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ABSTRACT Soil bacteria are key to ecosystem function and maintenance of soil fer-
tility. Leveraging associations of current geographic distributions of bacteria with
historic climate, we predict that soil bacterial diversity will increase across the major-
ity (�75%) of the Tibetan Plateau and northern North America if bacterial communi-
ties equilibrate with existing climatic conditions. This prediction is possible because
the current distributions of soil bacteria have stronger correlations with climate from
�50 years ago than with current climate. This lag is likely associated with the time it
takes for soil properties to adjust to changes in climate. The predicted changes are
location specific and differ across bacterial taxa, including some bacteria that are
predicted to have reductions in their distributions. These findings illuminate the
widespread potential of climate change to influence belowground diversity and the
importance of considering bacterial communities when assessing climate impacts on
terrestrial ecosystems.

IMPORTANCE There have been many studies highlighting how plant and animal
communities lag behind climate change, causing extinction and diversity debts that
will slowly be paid as communities equilibrate. By virtue of their short generation
times and dispersal abilities, soil bacteria might be expected to respond to climate
change quickly and to be effectively in equilibrium with current climatic conditions.
We found strong evidence to the contrary in Tibet and North America. These find-
ings could significantly improve understanding of climate impacts on soil microbial
communities.

KEYWORDS soil bacterial diversity, niche modeling, climate change, microbial
biogeography, biogeography, diversity, soil microbiology

Climate change is disrupting almost all ecosystems on Earth, with widespread effects
on plants and animals (1, 2). Continued climate shifts are predicted to exacerbate

these effects. But even if climate stabilized today, disruptions to ecosystems would
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continue for some time. Two examples are the extinction debts of many long-lived,
slowly reproducing species whose populations will dwindle in coming years due to
environmental shifts that have already occurred (3, 4) and the colonization lags of
species whose ranges are in the process of moving in response to climate change (5).
Terrestrial bacteria play fundamental roles in the functioning of ecosystems and the
maintenance of soil fertility (6, 7). However, despite the fact that soil bacterial com-
munities and the processes they mediate are often highly sensitive to climate (8), we
have limited knowledge of the effects of climate change on the regional distributions
of soil bacteria (9–12).

This study investigates the spatial and temporal extent of legacy effects among soil
prokaryotes and the consequences of equilibration of soil prokaryotic distributions to
contemporary climate. By virtue of their short generation times and dispersal abilities,
soil microbes might be expected to respond to climate change quickly and to be
effectively in equilibrium with current climatic conditions. However, legacy effects—
defined here as community properties that persist after environmental change (13)—
have been observed in soil microbial communities, which take up to 3 years to respond
to drought and other environmental shifts (14–18). There is an indication of decadal-
scale legacy effects in microbial enzyme activity as well (19). Microbial legacy effects are
also known in agricultural (20) and other ecosystems (18, 19, 21). Moreover, because the
distributions of soil bacteria are strongly influenced by edaphic characteristics (includ-
ing soil pH and soil nutrient availability [22–24]), and because these soil properties
change slowly over time, factors driving shifts in soil bacterial communities can reflect
historic climate (25–29). Thus, soil bacterial communities may still be adjusting to
existing climate change, and it may take years or decades for the full effects of existing
climate change to become evident.

The Tibetan Plateau provides an ideal location to study legacy effects in soil
microbial distributions. Because the plateau is undergoing rapid climate change (30),
many of the factors that drive the distributions of soil microbes, particularly soil
properties and plant communities, may still be equilibrating to the current climate.
Understanding how climate change will affect Tibetan soil microbial communities is
important: the plateau contains a vast soil carbon reservoir (31) that may become labile
due to thawing permafrost and accelerated microbial metabolism (32, 33), and the
region actively moderates climate in Asia and across the globe. Also, soil microbes on
the Tibetan Plateau are exposed to particularly dry, cold conditions. It is the youngest
(�2.4 � 108 years), largest (�2.0 � 106 km2), and highest (mean �4,000 m) plateau in
the world. Because the Tibetan Plateau has an extreme and changing climate, we
anticipated that modeling equilibration of soil microbial communities in the region to
climate change would reveal potentially dramatic shifts.

