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Abstract 
The current COVID-19 (coronavirus disease 19) pandemic, caused by SARS-CoV-2, 
disproportionally affects the elderly and people with comorbidities like obesity and associated type 
2 diabetes mellitus. Small animal models are crucial for the successful development and validation 
of antiviral vaccines, therapies and to study the role that comorbidities have on the outcome of 
viral infections. The initially available SARS-CoV-2 isolates require adaptation in order to use the 
mouse angiotensin converting enzyme 2 (mACE-2) entry receptor and to productively infect the 
cells of the murine respiratory tract. We have “mouse-adapted" SARS-CoV-2 by serial passaging 
a clinical virus isolate in the lungs of mice. We then used low doses of this virus in mouse models 
for advanced age, diabetes and obesity. Similar to SARS-CoV-2 infection in humans, the outcome 
of infection with mouse-adapted SARS-CoV-2 resulted in enhanced morbidity in aged and diabetic 
obese mice. Mutations associated with mouse adaptation occurred in the S, M, N and ORF8 genes. 
Interestingly, one mutation in the receptor binding domain of the S protein results in the change of 
an asparagine to tyrosine residue at position 501 (N501Y). This mutation is also present in the 
newly emerging SARS-CoV-2 variant viruses reported in the U.K. (20B/501Y.V1, B1.1.7 lineage) 
that is epidemiologically associated with high human to human transmission. We show that human 
convalescent and post vaccination sera can neutralize the newly emerging N501Y virus variant 
with similar efficiency as that of the reference USA-WA1/2020 virus, suggesting that current 
SARS-CoV-2 vaccines will protect against the 20B/501Y.V1 strain. 
Keywords 
SARS-CoV-2, mouse adaptation, mouse model, obesity, diabetes, aged mice, N501Y, B1.1.7 
lineage   
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Introduction 
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of the present 
coronavirus disease 2019 (COVID-19) pandemic which has claimed hundreds of thousands of 
lives with the death toll still rising. The virus belongs to the family Coronaviridae and genera 
Betacoronaviruses which consists of a single stranded, positive sense ~30kB RNA as genome. The 
genome encodes for four structural proteins – nucleoprotein (NP), spike (S), envelope (E) and 
membrane (M) proteins. The S protein of the virus plays an integral part in viral fusion and entry 
into host cells. The homotrimeric S protein consists of S1 and S2 subunits. The receptor binding 
domain (RBD) of the S1 subunit binds to angiotensin-converting enzyme 2 (ACE-2) present on 
the host cellular surfaces. The interaction is followed by S2-driven-transcleavage of the S protein 
by cellular metalloproteases such as TMPRSS2, thereby facilitating an efficient fusion and release 
of viral contents into the host cell (1). Since the RBD domain is necessary for direct interaction 
with the host receptor, mutations in RBD can affect SARS-CoV-2 infection efficiency depending 
on the host. As the RBD is also the target of virus-neutralizing antibodies, mutations in RBD can 
impact the neutralizing titers of polyclonal and monoclonal antibodies. 
The virus primarily spreads through respiratory droplets and causes a diverse array of symptoms 
from completely asymptomatic infections to fever, cough, anosmia, pneumonia, acute respiratory 
distress syndrome, microvascular coagulation, multi-organ dysfunction and other severe 
manifestations -including death- in humans. Several predisposition factors have been found to be 
associated with increased susceptibility to severe COVID-19. Hypertension, cardiovascular 
diseases, gender, advanced age and obesity have already been defined as major risk factors among 
humans attributing to increased mortality by enhancing secondary conditions such as hypoxemia 
and pneumonia (2–7). In order to study SARS-CoV-2-associated comorbidities, there is a need for 
small animal models in which pulmonary inflammation, lung lesions and histopathology after 
SARS-CoV-2 infection can be investigated. The RBD of the S protein from the SARS-CoV-2 
strain that started the pandemic does not efficiently bind mouse ACE-2 (mACE-2, a murine 
ortholog of human-ACE-2) (8) and as a consequence this SARS-CoV-2 strain does not efficiently 
infect laboratory mouse strains efficiently. Several approaches have been developed to allow the 
use of mouse models for SARS-CoV-2 research (9–11), often guided by the experience obtained 
previously for mouse models to study SARS-CoV. Many of these models rely on transgenic mice 
that express hACE-2 in epithelial cells or sensitize mice to SARS-CoV-2 infection by adenovirus-
mediated transduction of the hACE-2 gene (Ad-hACE-2) in the respiratory tract (9,12). These 
models have been crucial for studying host-pathogen interactions, prophylactic and therapeutic 
interventions in the context of SARS-CoV and SARS-CoV-2 infection. However, a major 
drawback of these models is that expression of hACE-2 is often driven by a promoter that is not 
the original ACE-2 promoter, and therefore promoter control and expression patterns can differ 
and, in the case of Ad-hACE-2, depend on transduction efficiency. These problems would be 
circumvented by a mouse-adapted SARS-CoV-2 (MA-SARS-CoV-2) that uses the endogenously 
expressed mACE-2. Moreover, a MA-SARS-CoV-2 can be used with already established mouse 
models of the comorbidities associated with more severe COVID-19 and allows the efficient 
exploiting of the genetic toolboxes available for mice. 
In this study, we have developed and characterized a MA-SARS-CoV-2 strain after serially 
passaging a clinical virus isolate (USA-WA1/2020) first in immune-compromised followed by 
immune-competent mice. We mapped mutations associated with mouse adaptation in the SARS-
CoV-2 genome and observed that one of them is the N501Y mutation in the RBD from the spike 
protein that was also reported for the newly emerging SARS-CoV-2 variant (20B/501Y.V1 strain) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.21249592doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.19.21249592
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

