Rice et al. Molecular Pain (2015) 11:26
DOI 10.1186/512990-015-0024-3

MOLECULAR PAIN

RESEARCH

Open Access

Sodium channel Nav1.7 in vascular myocytes,
endothelium, and innervating axons in human

skin

Frank L Rice', Phillip J Albrecht'? James P Wymer?, Joel A Black®”, Ingemar SJ Merkies™®, Catharina G Faber®

and Stephen G Waxman®*

Abstract

I[EM and PEPD.

Background: The skin is a morphologically complex organ that serves multiple complementary functions, including
an important role in thermoregulation, which is mediated by a rich vasculature that is innervated by sympathetic
and sensory endings. Two autosomal dominant disorders characterized by episodes of severe pain, inherited
erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD) have been directly linked to mutations that
enhance the function of sodium channel Nav1.7. Pain attacks are accompanied by reddening of the skin in both
disorders. Nav1.7 is known to be expressed at relatively high levels within both dorsal root ganglion (DRG) and
sympathetic ganglion neurons, and mutations that enhance the activity of Nav1.7 have been shown to have
profound effects on the excitability of both cell-types, suggesting that dysfunction of sympathetic and/or sensory
fibers, which release vasoactive peptides at skin vasculature, may contribute to skin reddening in IEM and PEPD.

Results: In the present study, we demonstrate that smooth muscle cells of cutaneous arterioles and arteriole-venule
shunts (AVS) in the skin express sodium channel Nav1.7. Moreover, Nav1.7 is expressed by endothelial cells lining
the arterioles and AVS and by sensory and sympathetic fibers innervating these vascular elements.

Conclusions: These observations suggest that the activity of mutant Nav1.7 channels in smooth muscle cells of
skin vasculature and innervating sensory and sympathetic fibers contribute to the skin reddening and/or pain in
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Introduction

The skin is a morphologically complex organ that serves
multiple complementary functions [1]. While fulfilling a
protective role, the skin is an exquisite tactile sense
organ designed to detect a wide variety of mechanical,
thermal, chemical, and noxious stimuli over a wide range of
intensities. In humans, the skin, particularly of the hands
and feet, also plays an important role in thermoregulation
[2-5]. These varied functions are subserved through a mix
of discrete structures including the epidermis, dermal
papillae, and a rich vasculature that are innervated by a
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variety of sympathetic and sensory nerve endings. While
providing a high degree of versatility, the complexity of
the skin and its innervation contributes to susceptibility to
sensory neuropathies and sudomotor disorders associ-
ated with intractable chronic pain including diabetic
neuropathy, postherpetic neuralgia, and chemotherapy-
induced peripheral neuropathy [6-13].

Two autosomal dominant disorders characterized by
episodes of severe pain, inherited erythromelalgia (IEM)
[14,15] and paroxysmal extreme pain disorder (PEPD)
[16,17], have been directly linked to mutations that
enhance the function of sodium channel Navl.7. Gain-
of-function mutations of Nav1.7 have also been identified
in some patients with painful small-fiber neuropathy [18].
In IEM and PEPD [15,17,19] and in some patients with
small fiber neuropathy [20], episodes of pain are
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accompanied by reddening of the skin. Neurogenic
[14,15] and vasogenic [21,22] mechanisms, and an abnor-
mality of intracutaneous arteriole-venule shunting [23],
have been suggested to contribute to the pathophysiology
of EM. Consistent with a neurogenic mechanism, Nav1.7
is known to be expressed at relatively high levels within
both dorsal root ganglion (DRG) and sympathetic gan-
glion neurons [24,25].

Mutations that enhance the activity of Nav1.7 have been
shown to have profound effects on the excitability of both
DRG neurons and sympathetic ganglion neurons [25,26],
suggesting that dysfunction of sympathetic ganglion neu-
rons may contribute to skin reddening in IEM, PEPD, and
small fiber neuropathy [25]. However, while the micro-
anatomy of normal and pathological human skin have
been extensively studied [2,27], to date, the expression of
Navl.7 within intracutaneous vasculature and in the in-
nervation of intracutaneous vasculature has not been
studied. In this study, we demonstrate the presence of
Nav1.7 within vascular myocytes of human intracutaneous
arterioles and arteriole-venule shunts (AVS) of normal hu-
man glabrous skin, and skin from 10 cm above the lateral
malleolus, a standard site for diagnostic and experimental
skin biopsy [28]. We also demonstrate the presence of
Nav1.7 within endothelium and in both the sensory and
sympathetic innervation that converge and terminate
on the intracutaneous vasculature.