To test this hypothesis, we measured bacterial and archaeal community composi-
tion in 180 nonagricultural soils from 60 locations across the plateau. We showed that
the prokaryotic taxonomic distributions in these soils were closely associated with
historic climate (from �50 years ago), even after adjusting for contemporary climate.
Using models of associations between current prokaryotic communities and historic
environmental factors, we predicted that diversity, community structure, and biogeo-
graphic patterns would shift substantially with equilibration to contemporary climate.
To explore how generally applicable these findings are, we performed analogous
analyses with 84 surface soil samples from across the United States and Canada. Our
results suggest widespread increases in soil prokaryotic diversity in both regions and
region-specific shifts in the distributions of individual taxa if these communities were to
equilibrate to current climate conditions.

RESULTS AND DISCUSSION
Disequilibrium of prokaryotic communities with current climate. We profiled

bacterial and archaeal community structure using 16S rRNA gene amplicon sequencing
from 180 surface soil samples across 60 locations in the Tibetan Plateau and obtained
a total of 926,609 reads (median � 5,247 per sample, range � 3,016 to 9,926 per
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sample). These communities had 65,874 operational taxonomic units (OTUs) and were
dominated by nine phyla (see Fig. S1D and Table S1A in the supplemental material).

We obtained monthly maps of 10 climate variables across the plateau at 0.5-degree
resolution from 1950 to 2012 (34). To dampen noise from short-term fluctuations, for
each climate variable, we created climatologies by averaging values at our sampling
locations over 10-year sliding windows. Results from 20-year climatologies were qual-
itatively similar. We refer to the 10-year climatologies by the dates that they span (e.g.,
1950 –1959 climatology averages climate data from 1950 to 1959). We also calculated
1-year climatologies from the year when samples were collected to account for effects
of contemporary climate. We performed principal component analysis (PCA) jointly on
all the climatologies (historical and current) and found that the first three principal
components cumulatively account for 88.1% of variation (54.4% PC1, 23.3% PC2, and
10.4% PC3) while reducing its dimensionality, which is key for model selection in the
following analyses. For most time periods, temperature mean is highly weighted in PC1,
precipitation mean in PC2, and temperature range in PC3. In order to make all-subset
model selection computationally feasible, we use the projections onto the first three
principal components (three values for each time period and geographic location) in
lieu of the full climate data matrix (ten values for each time period and geographic
location), referring to these PCA-based summaries of the climatologies as “climate
variables.”

To assess whether the soil prokaryotic communities are in equilibrium with con-
temporary climate in the Tibetan Plateau, we built a regression model of OTU richness
(number of OTUs) as a function of historical and contemporary climate variables. By
performing all-subset model selection in which climate variables from different time
periods compete with each other based on how well they can explain variation in OTU
richness across sampling locations, we assessed the extent to which the contemporary
distribution of prokaryotic diversity is associated with historic and contemporary
climate (Materials and Methods). We also performed analogous analyses to assess
correlations of contemporary and historical climate with Shannon diversity (evenness of
OTUs) and with relative abundance of each prevalent bacterial family (n � 53) and OTU
(n � 317) found in 40 or more soil samples. No archaea met this prevalence threshold.

Soil prokaryotic distributions that are significantly correlated with the climate from
several decades ago as opposed to the climate from the time of sampling could be
explained by distributions that are out of equilibrium with contemporary climate,
among other potential contributing forces (see below). Consistent with this, climate
from before 1974 predicted contemporary prokaryotic richness (i.e., was frequently
chosen over many iterations of model selection in models with different numbers of
variables as quantified by the Lindeman, Merenda, and Gold statistic [LMG] [35]):
1960 –1969 PC1 LMG � 0.183, 1960 –1969 PC3 LMG � 0.202. Contemporary climate
variables were also predictive: 2002–2011 PC2 LMG � 0.415, 2002–2011 PC3 LMG �

0.200. In contrast, intervening years’ climatologies were less often chosen during model
selection. Contemporary Shannon diversity is highly correlated with richness and hence
is also predicted by both historic and contemporary climate. For models to predict the
relative abundance of prevalent families and OTUs, the importance of climate across
the decades spanning 1959 to 2012 was substantial and consistent (Fig. S2A and S3A).
However, the frequency with which climate variables from different decades were
predictive was bimodal: both historic variables from circa 1969 and contemporary
variables were frequently predictive of the distributions of families and OTUs, while
variables from circa 1980 were less frequently predictive (i.e., less often chosen in model
selection) (Fig. 1A and Fig. S2B). This bimodality held quite generally across different
climate variables for both OTUs (Fig. 1B) and families (Fig. S2C). Furthermore, contem-
porary distributions of families and OTUs were often simultaneously associated with
both historic and contemporary climate (Fig. 1C and Fig. S2D). These results suggest
that contemporary distributions of the diversity of soil prokaryotes and of individual
taxa are associated with climate from today and from close to 50 years ago, or
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potentially earlier, as our results cannot rule out effects from before the time period we
investigated.

