth. This
was possible in the trials in which participants chose between
two certain options—a comparison that simply requires the
identification of the numerically greater value.We note that these
trials were randomly intermixed with both the gains and losses
trials. We tested whether the information necessary to perform
the value-to-utility transformation information was still encoded
in the daMCC when no such process was necessary.

Identification of the neural encoding of value-to-utility
information during certain vs. certain trials was performed by
replicating the rEV regressor for gains and losses within trials
with two certain options, for each domain, and covarying the rEV
regressor of each domain by the corresponding risk preference of
each participant. Whole-brain analyses identified no voxels with
significant relations. In addition, ROI analyses were performed
on the daMCCROI, revealing no significant relationship between
daMCC beta values and individual risk preference values (gains:
r28 =−0.15, p= 0.42; losses: r28 = 0.16, p= 0.41). This analysis
indicates that the value-to-utility transformation encoded by
the daMCC is context specific, and that this information is
not significantly represented outside of the appropriate context.
In short, the daMCC encodes the information necessary to
compute the value-to-utility transformation that is currently
being performed.

Identifying the Neural Encoding Of
Parametric Losses: No Whole-Brain
Significant Voxels and No Significant
Encoding in the vmPFC ROI
We investigated the neural encoding of linear value signals for
losses. For all of three parametric formulations of the value
on each trial (rEV, CV, rCV), whole-brain analyses (utilitizing
GLM2a, b, c) identified no voxels with a significant relationship
between reduced activation and reduced value. We tested the
encoding of linear loss value signals within the vmPFC through

ROI analyses using the same unbiased 10mm spherical vmPFC
ROI (x = −2, y = 40, z = −8) used in gains, extracting the beta
values for each value formulation. None of these formulations of
loss value were significantly encoded within the vmPFC (t29 <

0.75, p > 0.46) (Figure 7C).
To confirm the absence of a loss value signal in the vmPFC, we

extracted and plotted the actual value function encoded within
the vmPFC ROI, replicating our previous method in the gains
domain. In brief, we extracted the activation for each of the
nine rEV levels across losses (utilizing GLM3) from the same
vmPFC ROI used previously. While gains presented a clear
positive monotonic function relating the rEV to brain activation
levels within the losses domain the function is flat, showing no
relationship between brain activation and value across the rEV
levels (Figures 2C, 7B).

As a final step, we investigated the encoding of value signals
within each individual, correlating their individual activation
for each rEV against the rEV values (separately for gains and
losses; Figure 7C). In gains, this correlation analysis revealed a
clear positive average correlation in the gains domain (mean ±

SD r = 0.28 ± 0.36, difference from r = 0: t29 = 4.27, p <

0.0001). In losses, this correlation analysis revealed a mean-zero
distribution with a near uniform distribution, save a large peak
at zero (mean ± SD r = 0.02 ± 0.39, difference from r = 0:
t29 = 1.22, p = 0.23). While our analyses are able to identify
robust encoding of gains value signals within the vmPFC, we find
no evidence for the encoding of losses value signals within this
region.

DISCUSSION

The daMCC encodes the context-specific information necessary
to perform the value-to-utility transformation, as demonstrated
through highly specific modeling and confirmed with in-
task replication. Further, we specify that, for a given value,
enhanced activation of the daMCC corresponds to value
diminishment and deactivation of the daMCC corresponds
to value enhancement. These results provide a specific and
novel functional role in decision making for the daMCC
(also referred to as the aMCC or dmPFC) (Vogt, 2005; Bush,
2009).

Previous studies have implicated the daMCC/dmPFC in
decision making, with a range of potential roles from outcome
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evaluation (Botvinick, 2007), decision conflict (Botvinick et al.,
2004; Pochon et al., 2008), reward prediction error (Rushworth
and Behrens, 2008), strategic preference (Venkatraman
et al., 2009), to degree of uncertainty (Christopoulos et al.,
2009). Notably, although Pochon and colleagues beautifully
demonstrated that this same region (which they referred to
generically as anterior cingulate cortex) is involved in decision
making rather than motor planning (Pochon et al., 2008),
their task and analyses could not differentiate between a
number of co-occurring cognitive processes, ranging from
attention, memory, theory of mind, and even face processing.
In fact, their full results suggest that their decision conflict
analysis may have reflected all of these cognitive processes,
as they identified parametric encoding of decision conflict in
numerous brain regions (including the dorsolateral prefrontal
cortex, parahippocampal gyrus, fusiform gyrus, and striate
visual area; Pochon et al., 2008). Further, choice difficulty
is not a cognitive process or computation, but rather is a
comparison of task states that reflects the need for greater
computations to compare across options to reach a decision
(i.e., a comparative need for greater processing), but does
not identify what those processes are. In contrast, the high
precision of our between-subject covariate analyses (a 270-point
fit [9 levels of rEV covaried by the preference values of 30
participants], with 15 trials per point) safeguards our results
from being the result of co-occurring cognitive processes—the
specificity of the computational model allows specificity of
the identified cognitive processes. We note explicitly that our
results cannot be due to choice difficulty, as the value-to-utility
functions are orthogonal to trial-by-trial choice difficulty
(as both a within- and between-subject fit of trial-by-trial
value covaried by individual preference). Our precise analyses
suggest a specific computation that is occurring within the
daMCC—that the daMCC encodes the information necessary
to perform the value-to-utility transformation. One possible
reconciliation is that choice difficulty reflects greater required
precision of the value-to-utility transformation, in which case
our results can readily explain those found by Pochon et al.
(2008).