Results

Nav1.7 expression in cutaneous arterioles and AVS
Vascular myocytes

The arterioles and AVS were assessed in 14 pm sections
of 3 mm glabrous skin punch biopsies taken from the
hypothenar compartment of the hand and lateral margin
of the foot from three normal male and eight normal
human female subjects ranging in age from 21-74 years
old. Three distinct polyclonal antibodies were used in
these studies that were raised against two different se-
quences of rat Navl.7 (Navl.7, and Navl.7y) and one
far removed sequence of human Navl.7 (Navl.7,p),
which yielded similar labeling of the extensive sensory
and sympathetic innervation, smooth muscle cells of the
tunica media, and endothelial cells of the tunica intima
of resistance arterioles and arteriole-venule shunts (AVS)
located in the deep dermis of glabrous skin (Figures 1, 2,
3 and 4). The innervation of arterioles and AVS was pre-
dominantly concentrated in the tunica adventitia in close
proximity to the tunica media [27]. Consistent with pre-
vious descriptions [2,29], innervation is more extensive
surrounding the AVS, which have an especially thick tu-
nica media, than that surrounding arterioles (Figure 1);
these features distinguish between these two vascular struc-
tures. Also, the lumina of AVS are typically occluded due to
constriction of the thick muscular wall during fixation.
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In all samples examined, Navl.7 immunolabeling was
intensely expressed throughout the tunica media of arte-
rioles and AVS. Double-labeling with antibodies directed
to Navl.7 and aSMA, a marker of smooth muscle cells,
confirmed the expression of Navl.7 in tunica media
smooth muscle cells within glabrous skin (Nav1.74):
Figure 1B; Navl.7y: Figures 1C; Navl.7,.,: Figure 4A).
Double-labeling with Navl.7y and aSMA was also ex-
amined in resistance arterioles in skin from the lateral
malleolus of three additional healthy human subjects
(Figure 2A-D). As exemplified in Figure 2A-D, there was
extensive co-localization of Nav1.7 and aSMA in arteriole
smooth muscle cells of skin biopsies from the lateral mal-
leolus from each of these three different subjects.

Endothelial cells

Each of the three Navl.7 antibodies (Navl.7y, Navl.7,;
and Nav1.7,;) used in our studies also labeled the endo-
thelial cells that form the tunica intima lining of the arteri-
ole and AVS lumina, which was confirmed by double-
labeling for platelet endothelial cell adhesion molecule 1
(PECAM), a marker of endothelial cells (Figures 1D, E).

Nav1.7 expression in fibers innervating cutaneous
vascular structures

The neuronal marker, PGP 9.5, was utilized to identify
innervation of resistance arterioles and AVS in the deep
dermis in glabrous skin [2,27]. As shown in Figure 1A,
double-labeling studies with antibodies to Navl.7 and
PGP 9.5 demonstrated that virtually all fibers innervating
arteriole and AVS exhibited Navl.7 immunolabeling
(Figure 1A). It is likely that the PGP 9.5- and Nav1.7-posi-
tive fibers included both the sensory and sympathetic
innervation. To distinguish sensory from sympathetic fi-
bers that expressed Navl.7, we performed double-
immunolabeling studies with antibodies to calcitonin
gene-related peptide (CGRP), which labels virtually all
presumptive sensory innervation, and neuropeptide Y
(NPY), which has previously been shown to label nearly
all the noradrenergic sympathetic fibers innervating deep
dermis arterioles [2,27].

CGRP-labeled fibers

Co-localization studies with all three Navl.7 antibodies
and a CGRP antibody demonstrated a subset of the
Navl.7-positive fibers that exhibited CGRP labeling in
both arterioles and AVS (straight yellow arrows in
Figures 3A, B, and 4B, D). In these double-labeling
combinations, there were consistently some Navl.7-
positive fibers that did not display CGRP labeling
(curved red arrows in Figures 3A,B and 4B,D), which
were presumably sympathetic fibers.