Historical climate may be an important predictor of contemporary prokaryotic
distributions because soil edaphic characteristics often follow historic conditions (36).
Indeed, we applied the same modeling procedure used for family/OTU abundance to
predict current soil characteristics as a function of climate, allowing climatologies from
different decades to compete in the model selection procedure. We found that
historical climate variables were more predictive than current climate of soil edaphic
characteristics (Fig. 1D) and that five key soil edaphic characteristics (dissolved organic
nitrogen, soil organic carbon, total carbon, dissolved organic carbon, and total nitro-
gen) were particularly strongly correlated with climate from before 1980 (Fig. S4A).
Even though most soil microbes likely have short generation times, the diversity and
composition of soil microbial communities appear to be strongly influenced by soil
properties that change slowly over time (37). Like the microbial communities, these soil
properties are out of equilibrium with contemporary climate.

We next considered several factors that could have biased our results. We concluded
that our findings cannot be explained by climate cycling, because most climate
variables have trended consistently over this period (Fig. S1F). Moreover, anthropo-
genic impacts other than climate change (e.g., land use change or pollution) are

FIG 1 Distributions of soil prokaryotes in Tibet lag behind shifts in climate by up to 50 years. (A) The number of OTUs associated with climate from different
years. A given OTU can be associated with climate from multiple years; the 2011 category represents climate from the year of sample collection. Lags are
indicated by the association of many OTUs with climate from prior to 2011 and in many cases prior to 1980. (B) OTUs were associated with climate from both
contemporary and historic values of most climate variables (PC1, PC2, and PC3 are associated with temperature, precipitation, and temperature range,
respectively). (C) Most OTUs associated with historic climate were also associated with contemporary climate. Symbol size is proportional to the strength of the
association, and OTUs (x axis) are ordered by the earliest year of climate with which they were associated. (D) Soil properties were also associated with historic
climate, suggesting that the lags in bacterial distributions may be mediated by or associated with lags in soil properties. Climate from all time periods competed
in the model selection procedure for each edaphic factor, and only the resulting predictive associations are included in the histogram.
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unlikely to have generated the disequilibria because the surface samples we analyzed
are from undisturbed soils and anthropogenic impacts cannot account for the associ-
ations between current prokaryotic distributions and historic climatic conditions that
persist even after the associations with current climate have been taken into account.
However, because we considered only climate postdating 1950, we cannot exclude the
possibility that climates from prior to 1950 are predictive or that legacy effects are
longer than 50 years. Finally, we expect our results to be robust to the fact that soil
communities were sampled at only one time during the year based on prior literature
on this topic (38), although we cannot rule out the possibility that year-round sampling
would change some of our findings.

To evaluate the extent to which our findings might be influenced by modeling
choices, we conducted two robustness analyses. First, we performed regression mod-
eling with the original climate variables rather than projections onto principal compo-
nents, using a modified model selection procedure because all-subset selection is
computationally prohibitive on 120 climatologies (10 variables � 12 time periods per
location; see Materials and Methods). Second, we repeated our investigation of the
association between climate and prokaryotic distributions using gradient boosting
rather than standard regression. Conclusions from both of these alternative approaches
were highly concordant with our primary findings, indicating that our results are not
artifacts of a particular model or way to quantify climate data.

Widespread shifts in distributions of Tibetan soil bacteria and archaea. We next
asked whether soil prokaryotic diversity would increase or decrease as communities
equilibrated to current climatic conditions. To answer this question, we projected the
models, which were fitted with historical and contemporary climate data, to contem-
porary climate data. Specifically, by inputting 2002–2011 climatology data into the
models with best performance (e.g., models utilizing 1960 –1969 PC1 and PC3), we
forecast how prokaryotic diversity and relative abundance would change if the distri-
butions of bacteria and archaea were to equilibrate to 2002–2011 climatology. To
understand the extent of these changes, we sought to answer four specific questions.
(i) With equilibration, would diversity and relative abundance predominantly increase,
decrease, or remain unchanged across the sampling locations? (ii) How would shifts in
diversity and relative abundance compare to existing spatial variation in diversity and
relative abundance? (iii) Would locations with currently high diversity or relative
abundance experience different changes compared to the locations with low diversity
and low relative abundance (i.e., “rich get richer” versus homogenization)? (iv) Would
intersample variability increase or decrease in the future?