with potentially enhanced human transmission potential. This mouse-adapted SARS-CoV-2 strain 
with N501Y mutation causes enhanced morbidity in mouse models for advanced age, obesity and 
obesity-associated type 2 diabetes mellitus. Finally, we show that human sera from convalescent 
and vaccinated individuals can neutralize both the reference USA-WA1/2020 strain and the mouse 
adapted strain that contains the N501Y spike mutation with similar efficiency. 
 
Materials and Methods  
Reagents: 
All chemicals for synthesis were purchased from Thermofisher, unless noted otherwise. Horse 
radish peroxidase (HRP)-conjugated anti-mouse IgG antibody was purchased from Abcam 
(ab6823). Anti-mouse SARS-CoV-2 NP (NP1C7C7) and anti-mouse SARS-CoV-2 spike 
(2BCE5) antibodies were obtained from Center for Therapeutic Antibody Development at Icahn 
School of Medicine at Mount Sinai, New York. Antibodies used in Western blot were anti-mouse-
ACE-2 (R&D, MAB3437), anti-beta-tubulin (Sigma Aldrich, T8328) and anti-mouse (HRP-
conjugated, KwikQuant). 
  
Cell lines: 
Vero-E6 cells (ATTC-CRL 1586, clone E6) are routinely cultured in the laboratory and were 
maintained in Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal bovine serum 
(FBS, Hyclone), penicillin/streptomycin and 1% non-essential amino acids. Mouse ACE-2 
(mACE-2) expressing Vero-E6 cells were established by transducing Vero-E6 cells with a 
lentiviral vector expressing mACE-2 and a puromycin resistance gene (supplementary figure S1). 
Cells were selected as a polyclonal population by puromycin selection and mACE-2 expression 
was confirmed by Western blot.  
  
Mouse models for comorbidities: 
All mice strains were obtained from Charles River Laboratories, MA and were housed in a 
pathogen-free facility at Icahn School of Medicine at Mount Sinai, with food and water ad libitum, 
adhering to the guidelines from Institutional Animal Care and Use Committee (IACUC).  To 
establish obese mice models, C57Bl6 mice were fed with control or high fat diets (Research Diets). 
Mice body weights were recorded over 14 weeks followed by diabetic profiling by intraperitoneal 
glucose tolerance test. Briefly, mice were moved to fresh cages and fasted for 6 hours with access 
only to water. Mice were then injected intraperitoneally with dextrose solution at 2g/kg body 
weight. Blood from mice was drawn by sub-mandibular bleed at 0 min, 30 min and 60 min of 
injection. Blood glucose levels were estimated by Glucose Assay Kit (abcam) by extrapolation 
from a standard curve. These obese mice were challenged with MA-SARS-CoV-2 to study the 
severity of disease progression. To study age as a risk factor for SARS-CoV-2-linked disease 
severity, 6-8-weeks or 52-weeks-old C57Bl6 mice were used for mouse-adapted-SARS-CoV-2 
challenge. 
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SARS-CoV-2 isolates and mouse adaptation: 
SARS-CoV-2 isolate USA-WA1/2020 (BEI resources; NR-52281), referred in this manuscript as 
WT-SARS-CoV-2, was used to challenge mice intranasally. A variant of virus (termed MA-
SARS-CoV-2) was obtained after series of passaging in different backgrounds of laboratory mice 
as well as mACE-2 expressing VeroE6 cells. Briefly, the virus was serially passaged every 2 days 
via intranasal inoculation of the virus in 50 ul volume derived from the spun-down supernatants 
of lung homogenates. The mouse adaptation of the SARS-CoV-2 variant was studied in C57Bl6, 
BALB/c and 129S1/SVMJ (termed 129 for simplicity in the text and figures) mice models. Viral 
stocks were sequenced after propagation to verify the integrity of the original viral genome. 
  