Rice et al. Molecular Pain (2015) 11:26

Page 3 of 12

v

(=%
°
-
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Figure 1 Nav1.7 immunolabeling (IL) of arterioles (Ar), arteriole-venule shunts (AVS) and associated innervation in normal human plantar glabrous
skin with Alomone (A,B) or Yale (C) Nav1.7 antibodies (red). Co-labeling of innervation (arrows) as marked with anti-PGP 9.5 (PGP, green, A) or
smooth muscle cells in tunica media (tm) as marked with anti a-smooth muscle actin antibody (aSMA, green, B,C). Nuclei are DAPI-labeled (blue).
Left images (each panel) show only red fluorescence, middle images green; right images show triple-label combinations. Large white rectangles
are 2X-enlargements of small rectangles. A-C. Nav1.7-IL is expressed on endothelial cells of tunica intima (red arrowheads) and tm smooth muscle
cells as confirmed by double-labeling with anti-aSMA (B,C). Nav1.7-IL is expressed on virtually all vascular innervation (arrows) in tunica adventitia
(ta) as confirmed by anti-PGP 9.5 double-labeling (A, yellow arrows). N=nerve. D-E. Nav1.7-IL on arteriole endothelial cells shown as 2X-enlargements of
areas indicated by white rectangles in B,C. First images (each panel) show Nav1.7-IL on smooth muscle cells in tm and endothelial cells (red
arrowheads). The second images show a-SMA co-labeling of only the smooth muscle cells of tm (green). The third images show merge of first
and second images with DAPI (blue). Sections re-labeled with anti-PECAM (green) to show co-labeling with Nav1.7 on endothelial cells (yellow

arrowheads, fourth and fifth images). F-G. Background Cy3 fluorescence is limited with no primary antibody in arteriole deep in dermis (F),
epidermis (Ep) and upper-dermis (UD) (G). In F, broken line shows tm perimeter with dotted line around arteriole lumen. In G, broken line indicates
basement membrane of epidermis and dotted line indicates boundary of dead and live superficial keratinocyte layers (stratum corneum, sc and stratum
granulosum, sg, respectively). Stratum spinosum, ss; stratum basalis, sb; dermal papilla (dp). Scale bars=150um (A); 100um (B,C,F,G); 50um in DE.

NPY-labeled fibers

To identify the Navl.7-positive sympathetic innervation
of arterioles and AVS, tissue was reacted with antibodies
to Navl.7 and NPY. As shown in Figures 3 and 4, only a
subset of fibers labeled with each of the three Navl.7
antibodies exhibited NPY immunolabeling (yellow curved
arrows in Figures 3C,D and 4C,E), indicating their identity
as sympathetic fibers. As anticipated, there was consist-
ently a subset of fibers that labeled with each of the three
Nav1.7 antibodies that displayed an absence of NPY im-
munofluorescence, consistent with our demonstration of
sensory fibers innervating the vasculature. In separate ex-
periments, tissue was reacted with the anti-Nav1.7 anti-
body and a combination of CGRP and NPY antibodies
(both raised in sheep). Virtually all Nav1.7-positive fibers
were co-labeled with the combined CGRP and NPY anti-
bodies (data not shown).

Nav1.7 expression in the epidermis and upper dermis
Given the high level of Nav1.7 labeling of the vascular
smooth muscle cells, endothelial cells, and most of the
vascular innervation in the upper dermis, we assessed
the Nav1.7 and PGP 9.5 expression in the epidermis and
upper dermis within the same sections (Figure 5). In this
location, Nav1.7 immunolabeling was only detected on
some of the innervation to the epidermis and upper der-
mis. Most of the innervation including the Ap-fiber
innervation of Meissner corpuscles lacked Nav1.7 label-
ing. Navl.7 expression was detected among keratino-
cytes predominantly in the stratum granulosum as we had
reported previously [30].