We forecast that (i) richness and Shannon diversity would increase across 75% and
72.9% of the sampling locations, respectively, with an average magnitude of �7.5%
(standard error, 1.5%) for richness and �2.1% (standard error, 0.4%) for Shannon
diversity (Fig. 2A). We further forecast (ii) that shifts in diversity within samples would
be of similar magnitude to existing intersample differences in diversity, suggesting
major, although not unprecedented, shifts in diversity (Fig. S5A and B). We forecast that
(iii) locations with low diversity would experience the largest increases in diversity, and
locations with high diversity would experience little or no increase in diversity (Fig. 2B
and Fig. S5C). The latter trend might suggest that intersample variation in diversity
levels would decrease in the future, and our forecasts do indicate (iv) a moderate
decrease in intersample variability in their diversity (Fig. S5A and B; differences in
diversity calculated as percent changes between samples or within samples at different
time points). These predictions suggest major changes in the spatial distribution of
diversity in soil prokaryotic communities across the Tibetan Plateau with equilibration
to existing climate change.

Further supporting this contention, we used the regression models developed
above to forecast how richness would shift if prokaryotic distributions were to equili-
brate across the Tibetan Plateau. Specifically, we projected maps of current richness
using the historic and contemporary climate conditions that were selected for the
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models. Using just contemporary climate conditions, we then projected richness maps
if prokaryotic distributions were to equilibrate to contemporary climate. These projec-
tions (Fig. 3) were consistent with foregoing results, suggesting widespread increases
in richness across Tibetan Plateau.

Turning to how the relative abundance of individual prevalent prokaryotes might
respond to equilibration to current climate, we predicted that (i) that different bacterial

FIG 2 With equilibration to contemporary climate, the distributions of soil prokaryotes in Tibet would shift substantially. (A) Across most of the locations
sampled, richness would increase, although in some locations it would decrease. Red and blue indicate increases and decreases in richness, respectively. (B)
Increases in richness would be greatest in locations that have relatively low richness; locations with higher contemporary richness would see little change, or
even decreases in richness. (C) The magnitude of shifts in relative abundance of OTUs with equilibration would be comparable to contemporary intersample
variability in their relative abundance. Red lines indicate current intrasample differences in relative abundance; black dots represent the projected shifts in
relative abundance with equilibration.
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taxa would respond heterogeneously: some would increase across all sampling loca-
tions, but others would decrease across all sampling locations; the magnitude of
changes ranged from nonsignificant to over 100% for different taxa (Table S1B). For
example, Mycobacteriaceae and Rubrobacteraceae (families of Actinobacteria), Bacil-
laceae (a family of Firmicutes), and Rhodobiaceae and Rhizobiaceae (families of Alpha-
proteobacteria) are predicted to increase consistently in most locations of the plateau,
while Flavobacteriaceae (a family of Bacteroidetes), Nakamurellaceae, and Nocardiaceae
(families of Actinobacteria) are predicted to decrease in the majority of locations, albeit
by modest amounts (Table S1C). Overall, there was no consistent trend across all
families or OTUs (e.g., most families increasing). However, (ii) shifts in relative abun-
dance across taxa would consistently be of similar magnitude as existing intersample
differences in relative abundance (Fig. 2C and Fig. S2E and F and S3B). That is, the
projected changes in community composition are on par with existing intersite varia-
tion in communities across the sampled locations. Furthermore, (iii) locations with low
relative abundance would experience larger changes than locations with high relative
abundance (Fig. S2G and S3C). Finally, although the latter shifts could act to even out
the spatial distribution of relative abundance, this does not appear to be the case: (iv)
with equilibration, intersample differences in relative abundance would be similar to
contemporary intersample differences (Fig. S2H and S3D). Thus, across the Tibetan
Plateau, our models predict that different taxa would undergo varying shifts in relative
abundance with equilibration.