Deep sequencing of the viral stocks.  
To sequence the viral stocks we followed the protocol developed by ARTIC 
(https://artic.network/ncov-2019) with the primer set version 3. Viral RNA was purified 
using Viral-RNA kit (mega-Bio-Tek) following the manufacturer instructions and used as 
template to prepare a cDNA. Overlapping amplicons of ~400 bp covering the whole genome where 
barcoded using the Oxford Nanopore Technologies (ONT) Native Barcoding Expansion kit (EXP-
NBD104). Libraries where prepared according to the manufacturer instructions, loaded on 
a minION sequencer equipped with a FLO-MIN106D flow cell. The consensus sequence was 
obtained using Lasergene software (DNAstar).  
 
Multi-cycle growth curve for WT and MA-SARS-CoV-2: 
Confluent Vero-E6 cells in 24 well format were infected with a multiplicity of infection (MOI) of 
0.001 of either WT or MA-SARS-CoV-2 virus for 45 minutes, the inoculum was then removed 
before supplementing with viral growth media (1x Minimal Essential Medium + 2% FBS + 1% 
penicillin/streptomycin). Each well was considered as one replicate per timepoint and supernatants 
were stored at –80°C.   Viral titers were determined by plaque assay for each sample. 
 
Virus challenge:  
2.5x104 plaque forming units (PFU) per mice of WT- or MA-SARS-CoV-2 were used for 
intranasal infection, unless specified otherwise under mild ketamin/xylazine sedation. Body 
weights were recorded every day to assess the morbidity post-infection until organ harvest. The 
organs were homogenized in 1x phosphate buffered saline (PBS) and virus titers were determined 
by plaque assay. Blood for serology or micro-neutralization assays was collected either by 
submandibular bleeding technique or terminally by cardiac puncture. 
 
Plaque assay: 
Plaque assays were performed to determine viral titers in samples or organs harvested from mice 
challenged with WT or MA-SARS-CoV-2. Briefly, lungs or other organs were harvested from the 
mice and homogenized in sterile 1X PBS. After brief centrifugation (10,000 g x 5 minutes), the 
tissue debris was discarded, and the supernatant was 10-fold serially diluted starting from 1:10 
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dilution. Pre-seeded Vero-E6 or mACE-2-Vero-E6 cells (for WT and MA-SARS-CoV-2 
respectively) were infected with tissue homogenate for 1 hour at room temperature (RT) followed 
by an overlay of 2% Oxoid agar mixed with 2X MEM supplemented with 0.3% FBS. The cells 
were incubated for 72 hours at 37°C and 5% CO2 followed by fixation in 1ml of 4% methanol-
free formaldehyde. The plaques were immune-stained with anti-mouse SARS-CoV-2-NP and anti-
mouse SARS-CoV-2-spike antibodies for 1 hour at RT and consequently with HRP-conjugated 
anti-mouse secondary IgG antibody for 1 hour at room temperature (RT). Finally, the plaques were 
developed with TrueBlue substrate (KPL-Seracare) and viral titers were calculated and expressed 
as plaque forming units (PFU)/ml.  
  
Western Blot: 
Cells were lysed in RIPA buffer (Sigma Aldrich, USA) supplemented with protease inhibitor 
cocktail (Roche, Switzerland). Total protein concentration was determined in each sample by BCA 
assay and normalized. The lysates were run on a 4-20 % gradient polyacrylamide gel at 60V and 
transferred onto polyvinylidene fluoride (PVDF) membranes (BioRad Laboratories) using BIO-
RAD semi-dry transfer system. PVDF membranes were blocked in 5 % non-fat dry milk-
containing Tris-buffered saline with Tween-20 (TBST) containing 0.1% Tween-20. Anti-Tubulin 
and anti-mACE-2 (R&D Systems, Cat# MAB3437) primary antibodies were used at dilution of 
1:1000 while secondary HRP-conjugated antibodies were used at dilutions of 1:10000 in 3% BSA-
containing TBST.  
  