Discussion

In this study, we demonstrate that sodium channel
Navl.7 is present within vascular myocytes and endothe-
lium of arterioles and arteriole-venule shunts (AVS) of
human skin, and in virtually all of the innervation to
these resistance vessels, which consists of a dense conver-
gence of sympathetic and sensory innervation [2,27,31].

Our demonstration of Nav1.7 co-expression with a-smooth
muscle actin throughout the tunica media of arterioles and
AVS within human skin is the first in situ documentation
of the expression of Nav1.7 by smooth muscle cells and is
consistent with prior reports of Nay1.7 expression on cul-
tured myocytes dissociated from human aorta, pulmonary
and brochiole arteries and murine aorta [32-35]. Our ob-
servation of Navl.7-immunloabeling on the endothelial
cells of the tunica intima is also consistent with prior RT-
PCR detection of Navl.7 in cultured vascular endothelial
cells harvested from human umbilical cord veins, where a
role in Navl.7 regulation of angiogenesis has been sug-
gested [36].

Consistent with previous reports of Navl.7 on neurons
in sympathetic ganglia of rats, Navl.7 co-localized with
NPY which is known to be co-expressed and released
from noradrenergic (NA) sympathetic innervation, espe-
cially under sustained activation to supplement the vaso-
constrictive properties of noradrenalin. Therefore, our
results indicate that Navl.7 is indeed present within the
NA sympathetic [37-39] innervation of human cutaneous
arterioles and AVS and presumably plays a role in regulat-
ing their sympathetically- mediated constriction.

We also observed that Nay1.7 is co-expressed separately
with CGRP on virtually all the remaining innervation of
the cutaneous arterioles and AVS, which is likely supplied
by sensory neurons in the dorsal root ganglia (DRG)
[37,38,40,41]. This presumed sensory innervation consists
of several immunocytochemically distinct subtypes of
C- and Ad-fibers that co-express Substance P [31,42,43].
These results are consistent with prior observations that
Navl.7 is expressed on many small-to-medium size
neurons in rat DRG, of which most co-express CGRP
and Substance P [42,43]. Thus, at least some of these
Navl.7-positive peptidergic DRG neurons are the likely
source of virtually all the innervation to cutaneous resist-
ance vessels. Although CGRP and SP have been implicated
in inflammatory pain, little is known about the specific
sensory functions of the C- versus Ad-fiber innervation of
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Figure 2 Nav1.7 expression in smooth muscle cells of deep dermis arterioles within skin from lateral malleolus of three healthy subjects. Smooth
muscle cells (arrowheads) of the arteriole tunica media exhibit robust Nav1.7 (red) immunolabeling (antibody Nav1.7y), which is co-localized with
alpha smooth muscle actin (green). Skin samples from 3 healthy subjects (Subject 1: A; Subject 2: B,C; Subject 3: D) display similar patterns of Nav1.7
labeling in the smooth muscle cells of the dermal arterioles. Co-localization of Nav1.7 and alpha smooth muscle actin is yellow in the merged panels.
E. Sections incubated without primary antibodies followed by secondary antibodies displayed background levels of immunofluorescence in skin vasculature.

25 ym

cutaneous resistance vessels of which further subtypes of
these fibers have been identified by differential expression
of other molecular characteristics such as TrpV1, ASIC3
and H3R [1,44,45]. Vascular terminals of these sensory
fibers have also been shown to release CGRP and SP
which are potent vasodilators [37,38,40,46-49]. Thus,
Navl.7 expression in these different varieties of sensory
vascular fibers could presumably impacts their sensory as
well as vasodilatory functions.