We note that our results should not be interpreted in an
exclusionary manner. We do not provide evidence that the
daMCC does not encode other information, or is uninvolved
in other functions. In fact, in serving the computation of the
value-to-utility transformation this region is likely to encode
a myriad of factors that could be integrated to determine the
context-specific transformation. This could explain the wealth
of studies that have found this region modulated by risk
preference, degree of uncertainty, and even effort-related costs
(Klein-Flügge et al., 2016). We hypothesize that this is likely
to extend beyond economic factors to social and even moral
domains. The specific components present are likely to be
highly context specific, and the critical feature is not which
ones are currently present in any given study (which will
depend on the task), but that they come together in an orderly
fashion to be able to compute the value-to-utility transformation.
Quite simply, the whole is greater than the sum of the
parts.

Even with the high specificity of our analyses, they cannot
provide causal evidence of the role of the daMCC in the value-
to-utility transformation. However, a recent study has indicated
that activation patterns within a proximal dmPFC region can
predict risky decision making prior to the presentation of the
available options (Huang et al., 2014). The predictive power
of this information is suggestive of causal evidence—that is,
varied activation patterns within the daMCC can modulate how
not-yet-presented stimuli will be judged. Our study suggests an
intriguing mechanism for this predicted choice behavior: that
fluctuation in the daMCC prior to option presentation may
modulate the value-to-utility transformation of the incoming
options, altering their computed utilities and therefore biasing
choice behavior.

The functional connectivity analyses indicate a functional
network of regions with which the daMCC communicates during
risky decision making—the IFG and NAcc. Although these
analyses cannot inform on the directionality of signals, given the
known role of the NAcc in valuation (Knutson et al., 2001, 2005;
Abler et al., 2006; Peters and Büchel, 2010), and IFG’s role in
executive processing and working memory (Duncan and Owen,
2000; Mullette-Gillman and Huettel, 2009), we hypothesize that
the value-to-utility transformation within the daMCC is “set”
contextually by inputs from the IFG, and outputs to modulate
value signals within the NAcc.

We see an excellent substrate for the value-to-utility
transformation in the interactions of the daMCC and NAcc,
combining across the value-to-utility transformation covariate
analyses and the functional connectivity analyses. Our covariate
analyses demonstrate that the daMCC activation has a zero-
centered negative relationship with the degree of the value-
to-utility transformation—daMCC activation results in reduced
subjective valuation, daMCC deactivation results in enhanced
subjective valuation, and baseline daMCC activation (non-
modulated) results in non-modulated subjective valuation (i.e.,
subjective value = objective value). Numerous studies have
shown that the activity of the NAcc is positively correlated
with reward value (Knutson et al., 2001, 2005; Peters and
Büchel, 2010). The negative functional connectivity identified
between the daMCC and NAcc, and the presence of value
signals within the NAcc, combine to suggest that inhibitory
or excitatory signals from the daMCC to NAcc could drive
altered subjective valuation. Simply, our results suggest that
subjective valuation could be the result of daMCC activation
inversely modulating valuative processes in the NAcc. From
the NAcc, these modulated valuation signals (subjective value
or utility) may be transmitted to other regions that have
been found to encode value signals, such as the vmPFC
and striatum (Bartra et al., 2013; Clithero and Rangel,
2014).