Our forecasts of shifts with equilibration to existing climate assume temporal niche
conservatism, which means that bacteria and archaea are associated similarly with
environmental conditions over time, as they equilibrate to changes. We also assume
that the taxa we detected in each region will move into new locations or out of current
locations (and similarly, alter their relative abundances at different locations) in accor-
dance with their niche preferences, which of course depend upon dispersal. Pro-

FIG 3 Model predictions in the Tibetan Plateau and North America show increasing prokaryotic diversity in both regions. Models of
prokaryotic richness fitted on data from sampling locations were used to predict current richness across the Tibetan Plateau (top left) and
northern North America (bottom left). Then the same models were used to predict future richness by plugging in current climate data.
When these forecasted maps were compared to the current maps, they revealed large shifts in richness in both regions (right), with
richness increasing in the majority of locations (red) but decreasing in others (blue).
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karyotes could shift to occupy different niches in the time that it would take their
distributions to equilibrate to contemporary climate. Such shifts would depend on rates
of adaptation, dispersal, and population growth, among other factors. Incorporating
these forces into our models would introduce substantial complexity and numerous
assumptions. Thus, our forecasts can be taken as baseline estimates: future analyses
that incorporate additional complexity, including evolution, dispersal limitation, and
neutral assembly processes, may add to these results.

Increases in diversity of northern North American bacteria and archaea. To
assess whether the predicted responses of Tibetan Plateau soils to climate change are
similar to those for other regions of Earth and at larger spatial scales, we performed
similar analyses using historic climate data and published surface soil prokaryotic
community data from 84 locations across northern North America (Fig. S6A) (24, 39).
Several of the major trends from the Tibetan Plateau were also observed in northern
North America. First, historical climate variables were strong predictors of taxon abun-
dance and diversity metrics. For instance, soil prokaryotic richness was predicted by
1960 –1969 climatologies in both regions (in northern North America, LMG for 1960 –
1969 PC2 and PC3 0.057 and 0.227, respectively, with LMG for PC1 in 1975–
1984 � 0.716). Second, across families and OTUs, relative abundances were commonly
predicted by both historical and contemporary climate in northern North America
(Fig. 4A and B; Fig. S7A and B). When they were included via model selection, historical
climate variables were important predictors (Fig. S7C and S8A). Furthermore, historical
values of most climate variables were predictive (Fig. S7D and S8B). Finally, when these
models were projected to contemporary climate, the forecast outcomes of equilibration
were similar to those in the Tibetan Plateau: richness and Shannon diversity would
increase across 76.0% and 73.0% of samples, respectively (Fig. S6B). Projecting maps of
the increases in richness, these increases in richness would be geographically wide-
spread (Fig. 3). Projected shifts in diversity and OTU relative abundance are within the
range of current intersample differences in these quantities, while projected shifts in
family relative abundance are mostly lower than current intersample differences
(Fig. 4C; Fig. S7E and F, S8C, and S9A and B).

Despite these similarities, we observed several important differences between our
models for northern North America and the Tibetan Plateau. In northern North America,
changes in richness after equilibration to current climate would be uncorrelated with
current richness (Fig. S9C), although changes in Shannon diversity would be negatively
associated with current Shannon diversity (Fig. S9D). Furthermore, prevalent bacterial
families and OTUs would generally have the greatest changes in relative abundance in
locations where they are currently rare (Fig. S7G and S8D), although the distribution of
future intersample differences in relative abundance is similar to current intersample
differences (Fig. S7H and S8E), suggesting that overall many pairs of samples will
maintain greater difference in diversity than forecasted for the Tibetan Plateau, where
some moderate homogenization of diversity is predicted. This may be due in part to the
fact that the magnitude of predicted diversity changes is much larger for low-diversity
sites in the Tibetan Plateau (Fig. 2B) than for North America (Fig. S9C). The most striking
difference between the regions is that individual taxa have very different forecast
changes in their distributions (R2 � 0.053 for correlation, between regions, of fraction
of locations where families would increase). For example, Beijerinckiaceae (a family of
Alphaproteobacteria) and Acidobacteriaceae (a family of Acidobacteria) are predicted to
increase in relative abundance in most locations of northern North America (Table S1C),
while Methylobacteriaceae (a family of Alphaproteobacteria) and Cellulomonadaceae (a
family of Actinobacteria) are predicted to decrease. Thus, our results demonstrate
different responses among specific bacterial taxa and between Tibetan Plateau and
North America despite parallel trends toward higher diversity.