While Nav1.7 mutations associated with IEM are known
to be gain-of-function at the channel level, enhancing
activation in the case of IEM [14,50] or impairing fast-

inactivation in PEPD [16,17], these mutations have
divergent effects on different types of neurons that
express the Navl.7 channel. It is well-established that
Navl.7 mutations associated with IEM [50,51] produce
hyperexcitability in DRG neurons. In contrast, these
mutations produce hypoexcitability in sympathetic gan-
glion neurons [25,26]. The opposing effects of these
Nav1.7 mutations reflect the presence in DRG neurons,
but not in sympathetic ganglion neurons, of the Nav1.8
channel, which is relatively resistant to depolarization
and supports repetitive firing in response to sustained
depolarization [52]. As a result of hyperpolarized
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Figure 3 Digital fluorescence images of Nav1.7 immunolabeling (IL) of arterioles (Ar), arteriole-venule shunts (AVS) and associated innervation in
normal human glabrous skin biopsies from the plantar foot (A,C,D) and palmar hand (B). All sections are labeled with an Alomone (A,C) or Yale
(B,D) rabbit anti-rat Nav1.7 antibody revealed by a donkey anti-rabbit Cy3-conjugated secondary antibody (red fluorescence). Secondary antibodies
conjugated to Alexa 488 (green fluorescence) were used to assess co-labeling for peptidergic sensory innervation revealed with a sheep anti-human
CGRP antibody (A,B) or noradrenergic sympathetic innervation revealed with a sheep anti-human NPY antibody (C,D). Cell nuclei are labeled with
DAPI (blue fluorescence). The left images in each panel show only the red fluorescence, the middle images only the green, and the right images the
triple label combinations. Areas outlined in large white rectangles are 2X enlargement of the areas in the small rectangles. A-D. Nav1.7-IL is expressed
on the endothelial cells of the tunica intima (red arrowheads) and on smooth muscle cells of the tunica media (tm). AB. Peptidergic sensory innervation
co-expresses Nav1.7-IL and CGRP-IL (yellow straight arrows). Other innervation labeled only with Nav1.7 (red curved arrows) is likely the noradrenergic
sympathetic innervation that expresses NPY-IL as shown in C and D. CD. Noradrenergic sympathetic innervation co-expresses Nav1.7-IL and NPY-IL
(yellow curved arrows). Other innervation labeled with only Nav1.7 (red straight arrows) is likely the peptidergic sensory innervation that expresses
CGRP-IL as shown in A and B. Scale Bar = 150 um in A and B, 100 um in C and D.

activation, these Navl.7 mutations produce an en- closer to the threshold for activation for Navl.8, and
hanced window current, which depolarizes neurons therefore is pro-excitatory within DRG neurons; in
[51]. This depolarization brings membrane potential contrast, the depolarization inactivates all of the
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Figure 4 Nav1.7 immunolabeling (IL) of arterioles and associated innervation in normal human palmar glabrous skin biopsies, in alternating sections
cut parallel to and through lumen (¥) of branched arteriole (A-C) and parallel to arteriole, skimming the interface between tunica media (tm) and
tunica adventitia (ta) (D,E). All sections are labeled with Abcam anti-human Nav1.7 antibody (red). Secondary antibodies conjugated to Alexa 488
(green) were used to assess co-labeling for: smooth muscle cells revealed with mouse anti-a—smooth muscle actin antibody (aSMA, A); peptidergic
sensory innervation revealed with sheep anti-CGRP antibody (yellow straight arrows, B,D); and noradrenergic sympathetic innervation revealed with
sheep anti-NPY antibody (yellow curved arrows, CE): Nuclei are labeled with DAPI (blue). Left images in each panel show only the red fluorescence,
middle images only green, and right images the triple-label combinations. Areas outlined in large white rectangles (A-C) are 2X enlargements of areas
in small rectangles. A-E. A. Nav1.7-IL is expressed on endothelial cells of tunica intima (red arrowheads) and smooth muscle cells of tm as confirmed by
double-labeling with anti-aSMA. Nav1.7-IL is expressed on innervation (arrows) in ta, near and at the border with tm. B, D. Peptidergic
sensory innervation co-expresses Nav1.7-IL and CGRP-IL (yellow straight arrows). Other innervation labeled only with Nav1.7 (red curved
arrows) is likely noradrenergic sympathetic innervation that expresses NPY-IL (G,E). CE. Noradrenergic sympathetic innervation co-expresses Nav1.7-IL
and NPY-IL (yellow curved arrows). Other innervation labeled with only Nav1.7 (red straight arrows) is likely peptidergic sensory innervation

that expresses CGRP-IL as shown in B and D. Scale bar = 100 um in A-C, 50 ym in D and E.

sodium channels within sympathetic ganglion neurons,
which do not contain Navl.8, thereby reducing excit-
ability in these cells [25].