Our experiment suggests multiple hypotheses about the
nature of the populations of neurons encoding the value-to-
utility transformation. First, it appears that this system has a fast
temporal profile for setting the context-specific value-to-utility
transformation, as we show independence for gains and losses
risk preferences even though trials were randomly intermixed,
occurred every few seconds, and the value-to-utility information
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for each domain is encoded in largely overlapping brain regions.
Secondly, it appears that this region has a low inertia, as we find
that neither gains or losses preference values are encoded during
trials in which risk was absent (when the participants selected
between two certain options). Finally, our third hypothesis
is that simultaneous value-to-utility transformations engaging
overlapping neural populations will lead to a neural bottleneck,
resulting in computational interference and reduced decision-
making quality. Within this study we see that the value-to-
utility transformations for gains and losses are encoded in largely
overlapping neural region, even though their transformation
values (α risk preference values) are uncorrelated. Should this
overlap continue to the neuronal level, then it is possible that
this will lead to interference in neural processing, resulting in a
blending of the informational signals being processed—in this
case the value-to-utility transformation parameter. For example,
consider a participant that strongly diminishes the utility of
potential gains (highly risk averse) and weakly enhances the
utility of a potential loss (risk seeking). If this hypothesis is
true, then when this individual is presented with a gamble that
contains both a possible gain and a possible loss, they may show
preferences that are a blending (average) of the two independent
preferences—weak diminishment of utility (weak risk aversion)
for both gains and losses. As a further example, let us consider
the ubiquitous use of sexual images to sell consumer products.
While it is certainly the case that the attractiveness of a model
on a car provides no information about the quality of the car
under consideration, the presence of such an evolutionarily
predisposed signal may lead to artificial modulation of the
value-to-utility transformation of the consumer good (car,
clothing, etc.). We believe that it will be of great interest
to examine how coincident value-to-utility transformations
are processed within this region, and specifically whether
simultaneous value-to-utility transformations are independent
(as would be the case for a computer) or lead to computational
interference.

Ancillary Finding: Absence of Value Signals
for Losses
No brain regions demonstrated whole-brain significance for any
of the three formulations of linear value signals for losses during
the replication. Further analyses demonstrated that within the
vmPFC ROI (derived from meta-analyses on value signaling
in the gains domain) there was no modulation of activation
levels across the nine levels of losses valuation examined in the
rEV formulation. While many neuroimaging experiments have
examined value coding in gains, with consistent evidence that
gains value signals are encoded within the vmPFC (see recent
meta-analyses, Bartra et al., 2013; Clithero and Rangel, 2014),
only a few have explored this issue in losses and recent meta-
analyses have not found evidence that the vmPFC also encodes
losses. Within the few experiments that have directly examined
value coding for losses, the methods of these experiments result
in some ambiguities on how to best interpret their findings.
For example, Litt et al. (2011) asked participants “How much

would you like to eat this item...” and encoded responses of
“Not at all” as the highest level of loss. It may be that such
responses would be more appropriately considered as low gains,
and, if their results are re-interpreted along these lines then
their results show linear encoding from low gains to high gains
within the vmPFC (concurring with numerous studies), and
unfortunately their results would no longer address how losses
are encoded.

Similar issues arise in a study by Tom et al. (2007), which
identified neural encoding of the possible losses value within
the vmPFC through whole-brain analyses. We see two possible
explanations for the contrast with our lack of such encoding.
First, their task featured both possible gains and possible losses
on each trial (choice of whether to engage in a 50:50 gamble,
with possible gain and loss), and it is possible that the vmPFC
does not encode losses in isolation but may contain information
about possible losses when they are being contrasted to the
possible gains (or some other manner of interaction). Secondly,
it is possible that participants framed all possible outcomes as
gains. This possibility comes from the experimental design, as
participants were given $20 prior to the task and then all trials
featured potential losses up to that $20 value. The goal was that
participants would make decisions relative to the $20, but it is
possible that they instead made decisions framed by the final
possible outcome instead (i.e., a 50:50 gamble with a possible
gain of $10 and a possible loss of $5, incorporates the $20
to become a 50:50 possible gain of $30 or a possible gain of
$15). We believe that our task design avoids this issue, as we
feature a possible zero outcome in all gambles—providing a
simple common frame across both gains and losses trials. There
is clear evidence of large behavioral differences between gains and
losses decisionmaking (see Kurnianingsih andMullette-Gillman,
2015), which could be due to divergent neural processing for
gains and losses. Here we find evidence of significant differences
in neural processing of gains (numerous regions identified in
whole-brain analyses and clear value function encoding in the
vmPFC) and losses (whole-brain null effect and the subsequent
flat value function in the vmPFC ROI), suggesting the need for
further neuroimaging studies on the neural basis of loss value
coding.

CONCLUSIONS

We identified the neural instantiation of the value-to-utility
transformation within the daMCC. Further, we describe a
simple network of regions through which contextual information
(contingency and long-term history) could be integrated to
determine the degree and direction of the value-to-utility
transformation, and through which modulatory signals could
output to alter valuation signals.
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