Proximate causes of the disequilibrium. The disequilibrium between prokaryotic
distributions and contemporary climate is likely due to the soil properties being out of
equilibrium with contemporary climate, which occurs for a variety of reasons (40). To
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FIG 4 Associations between taxa and climate over time in North America. (A) The number of OTUs
associated with climate from different years. (B) Most OTUs associated with historic climate were also
associated with contemporary climate. Symbol size is proportional to the strength of the association, and
OTUs (x axis) are ordered by the earliest year of climate with which they were associated. (C) The magnitude
of shifts in relative abundance of OTUs with equilibration would be comparable to contemporary inter-
sample variability in their relative abundance. Red lines indicate current intrasample differences in relative
abundance; black dots represent the projected shifts in relative abundance with equilibration.
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explore this hypothesis, we analyzed correlations of current surface soil properties with
patterns of prokaryotic diversity at the locations that we sampled in the Tibetan
Plateau. Soil factors, such as dissolved organic nitrogen (DON) and carbon-to-nitrogen
ratio (C:N), were significantly correlated with OTU richness, while soil moisture, C:N, pH,
and various forms of both nitrogen and carbon were significantly correlated with
community structure (false discovery rate � 0.05; Table S1D and E). In some other
studies at this scale, pH had a strong association with soil prokaryotic richness (41),
particularly in acidic soils (42) and when a wide range of pH values is observed.
However, at sampling locations in this study, the soil C:N was more important, being
negatively correlated with richness (r2 � 0. 26, P � 0.001) (Fig. 5 and Table S1D) and
community structure (Bray-Curtis dissimilarity; r � 0.44, P � 0.001) (Fig. 6 and Ta-
ble S1E). C:N is also the best predictor of the relative abundance of some, but not all,
individual taxa. The high altitude and low temperatures on the plateau reduce C
degradation rates and lead to N limitation (31), resulting in elevated C:N ratios and high
inorganic C in dry areas. Soil moisture, which correlated with C:N, showed similar
associations with richness and community composition (Fig. S1A, B, and C and Ta-
ble S1D). The relative abundances of specific taxa have both negative (e.g., Alphapro-
teobacteria) and positive (e.g., Bacteroidetes) correlations with C:N ratio and soil mois-
ture (Fig. S4B and C). We found that C:N ratios are more closely associated with
historical rather than contemporary climate (climatology of strongest association:
1960 –1969), suggesting a mechanism through which prokaryotic distributions are out
of equilibrium with contemporary climate: distributions of soil properties lag behind
shifts in climate, which in turn cause the distributions of bacteria and archaea to lag.

To explore associations between vegetation and soil prokaryotic communities, we
recorded all plants in plots adjacent to each sampling location and tested for associ-
ations between each plant and prokaryotic diversity and abundance statistics. Unfor-
tunately, very few plant species were prevalent enough to perform this testing or
predictive modeling. Analysis of the prevalent plants did not identify significant asso-
ciations, suggesting that current plants are not drivers of current prokaryotic commu-
nities or that we lacked power to detect such associations. We also are unable to test
for associations with historic plant distributions, since we lack these data. Hence, our
results collectively suggest a relationship between prokaryotic distributions and specific
soil properties, but not current vegetation. But we cannot rule out the possibility that
lagging distributions of vegetation directly contribute to the lagged relationship of
prokaryotes to climate and/or affect soil properties that then shape prokaryotic distri-
butions. Future experimental or longitudinal studies could explore these questions and
also investigate whether bacteria and archaea are inherently slow to respond to climate
change, irrespective of changes to soil and plants.

Conclusions. Soil prokaryotes appear to follow soil characteristics in showing a
significant lagged response to a changing climate across many decades, a pattern
evident across both the Tibetan Plateau and northern North American. If bacteria and
archaea could equilibrate to existing climate change, our models predict that wide-
spread increases in diversity and shifts in community composition would occur. While

FIG 5 Relationship between OTU richness and soil C:N ratios.
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it is tempting to speculate about broader impacts of these changes, inferring the
functional consequences of soil microbial community differences is challenging (43).
Similar to the extinction debts and colonization lags of macroorganisms (3, 5), further
climate change may drive further changes in soil microbial communities.