The opposing effects of Navl.7 signaling on sensory
and sympathetic neurons align well with, and may contrib-
ute to, antagonistic vasodilatation and vasoconstriction
roles, respectively, of these two types of innervation [2,27].
The vasoconstrictive function of noradrenergic sympa-
thetic innervation on resistance vessels is well-established
[37-39]. The mechanisms of vasodilatation have been
more problematic (see [2]). Cholinergic innervation from
discrete parasympathetic ganglia is a primary source of

face [4,5,53,54]. However, such cholinergic innervation is
minimal to the cutaneous arterioles and AVS in the hands,
feet, and other areas where vasodilatation has widely been
regarded as a passive relaxation consequent to reduced
NA sympathetic activity [4,5,27]. The potential role of
vascular sensory fibers in neurogenic activation of cutane-
ous vasodilatation has received little attention despite the
fact that the vascular terminals release CGRP and SP
which are potent vasodilators [55,56], possibly acting
through antidromic activity among vascular afferents
[46,48,49,57]. Moreover, activation of TrpV1 and ASIC3,
which are co-expressed on many peptidergic sensory neu-

neurogenic vasodilatation of arterioles in the brain and rons, has been shown to promote CGRP release [44,58],

Figure 5 Digital fluorescence images of Nav1.7 (red) and PGP 9.5 (green) immunolabeling (IL) in the epidermis (Ep) and upper dermis (UD)
biopsies of normal human palmar glabrous skin (A, Abcam anti-Nav1.7) and normal human plantar glabrous skin (B, Alomone anti-Nav1.7).
Stratum corneum, sc; stratum granulosum, sg; stratum spinosum (ss); stratum basalis (sb), dermal papilla (dp). Straight arrows indicate epidermal
sensory endings, curved arrows indicate small nerves and individual axons or endings in the upper dermis. The areas enclosed in the large rectangles
are 2X enlargements of those in the smaller rectangles. Of all the innervation revealed by anti-PGP 9.5, only some express Nav1.7-IL (yellow straight and
curved arrows) whereas other only express PGP 9.5-IL (green straight and curved arrows). Ap-fiber innervation of a Meissner corpuscle (MC) has little if
any Nav1.7-IL. Kertinocytes especially in stratum granulosum label for Nav1.7 (arrowheads) which has a more membranous distribution with
the Alomone anti-Nav1.7 antibody, but more diffuse labeling with the Abcam anti-Nav1.7 antibody. Scale bar = 100 um.
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whereas activation of co-expressed H3R has been impli-
cated in inhibiting CGRP release [43]. These observations
suggest the presence of local tissue regulators of sensory-
mediated vasodilatation. Albrecht et al. [2] observed that
nearly all of the sensory innervation to arterioles and AVS
in the glabrous palmar skin of humans also co-express the
a2C adrenergic receptor which has been shown to inhibit
CGRP release [59-63]. This suggests that NA sympathetic
activation of vasoconstriction may also involve inhibition
of sensory- mediated vasodilatation. On the basis of our
results, we hypothesize that Navl.7 may be involved in
multiple vasodilatory mechanisms, both enhancing the ac-
tivity of vasodilatory sensory innervation and concomitantly
reducing the activity of vasoconstrictive noradrenergic
innervation.

Our detection of Nav1.7 in the myocytes of the tunica
media and endothelial cells of the tunica intima in the
cutaneous arterioles and AVS raises the possibility of
some other intriguing contributions to vasoregulation.
Vascular myocytes and endothelial cells are not known
to express Navl.8. Therefore, we propose that Navl.7
mutations that depolarize resting potential may produce
hypoexcitability of intracutaneous vascular myocytes
which would favor vasodilatation. On the other hand,
endothelial cells release nitric oxide which contributes to
vasodilation [64-66], so a reduction in their activation
might be expected to favor vasoconstriction.