50% tissue culture infective dose (TCID50) calculation and in vitro micro-neutralization 
assay: 
To estimate the neutralizing efficiency of sera from vaccinated or SARS-CoV-2-infected mice or 
humans, in vitro microneutralization assays were performed similarly to what is described 
previously (13). Briefly, the mice or human sera were inactivated at 56°C for 30 min. Serum 
samples were serially diluted 3-fold starting from 1:10 dilution in Vero-E6-infection medium 
(DMEM+ 2% FBS+ 1% non-essential amino acids). The samples were incubated with optimized 
tissue culture infective dose 50 (TCID50), as described in the figure legends, of either WT- or MA-
SARS-CoV-2 for 1 hour in an incubator at 37°C, 5% CO2 followed by incubation with pre-seeded 
Vero-E6 at 37°C for 48 hours.  The plates were fixed in 4% formaldehyde at 4°C overnight. For 
TCID50 calculation, the virus stock was serially diluted 10-fold starting with 1:10 dilution and 
incubated on Vero-E6 cells for 48 hours followed by fixation in 4% Formaldehyde. The cells were 
washed with 1xPBS and permeabilized with 0.1% Triton X-100 in 1XPBS. The cells were washed 
again and blocked in 5% non-fat milk in 1xPBS+ 0.1% Tween-20 for 1 hour at room temperature. 
After blocking, the cells were incubated with anti-SARS-CoV-2 NP and anti-spike monoclonal 
antibodies, mixed in 1:1 ratio, for 1.5 hours at room temperature. The cells were washed in 1xPBS 
and incubated with 1:5000 diluted HRP-conjugated anti-mouse IgG secondary antibody for 1 hour 
at RT followed by a brief PBS wash. Finally, 100μl tetramethyl benzidine (TMB) substrate was 
added and incubated at RT until blue color appeared, and the reaction was terminated with 50μl 
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1M H2SO4. Absorbance was recorded at 450nm and 650nm and percentage reduction in infection 
was calculated as compared to negative control. 
 
Serum samples from human subjects:  
Ethics statement: 
The study protocols for the collection of clinical specimens from individuals with and without 
SARS-CoV-2 infection by the Personalized Virology Initiative were reviewed and approved by 
the Mount Sinai Hospital Institutional Review Board (IRB-16-00791; IRB-20- 03374). All 
participants provided informed consent prior to collection of specimen and clinical information. 
All specimens were coded prior to processing. 
 
Sample collection: 
A total of 34 sera were selected from study participants based on their SARS-CoV-2 spike enzyme 
linked immunosorbent assay (ELISA) antibody titer (negative [N=4] versus weak [N=8], moderate 
[N=11] or strong positive [N=11]). In addition, we included sera from six individuals that had 
received two doses of the Pfizer SARS-CoV-2 vaccine (V1-V6). Demographics and available 
metadata for each participant is summarized in Supplementary Table 1. Sera were heat-inactivated 
(56°C, 1 hour) and all experiments were conducted in a blinded manner. 
 
Results 
Serial passaging of SARS-CoV-2 in mice results in mouse-adapted SARS-CoV-2  
The USA-WA1/2020-SARS-CoV-2 (termed WT-SARS-CoV-2) virus isolate was passaged eleven 
times in the lungs of various strains of mice as outlined in Fig. 1A. The virus was first allowed to 
adapt to murine ACE-2 receptor in immune-compromised mice with weak innate immune 
responses. To this end, the virus was consecutively passaged four times in IFNα/l receptor knock-
out mice in C57Bl6 genetic background, using 50 µl of lung homogenate from each infected mouse 
collected at three days post infection (DPI). The virus was then further passaged three times in 
BALB/c mice and four times in 129 mice. The 129 mice were chosen for mouse adaptation as they 
have been shown to be more susceptible to SARS-CoV, a virus that uses the same hACE-2 receptor 
as SARS-CoV-2. After eleven passages, the virus was plaque-purified and clonal virus stocks of 
the MA-SARS-CoV-2 were prepared in mACE-2 expressing Vero-E6 for further infection 
experiments. For comparative purposes, clonal virus stocks of the WT-SARS-CoV-2 were also 
generated using Vero-E6 cells. The consensus genomic sequence of the MA-SARS-CoV-2 was 
generated by sanger and deep sequencing methods and the sequence changes are summarized in 
Table 1. The MA-SARS-CoV-2 contained two amino acid mutations and one four amino acid 
insertion in the S, and one amino acid mutation in the M, N and ORF8 gene products of the virus 
(Fig. 1B). One of the amino-acid changes in the RBD of spike protein in the virus, N501Y, has 
previously been reported to be associated with mouse-adaptation of SARS-CoV-2 (21) and is 
predicted to increase binding to mACE-2 (14). Interestingly, the same N501Y mutation has 
recently been reported in newly emerging SARS-CoV-2 variants (20B/501Y.V1 strain) with 
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potentially enhanced human transmission potential. Both WT- and MA-SARS-CoV-2 show 
similar growth kinetics in Vero E6 (Supplementary Fig. 2). 
 
Table 1: Genomic changes in MA-SARS-CoV-2 (Passage P11) when compared with WT-
SARS-CoV-2 (USA/WA1/2020-SARS-CoV-2). 
 