FIG 6 Prokaryotic communities in Tibetan Plateau soils are associated strongly with soil C:N ratios.
Prokaryotic community compositional structure in the Tibetan Plateau soils as indicated by nonmetric
multidimensional scaling plots. Sites are color coded according to soil C:N ratios. (A) Based on Bray-Curtis
distance. (B) Based on unweighted UniFrac distance. (C) Based on weighted UniFrac distance.
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MATERIALS AND METHODS
Sample collection (Tibetan Plateau samples). To survey current bacterial and archaeal distributions

across the Tibetan Plateau, we collected 180 surface soil samples from 60 sites throughout the Tibetan
Plateau during the growing season (July to September) of 2011. At each site, we sampled three plots 40
m apart, and collected 5 to 7 cores per plot at a depth of 0 to 5 cm, which were subsequently combined.
Our sampling locations covered more than 1,000,000 km2 (see Fig. S1E and Table S1F in the supple-
mental material) and all of the major climate zones and grassland types across the Tibetan Plateau
(Table S1F). All soil samples were delivered by cooler equipped with ice packs (4°C) to the laboratory as
quickly as possible, where they were stored at �20°C until processing. In addition, all vegetation in three
plots (1 � 1 m2 or 0.5 � 0.5 m2) 10 m away from the soil sampling-plot was recorded and harvested to
measure aboveground biomass. At each site, one soil pit was excavated to collect samples for analyses
of bulk density. From this pit, three replicate soil samples were collected at a depth of 0 to 5 cm. Bulk
density was obtained using a standard container with 100 cm3 (50.46 mm in diameter and 50 mm in
height) and measured to the nearest 0.1 g.

Soil characteristics (Tibetan Plateau samples). Surface soil samples for C and N analyses were
air-dried, sieved (2-mm mesh), handpicked to remove fine roots, and ground. Total soil C and N contents
for each plot were determined by combustion (2400 II CHNS/0 Elemental Analyzer, Perkin-Elmer, Boston,
MA, USA). Soil moisture was measured gravimetrically after a 10-h desiccation at 105°C. Soil pH was
determined separately on each plot at each site with a fresh soil-to-water ratio of 1:5 by pH monitor
(Thermo Orion-868). Bulk density was calculated as the ratio of the oven-dry soil mass to the container
volume. Dissolved organic carbon, dissolved total nitrogen (DTN), ammonium nitrogen (NH4

�-N), and
nitrate nitrogen (NO3

�-N) were determined as described previously (44).
Molecular analyses (Tibetan Plateau samples). Total nucleic acids from each plot were extracted

from 0.5 g of soil using a FastDNA Spin kit (Bio 101, Carlsbad, CA, USA), according to the manufacturer’s
instructions, and stored at �40°C. Extracted DNA was diluted to approximately 25 ng/�l with distilled
water and stored at �20°C until use. A 2-�l diluted DNA sample of each plot was used as the template
for amplification. The V4-V5 hypervariable regions of 16S rRNAs (Escherichia coli positions 515 to 907)
were amplified using the primer set F515 (GTGCCAGCMGCCGCGG) with the Roche 454 A pyrosequencing
adapter and a unique 7-bp barcode sequence, and primer R907 (CCGTCAATTCMTTTRAGTTT) with the
Roche 454 B sequencing adapter at the 5= end of each primer, respectively. Each sample was amplified
in triplicate with a 50-�l reaction mixture under the following conditions: 30 cycles of denaturation at
94°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 30 s, with a final extension at 72°C for
10 min. PCR products from each sample were pooled and purified with an agarose gel DNA purification
kit (TaKaRa), combined in equimolar ratios in a single tube, and run on a Roche FLX454 pyrosequencing
machine (Roche Diagnostics Corporation, Branford, CT), producing reads from the forward direction
F515.

Bioinformatics (Tibetan Plateau samples). Only sequences �200 bp long with an average quality
score �25 and no ambiguous characters were included in the analyses (45). Filtering of the sequences
to remove sequence errors and chimeras was conducted using the USEARCH tool in QIIME (46), version
1.9.0. Phylotypes were identified using the open-frame method Uclust (47) and assigned to OTUs defined
at �97% sequence identity. A representative sequence was chosen from each OTU by selecting the most
highly connected sequence. All representative sequences were aligned by PyNAST (48). Taxonomic
identity of each OTU was determined using the Greengenes database (http://greengenes.lbl.gov). To
correct for survey effort, we used a randomly selected subset of 3,000 sequences per sample.

North American samples. Details of sample collection and bioinformatics for northern North
American prokaryotes are given in references 24 and 39.