Little is known about the specific sensory roles of the
various molecularly distinct subtypes types of C- and
AS- sensory fibers that terminate on the cutaneous arte-
rioles and AVS of which nearly all express CGRP, SP and
Navl.7. Some are implicated as nociceptors contributing
to inflammatory pain through the release of CGRP and
SP terminals in the CNS involving presumptive pain
pathways. Others are implicated as metaboreceptors ex-
pressing ASIC3 which is preferentially activated by lactic
acid [58]. Recently Bowsher et al. [27] showed evidence
that the different subsets of vascular sensory innervation
may contribute to a functionally adequate conscious cap-
acity to spatially distinguish between a variety of non-
noxious and noxious tactile stimuli. On the opposite ex-
treme, Albrecht et al. [2] found that nearly all of a sizeable
cohort of female fibromyalgia patients had an extremely
significant excessive innervation, especially the sensory
fibers selectively associated with the AVS in the palms
of their hands. This neurovascular pathology is logically
consistent with extreme palmar tenderness, especially
bothersome at colder temperatures, and widespread deep
pain possibly due to systemic consequences of vasodysre-
gulation. A disproportionate over-representation of sen-
sory innervation expressing a2C receptors could provide a
rationale for use of SNRIs which could enhance an in-
hibitory regulation by the convergent NA sympathetic
innervation.
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PEPD, which is associated with Nav1l.7 mutations that
impair fast-inactivation, produces attacks characterized
by a pattern of pain (perineal in young patients, becom-
ing periocular or perimandibular in adults) and of skin
reddening (often of the face or torso, sometimes in a
harlequin pattern that affects only one-half of the body)
[17,19] that differs from the pattern in IEM (pain and
reddening of the distal limbs) [15]. Current-clamp studies
that have been carried out on PEPD mutations thus far
have demonstrated hyperexcitability of DRG neurons ex-
pressing the mutant channels, but have not demonstrated
depolarization of resting potential as a result of expression
of these mutations [67,68]. Since these mutations do not
depolarize resting potential, they would not be expected to
reduce neuronal excitability in cells lacking Nav1.8 such as
sympathetic ganglion neurons [25]. As a result of the
impairment that they confer on inactivation, these
PEPD mutations are predicted to produce hyperexcit-
ability within sympathetic ganglion neurons and their
axons. A differential effect of IEM and PEPD mutations
on sympathetic ganglion neurons might contribute to
the different pattern of vasomotor symptomology in
patients with PEPD, compared to those with inherited
erythromelalgia [15,17,19].

Taken together, our results demonstrate the presence of
Navl.7 in vascular myocytes, endothelium, and sensory and
sympathetic axons innervating the vasculature in human
skin, and support the idea that vasogenic and neurogenic
mechanisms both contribute to skin reddening in disorders
due to Nav1.7 mutations such as [EM and PEPD.

Methods

Human tissue

The analyses documented in Figures 1, 3, 4, and 5 were
conducted on 3 mm punch biopsies obtained from 3
normal male and 8 normal female subjects ranging in
age from 21-74 years old in obtained in accordance with
IRB approval at St. Peters Hospital in Albany, New York.
The biopsies were fixed by immersion for 4 hours in ice-
cold 4% paraformaldehyde in 0.1 M phosphate buffered
saline (PBS), pH 7.4, and were cryoprotected and frozen
sectioned at 14 pum thickness by cryostat in a plane per-
pendicular to the epidermal surface. Alternating sections
were thaw-mounted in serial order rotating across as
many as 20 slides such that each slide had as many as 15
sections from equally spaced intervals through the
biopsy. The morphological and immunocytochemical
characteristics of the innervation had previously been
assessed and published on some of the slides from each
biopsy using a variety of antibodies targeting antigens
implicated in various neural properties [27,69]. Slides
from some of the biopsies had previously been processed
with a commercial rabbit polyclonal antibody directed
against rat Navl.7 (see below, Alomone Labs, ASC-008)
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for a study [30] of the epidermis and upper dermis
which did not examine the vascular innervation in the
same sections. All of the processed and unprocessed
slides had been stored at —20°C under glycerin mounted
coverslips which we have floated off in PBS for new or
additional double immunolabeling after at least 10 years
in archive. The advantage of this archiving system is that
such alternating slides can be used for follow up analyses
on biopsies that have been previously well characterized
for other purposes.