Segment Nucleotide change Amino acid change  
(S) Spike A23063T 

C23525T 
22206 +12 insertion TAAGCTGAGAAG 

N501Y 
H655Y 
+KLRS 

(N) Nucleoprotein T28853A S194T 
(M) Membrane C26542T T7I 
ORF8 T28144C L84S 

 
MA-SARS-CoV-2 efficiently replicates in the lungs of different wild-type strains of mice and 
results in transient morbidity based on their genetic background 
The pathogenicity of MA-SARS-CoV-2 was examined in terms of its infection and replication 
potential in laboratory mouse strains of different genetic backgrounds. While the WT-SARS-CoV-
2 was unable to infect any of the laboratory strains of mice, MA-SARS-CoV-2 efficiently infected 
129 (Fig. 1Ci), C57Bl6 (Fig. 1D) as well as BALB/c mice (Fig. 1E) with detectable virus titers in 
lungs and nasal turbinates of 129 mice and lungs of male and female C57Bl6 and BALB/c mice, 
obtained at different days post infection (DPI) as depicted in Fig. 1.  MA-SARS-CoV-2 infection 
resulted in about 12% body weight loss in 129 mice (Fig. 1C-ii) while no weight loss was observed 
in infected C57Bl6 and BALB/c mice. 
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Fig. 1. Characterization and mouse adaptation of MA-SARS-CoV-2   
(A) The SARS-CoV-2 WA1/2020 Seattle strain was obtained from BEI Resources and serially passaged 11 times in 
mice of different genetic backgrounds. (B) Sequence and location of mutations identified in MA-SARS-CoV-2 when 
compared to WT-SARS-CoV-2.  (A) Infection with 2.5 x 104 PFU of the MA-SARS-CoV-2 resulted in detectable virus 
titers in lungs and nasal turbinate 3 DPI (C-i) as well as transient body weight loss in female 129 mice whereas the 
WT-SARS-CoV-2 did not (C-ii). (D, E) Infection with 2.5 x 104 PFU of MA-SARS-CoV-2 but not WT-SARS-CoV-
2, resulted in detectable lung virus titers harvested at different time points post- infection in all C57Bl6 (D) as well as 
BALB/c (E) mice irrespective of gender. Body weight loss was not observed in C57Bl6 or BALB/c mice strains upon 
infection with either of WT- or MA-SARS-CoV-2 (data not shown). Symbols represent geometric means; error bars 
represent standard deviation. 
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MA-SARS-CoV-2 results in enhanced morbidity in mouse models of obesity, obesity-
associated diabetes and advanced age 
The successful establishment of a MA-SARS-CoV-2 allowed us to study risk factors previously 
associated with severe COVID-19 in humans. We focused on mouse models for obesity, diabetes 
and advanced age. Briefly, 6–8-week-old female C57Bl6 mice were fed with either control/low-
fat (CD) or high-fat diet (HFD) for 14 weeks and the body weight changes were recorded over 
time. The mice on HFD gained almost twice the original weight and became obese (hence called 
obese mice) over time as compared to the mice on CD (also referred to as lean mice) (Fig. 2A). 
The diabetic status of the mice was determined by intraperitoneal glucose tolerance test (22), which 
suggested that the mice on HFD were diabetic while the mice on CD were not (Fig. 2B). The CD 
and HFD mice were then challenged with a low dose of MA-SARS-CoV-2 (1.7 x 103 PFU/mice) 
and various organs including duodenum, heart, brain, kidney, lungs and pancreas were harvested 
five days-post-infection (Fig. 2C). Upon infection, the obese mice showed more morbidity, as 
reflected in higher body weight loss over five days-post-infection as well as on higher lung viral 
titers when compared to the lean mice (Fig. 2D-i and D-ii). We also tested our MA-SARS-CoV-2 
on 6-8-week-old and 52-week-old female C57Bl6 mice, also referred to as young and old mice, 
respectively. With the same low viral challenge dose (1.7 x 103 PFU/mice), the 52-week-old mice 
showed more morbidity as reflected by body weight loss over five days-post-infection when 
compared to young mice. The 52-week-old mice also showed physical symptoms of distress 
including hunched back and difficulty and reluctance in movement while the 6-8-week-old mice 
resumed normal activity. Additionally, the viral lung titers were also found to be higher in 52-
week-old mice as compared to 6-8-week-old mice. five days-post-infection. Our data summarizes 
that both obesity/diabetes and advanced age in mice result in higher morbidity during SARS-CoV-