Statistical analyses (Tibetan Plateau samples). Correlations between diversity estimates and soil
characteristics were conducted by SPSS 20.0 for Windows. Nonmetric multidimensional scaling analyses
were performed using vegan of R 2.3.0 (49), based on dissimilarity calculated using the Bray-Curtis index
(rarefaction depth 3,000 sequences), and these summaries of community composition were associated
with environmental factors (scaled by Euclidean geographic distance between sampling sites) by using
the envfit and vif of vegan package and Mantel tests.

Historical climate data. For assessing whether historical or current climate is more predictive of
current prokaryotic distributions, we utilized global maps of monthly historical climate records from the
0.5-degree gridded CRU TS3.21 data set (34). The CRU TS3.21 data set spans 1901 to 2014, but we used
only records postdating 1950, because in the Tibetan Plateau and North America, records prior to then
are based on substantially more interpolation (50). We considered the following climate variables: frost
day frequency, potential evapo-transpiration, daily mean temperature, monthly average daily minimum
temperature, monthly average daily maximum temperature, vapor pressure, wet day frequency, cloud
cover, diurnal temperature range, and precipitation (Table S1G). We considered 10- and 20-year clima-
tologies (i.e., summaries over one or two decades) for each of these variables as predictors, but use of
both climatologies yielded qualitatively similar results, so we focused on results with 10-year climatolo-
gies overlapping by 5 years (decades ending on December 31 of 2009, 2004, 1999, 1994, 1989, 1984,
1979, 1974, 1969, 1964, and 1959). Inclusion of even more time-specific climate data (e.g., from the
month of sample collection) did not improve model performance. To test associations with contempo-
rary climate, we used the average conditions from the year (January 1 to December 31) when samples
were collected (2011 in Tibet and 2005 in northern North America). We performed principal-component
analysis (PCA) on these variables across all climatologies and locations separately in Tibet and North
America. In this PCA, each location-time period combination is an observation and each of the 10 climate
measurements is a variable. These data were centered and scaled before performing the singular value
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decomposition step of PCA. We performed subsequent analyses using the projections of the location-
time period observations onto the first three principal component axes (see Results and Discussion).

Modeling. To assess associations with contemporary and historic climate, we obtained from the
aforementioned maps climate variables for each sampling location. Tables S2 and S3 show climate data used
for modeling prokaryotic communities in the Tibetan Plateau and in northern North America, respectively,
and are available at https://www.dropbox.com/sh/erekiq5l29tvqfj/AAAH9MoPB31qa6_LFmpXIKbYa?dl�0. To
assess associations between contemporary prokaryotic distributions and contemporary and historic
climate, we constructed regression models. We constructed separate models for the distributions of OTU
richness and Shannon diversity and the relative abundance of all families (n � 53) and OTUs (n � 317)
occurring in 40 or more samples. We used leave-one-out cross-validation to assess model performance
and perform model selection. We performed all-subset model selection with all of the climatology dates.
In the absence of any clear nonlinearity, we employed linear models to further minimize the risk of
overfitting. Diversity response variables (richness and Shannon diversity) were log-transformed prior to
modeling, and relative abundance response variables were logit-transformed. To assess robustness of our
findings to modeling choices, we (i) repeated regression modeling with the original climatologies rather
than PCs using a two-step variable selection procedure in which the top �5 variables were chosen using
only 1960 –1969 and contemporary climatologies and then all-subset model selection was performed
over all time periods for these top variables (all-subsets is computationally impractical with 120 variables)
and (ii) fitted gradient-boosted regression models with all PCs rather than performing all-subset model
selection.

To predict how prokaryotic communities would shift if they were to equilibrate to contemporary
climate, we substituted contemporary climate data (most recent 10-year climatology) into the models
selected above, many of which used climate data from prior to 1980. To estimate shifts in diversity and
relative abundance, we took the difference between future predictions and contemporary predictions (as
opposed to the difference between future predictions and contemporary observations); this procedure
avoided spurious correlations that can arise from the nonzero covariance that always exists between
residuals and observed values. We used Multivariate Environmental Similarity Surface (MESS [51]) to
ensure that the maps of diversity that we projected did not require excessive extrapolation (Fig. S5D
and S9E).

Code availability. Code is available at https://github.com/jladau/SpeciesDistributionModeling.
Data availability. The 454 pyrosequencing data set of Tibetan soil prokaryotes is deposited in the

DDBJ Sequence Read Archive (http://trace.ddbj.nig.ac.jp/DRASearch) with accession number DRA001226.
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FIG S3, PDF file, 0.3 MB.
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