For this study, we assessed sections from palmar and
plantar glabrous skin which have a high density and var-
iety of innervation types and a high probability (75%) of
containing densely innervated arterioles and AVS which
is the focus of this study.

Additional skin tissue that was imaged for Figure 2
was obtained by 3 mm punch biopsies 10 cm above the
lateral malleolus from 3 healthy volunteers (age: 30,
32 and 50 years) in accordance with IRB approval at
Maastricht University and VA Connecticut Healthcare
System, West Haven. The samples were fixed for 30
minutes in 4% paraformaldehyde in 0.14 M Sorensen’s
phosphate buffer, rinsed with PBS, cryoprotected with
30% sucrose in PBS, and rapidly frozen. Twelve pm
cryosections were collected on SuperFrost Plus glass
slides (Fischer) and processed for immunocytochem-
ical analysis.

Immunocytochemistry

Three affinity purified antibodies generated to different
amino acid sequences in rat and human Navl.7 were uti-
lized in these studies: rabbit polyclonal Nav1.7,;: Alomone
Labs, ASC-008, rat 446-460 aa sequence, 1:100; rabbit
polyclonal Navl1.7y: Y083, [70], rat 514—532 aa sequence,
1:250; and rabbit polyclonal Navl.7,,: Abcam Inc,
ab85167, human 1000-1100 aa sequence, 1:500. All three
Nav1.7 antibodies exhibited similar patterns of labeling. To
identify structures labeled with the Nav1.7 antibodies, tissue
was double-labeled with Navl.7 antibody and antibodies
against human protein-gene-product 9.5 (PGP 9.5, rabbit
polyclonal, UltraClone LTD, RA95101, 1:800), which labels
all known types of nerve fibers; human calcitonin gene-
related peptide (CGRP, sheep polyclonal, Abcam Inc,
Ab22560, 1:500), which labels nearly all types of arterial
C- and AS&-fiber innervation; human neuropeptide Y
(NPY, sheep polyclonal, EMD Millipore Corp, AB1583,
1:800), which labels noradrenergic sympathetic innerv-
ation; alpha smooth muscle actin (aSMA, mouse
monoclonal, Abcam Inc, Ab7817, 1:100), and human
platelet/endothelial cell adhesion molecule (PECAM,
mouse monoclonal, DAKO, M0823, 1:50). Secondary
antibodies consisted of donkey anti-rabbit IgG-Cy3
(Jackson ImmunoResearch, 711-165-152, 1:500) and don-
key anti-mouse and —sheep IgG conjugated to Alexa 488
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(Invitrogen, A21202 and A11015, 1:250) and were proc-
essed as previously described [2,70]. Some sections were
counterstained with DAPI to reveal cell nuclei.

Control experiments included omission of primary
antibodies, which displayed only background levels of
immunofluorescence among all components of the skin
including not only the vessels and innervation in the
deep dermis (Figures 1F and 2E) but also in the epidermis
and upper dermis (Figure 1G). The Alomone Navl.7
immunolabeling pattern had been previously validated by
preabsorption of the antibody with the cognate peptide
and by in situ hybridization labeling pattern [30].

Image acquisition

Epifluorescent images for Figures 1, 3, 4, and 5 were
captured utilizing an Olympus BX51-WI microscope
equipped with conventional fluorescence filters (Cy3:
528-553 nm excitation, 590-650 nm emission; Cy2/
Alexa 488: 460—500 nm excitation, 510—560 nm emission),
a Hamamatsu ER, DVC high-speed camera, linear focus
encoder, and a 3-axis motorized stage system interfaced
with Neurolucida software (MBF Bioscience, Essex, VT).
Images were composed with Photoshop (Adobe, San Jose,
CA) with minimal contrast enhancement from the original
images.

Images of fluorescent-labeled tissue for Figure 2
were accrued as z-stacks with a Nikon Clsi confocal
microscope (Nikon USA, Melville, NY) operating with
frame lambda (sequential) mode and saturation indica-
tor to prevent possible bleed-through between channels.
Z-stack images were appropriately rotated to visualize
arteriole lumena and were composed and processed
with Photoshop.
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