2 infection. Although we did not find detectable virus titers in other organs with low virus 
challenge in obese or aged mice, this does not exclude possible extrapulmonary viral replication 
at other time points or with a higher dose of virus challenge. 
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Fig. 2. Age and obesity as risk factors for severity associated with MA-SARS-CoV-2 
(A) 6-8-week-old C57Bl6 mice were fed with sucrose-matched high fat or control diet for up to 14 weeks and the 
body weight changes were recorded. (B) Mice on control or high-fat diet were fasted for six hours followed by an 
intraperitoneal injection of dextrose solution at 2g/kg body weight. Blood was drawn at different time points by 
submandibular bleed and blood glucose levels were determined by Glucose assay. (C) Diagrammatic representation 
of intranasal infection with 1700 PFU/mouse of SARS-CoV-2 variant (MA-SARS-CoV-2) followed by harvest of 
various organs to assess virus replication. (D, E) the body weight changes were monitored post-infection until the 
harvest.  Higher lung virus titers were observed in obese mice (D-i) accompanied with noticeable loss in body weight 
(D-ii) as compared to lean/control diet mice. Similarly, the lung virus titers (E-i) and body weight loss (E-ii) were 
found to be higher in 52-week-old mice as compared to 6-8-weeks young/control mice, five days-post-infection. No 
virus titers were found in other organs harvested five days post infection in both experiments. Symbols represent 
geometric means; error bars represent standard deviation. 
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N501Y mutation does not affect SARS-CoV-2 neutralization by mouse convalescent and post 
vaccination serum 
The WT-SARS-CoV-2 and MA-SARS-CoV-2-infected 129 mice were further tested for the 
presence of SARS-CoV-2-specific neutralizing antibodies against both viral strains. As shown in 
Fig. 3, the MA-SARS-CoV-2 post-challenge sera were able to neutralize both WT-SARS-CoV-2 
(Fig. 3A-i and A-ii) as well as MA-SARS-CoV-2 (Fig. 3B-i and B-ii) in in vitro 
microneutralization assays. Additionally, no neutralizing antibody titers were observed in the sera 
of 129 mice infected with WT-SARS-CoV-2 against both strains of viruses, which is in line with 
WT-SARS-CoV-2 not being able to infect or replicate efficiently in 129 mice lungs and therefore, 
negligible immune responses were induced in the mice. Besides post-challenge studies, we also 
performed in vitro microneutralization assays using 3-week post-vaccination sera from BALB/c 
mice that received an adjuvanted recombinant SARS-CoV-2 S protein vaccine (from a vaccination 
study reported in our recent prepublication (15) that is currently under revision). The adjuvanted-
spike vaccination sera were found to be neutralizing to the same extent against both strains of the 
virus, irrespective of the N501Y mutation (Fig. 3C and 3D). 
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Fig. 3. Sera from mice vaccinated with WT SARS-CoV-2- S protein or pre-exposed to MA-SARS-CoV-2 can 
effectively neutralize both WT- and MA-SARS-CoV-2 virus. 
(A, B) 129 mice were mock-infected or infected with 2.5 x 104 PFU/mouse of either of WT- or MA-SARS-CoV-2. 
Blood was drawn from mice 3-weeks post-infection and microneutralization assays were performed against WT-
SARS-CoV-2 (A-i and A-ii) or MA-SARS-CoV-2 (B-i and B-ii) using 200TCID50 of each virus. Sera from mice pre-
exposed to MA-SARS-CoV-2 were able to neutralize both strains of virus. (C, D) Sera from BALB/c mice, non-
vaccinated or vaccinated with adjuvanted-SARS-CoV-2- recombinant S-protein, were tested for presence of 
neutralizing antibodies by in vitro microneutralization assays with WT- SARS-CoV-2 (C-i and C-ii) or MA- SARS-
CoV-2 (D-i and D-ii). Sera from mice vaccinated with adjuvanted-spike protein was able to neutralize both strains of 
virus. Sera from non-vaccinated mice were used as control in the experiment. Symbols represent geometric means; 
error bars represent standard deviation. 
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N501Y mutation does not affect SARS-CoV-2 neutralization by human convalescent and 
post vaccination serum 
 
The comparison of post-vaccination and post-challenge sera from mice showed that both WT- and 
MA-SARS-CoV-2 strains were neutralized to the same extent indicating that the N501Y 
substitution in the receptor binding domain of Spike does not mediate antibody escape. To further 
validate these observations, we next performed similar microneutralization assays using sera from 
study participants with or without SARS-CoV-2 immune responses. We included samples from 
individuals who had recovered from natural infection or had received the Pfizer vaccine (see 
supplementary table 1). Sera were tested for neutralizing potential against both WT- as well as 
MA-SARS-CoV-2 strains. Post-vaccination sera had neutralizing antibody titers that were similar 
to the highest neutralization titers observed in convalescent sera (Fig. 4). Moreover, 
microneutralization titers against both WT- and MA-SARS-CoV-2 were comparable. Overall, our 
study shows that the N501Y mutation in the RBD domain of the SARS-CoV-2 spike protein does 
not compromise the neutralization potential of this virus by convalescent and post-vaccination 
human sera. 
 

 
 
Fig. 4. Post-vaccination or convalescent human sera neutralize both WT- and N501Y MA-SARS-CoV-2 viruses. 
Post-vaccination or post-infection human sera were analyzed for virus neutralization by in vitro microneutralization 
assays using 450TCID50 of either WT-SARS-CoV-2 or MA-SARS-CoV-2 and the ID50 (inhibition) values were 
calculated and compared.  Each symbol represents ID50 (inhibition) value calculated for a human serum sample. Both 
post-vaccination sera as well as convalescent sera neutralize both strains of virus. Sera from sero-negative individuals 
were used as negative control for the experiment. 
 
Discussion 
There is an urgent need for animal models to test efficacies of antiviral interventions and to study 
underlying risk factors associated with enhanced illness during COVID-19. We -adapted the USA-
WA1/2020 strain to mice by serial passaging the virus in mouse lungs. This resulted in acquisition 
of mutations that allow the virus to efficiently replicate to detectable titers in the lungs of mice. 
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Mouse adaptation did not impact growth kinetics of the virus on Vero E6 cells, which suggests 
that mutations associated with mouse-adaptation broadened receptor specificity rather than 
changed receptor specificity from human (or primate) ACE-2 to murine ACE-2. We observed 
multiple mutations associated in different viral genes. The MA-SARS-CoV-2 has acquired an 
asparagine to tyrosine mutation at position 501 in the spike RBD (N501Y). The same mutation has 
recently been described by Gu et al. (2020) for mouse-adaptation of SARS-CoV-2 following a 
similar strategy with aged BALB/c mice (16). In silico analysis also predicted that the N501Y 
mutation would result in enhanced RBD affinity for the mACE-2 receptor (14). We therefore 
concluded that this mutation is important for mouse adaptation. We also observed a four amino 
acid insertion in the spike protein (KLRS). This insertion has been described in SARS-CoV-2 
viruses recovered from deer mice upon experimental infection with the same USA-WA1/2020 
strain (17). Minority variants with this insertion were already present in the original SARS-CoV-
2 virus obtained from BEI Resources at low frequency and seems also to be enriched after 
passaging in Vero E6 cells (data not shown) and mice (this study). Interestingly, cats have recently 
been identified as an animal species sensitive to SARS-CoV-2 infection (18) and SARS-CoV-2 
with the KLRS insertion was also enriched in lung and GI tract tissues as well as nasal, 
oropharyngeal and rectal swabs from infected cats upon experimental infection (supplementary 
Fig. 3). Therefore, it is likely that the KLRS insertion increases viral replication in multiple hosts, 
not only in mice. The effect of presence of the KLRS insertion is currently being investigated. We 
also observed mutations outside of the spike protein of the MA-SARS-CoV-2. As has been shown 
for influenza virus and SARS-CoV before, multiple viral gene products may contribute to 
virulence, either individually or by interaction with each other (19–21). At this point it is still 
unclear if the mutations outside of spike protein contribute to increased replication and virulence 
in mice or if they are passenger mutations. Introduction of the observed mutations in a recombinant 
virus approach for SARS-CoV-2 infectious clone is needed to investigate the individual or 
synergistic contributions to replication and virulence of these mutations.  
Interestingly, the N501Y mutation in the RBD of the S protein is also found in the newly emerging 
20B/501Y.V1 strain that was first detected in the UK but now is circulating worldwide with high 
transmissibility. The N501Y mutation is the only mutation in the RBD of the S protein of the UK-
origin 20B/501Y.V1 strains, and therefore, might impact its antigenicity. The vaccines that are 
currently being rolled out have an N at position 501. Viral escape from neutralizing antibodies has 
been shown in vitro using pseudoviruses (22) and there are strong concerns that monoclonal 
antibody therapies and vaccines that become currently available may have reduced efficacy against 
circulating strains with the N501Y mutation. We showed that convalescent and post-vaccination 
sera obtained from both mice and humans can still potently neutralize the MA-SARS-CoV-2 
variant with N501Y mutation in its RBD. This strongly suggests that humoral immune responses 
induced by the SARS-CoV-2 vaccines that are currently entering the market will be protective 
against the newly emerging 20B/501Y.V1 strain. This is especially important for people with 
comorbidities that are at risk for severe illness during COVID-19 and therefore, are prioritized for 
vaccination. Comorbidities include advanced age, type 2 diabetes mellitus and obesity. Obesity 
was a predictor for mortality among intensive care unit-admitted patients with severe COVID-19, 
and put patients at higher risk for hypoxemia (6). Diabetes increases mortality among COVID-19 
patients (3). In this work we present two mouse models for studying enhanced illness during the 
outcome of SARS-CoV-2 infection in the context of these comorbidities with the MA-SARS-CoV-
2 that has the N501Y mutation. This mouse model does not rely on transgenic expression or 
adenoviral transduction of hACE-2. Therefore, it is suitable to study the effect of ACE inhibitors 
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and angiotensin II type I-receptor blockers that are used to treat diabetics and can result in 
upregulation of hACE-2, thereby potentially sensitizing patients for severe SARS-CoV-2 infection 
(23,24). 
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Supplementary 1: Stably expressing mACE-2 Vero E6 cell line 

  
Supplementary Fig. 1. Establishing mACE-2 Vero-E6 cells.  
(A) Strategy: Vero-E6 cells were transduced with a lentiviral vector expressing mACE-2 and a 
puromycin resistance gene. Cells were selected for mACE-2 expression by puromycin selection. 
(B) Expression in the selected polyclonal population was confirmed by Western blot. 
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Supplementary 2: Growth kinetics of WT and MA-SARS-CoV-2 on Vero-E6 cells 
 

 
 

Supplementary Fig. 2. Comparison of growth kinetics of WT-SARS-CoV2 and MA-SARS-
CoV-2.  
Vero-E6 cells were infected with equal PFUs of WT-SARS-CoV-2 or MA-SARS-CoV-2 and supernatant media was 
collected at different time points. The virus replication was titrated by plaque assay. No major difference was observed 
in growth kinetics of WT and MA-SARS-CoV-2 in-vitro. Symbols represent means, error bars represent standard 
error. 
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Supplementary 3: KLRS insertion in SARS-CoV-2 after infection in cats 
 

 
 
Supplementary Fig. 3: Increased prevalence of KLRS insertion in SARS-CoV-2-infected 
cats  
(A) The SARS-CoV-2 WA1-USA/2020 strain from BEI was passaged three times in Vero E6 cells before being used 
to infect six cats intranasally and orally with a 106 TCID50 dose of virus that were subsequently exposed to 2 sentinel 
contact cats that also became infected. Nasal, oropharyngeal (OP), and rectal swabs were collected from cats on 2 to 
7 days post-challenge (DPC) and lung/Gastrointestinal (GI) tissues were collected on 4-7 DPC. RNA was extracted, 
sequenced, and analyzed to determine the relative percentage of the KLRS mutation in various clinical samples from 
cats. (B) Chart showing that the prevalence of the KLRS mutation increases in cats with 90% - 100% prevalence in 
various swabs or tissues. 
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Supplementary table 1: Description of serum samples obtained from human 
subjects 
 
 SERUM     

 Seropositive, 
vaccine Spike IgG response Sex Age group 

(yrs) 
Days post 1 vaccine dose 
(Pfizer) 

 V1 Strong positive F >60 68 
 V2 Strong positive M 30-40 47 
 V3 Strong positive F 50-60 47 
 V4 Strong positive M >60 48 
 V5 Strong positive F 40-50 49 
 V6 Strong positive F 30-40 48 

 Seropositive, 
infection  Spike IgG response Sex Age group 

(yrs) 
Days post onset of 
symptoms 

 P1 Weak positive M 20-29 260 
 P2 Weak positive M 50-59 NA 
 P3 Weak positive F 30-39 111 
 P4 Weak positive F 30-39 221 
 P5 Weak positive F 30-39 254 
 P6 Weak positive F 20-29 247 
 P7 Weak positive M 30-39 220 
 P8 Weak positive F 20-29 Asymptomatic 
 P9 Moderate positive M 30-39 NA 
 P10 Moderate positive F 30-39 197 
 P11 Moderate positive F 50-59 Asymptomatic 
 P12 Moderate positive F 30-39 Asymptomatic 
 P13 Moderate positive M 30-39 234 
 P14 Moderate positive F 20-29 273 
 P15 Moderate positive M 30-39 Asymptomatic 
 P16 Moderate positive F 20-29 258 
 P17 Moderate positive F 20-29 246 
 P18 Moderate positive M 20-29 Asymptomatic 
 P19 Moderate positive F 50-59 204 
 P20 Strong positive F 50-59 NA 
 P21 Strong positive F 30-39 245 
 P22 Strong positive M NA 170 
 P23 Strong positive F >60 Asymptomatic 
 P24 Strong positive F 40-49 NA 
 P25 Strong positive F 50-59 191 
 P26 Strong positive F 30-39 NA 
 P27 Strong positive F 50-59 113 
 P28 Strong positive M >60 Asymptomatic 
 P29 Strong positive M 18-19 218 
 P30 Strong positive M 50-59 219 
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 Seronegative, 
post pandemic Spike IgG response Sex Age group 

(yrs) 
Days from last negative 
serology  

 N1 Negative F 40-50 23 
 N2 Negative F 20-29 24 
 N3 Negative F 20-29 23 
 N4 Negative F 30-35 22 
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