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A B S T R A C T   

For the last two years, the COVID-19 pandemic has continued to bring consternation on most of the world. 
According to recent WHO estimates, there have been more than 5.6 million deaths worldwide. The virus con-
tinues to evolve all over the world, thus requiring both vigilance and the necessity to find and develop a variety 
of therapeutic treatments, including the identification of specific antiviral drugs. Multiple studies have confirmed 
that SARS-CoV-2 utilizes its membrane-bound spike protein to recognize human angiotensin-converting enzyme 
2 (ACE2). Thus, preventing spike-ACE2 interactions is a potentially viable strategy for COVID-19 treatment as it 
would block the virus from binding and entering into a host cell. This work aims to identify potential drugs using 
an in silico approach. Molecular docking was carried out on both approved drugs and substances previously tested 
in vivo. This step was followed by a more detailed analysis of selected ligands by molecular dynamics simulations 
to identify the best molecules that thwart the ability of the virus to interact with the ACE2 receptor. Because the 
SARS-CoV-2 virus evolves rapidly due to a plethora of immunocompromised hosts, the compounds were tested 
against five different known lineages. As a result, we could identify substances that work well on individual 
lineages and those showing broader efficacy. The most promising candidates among the currently used drugs 
were zafirlukast and simeprevir with an average binding affinity of –22 kcal/mol for spike proteins originating 
from various lineages. The first compound is a leukotriene receptor antagonist that is used to treat asthma, while 
the latter is a protease inhibitor used for hepatitis C treatment. From among the in vivo tested substances that 
concurrently exhibit promising free energy of binding and ADME parameters (indicating a possible oral 
administration) we selected the compound BDBM50136234. In conclusion, these molecules are worth exploring 
further by in vitro and in vivo studies against SARS-CoV-2.   

1. Introduction 

In late December 2019, an outbreak of a novel coronavirus disease 
(COVID-19) occurred in the Wuhan Province of Hubei, China, with a 
clinical presentation closely resembling viral pneumonia [1]. Since then, 

according to WHO estimates, there have been over 350 million 
confirmed cases of COVID-19 worldwide resulting in more than 5.6 
million deaths (https://covid19.who.int/) The causative agent of 
COVID-19 is severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2), a positive-sense single-stranded RNA virus ((+)ssRNA virus) 
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[1]. The virus belongs to the Coronoviridae family that also includes 
other human infecting viruses like SARS-CoV, which was responsible for 
the 2002–2004 epidemic [2], MERS-CoV [3] and HCoV-NL63, HCoV- 
OC43, HCoV-229E and HCoV-HKU [4]. The latter four species are often 
associated with the “common cold”, upper respiratory infections 
showing only mild symptoms. The SARS-CoV-2 genome is similar to that 
of other Coronaviridae with one large ORF encoding two overlapping 
polyproteins (orf1a and orf1ab) that are cleaved into at least 16 non- 
structural proteins. The ORF1ab is followed by other ORFs encoding 
structural proteins, including the spike, envelope, membrane, and 
nucleocapsid proteins [5]. The spike glycoprotein, located on the virion 
surface, mediates receptor recognition and membrane fusion with the 
host cell. Multiple studies have confirmed that SARS-CoV-2, and simi-
larly SARS-CoV, utilize the angiotensin-converting enzyme 2 (ACE2) for 
host cell entry [6,7]. ACE2 is a broadly expressed protein and is found in 
many different species [8,9]. Thus, the virus may transmit from animals 
to humans through multiple intermediate hosts [10]. Considerable effort 
has been put to understanding how the binding process occurs and there 
are now multiple structures depicting the spike-ACE2 complex 
[6,11,12]. Several differences were identified in the receptor-binding 
domain (RBD) of the SARS-CoV-2 spike protein compared to SARS- 
CoV, which allows for stronger binding affinity with the human ACE2 
receptor [6]. This can explain the increased transmissibility of SARS- 
CoV-2 compared to SARS-CoV [13]. Another human protein important 
for host recognition is transmembrane protease serine 2 (TMPRSS2). 
This protein cleaves the C-terminal segment of ACE2 and spike sequence 
between the S1 and S2 subunits enhancing the spike protein–driven viral 
entry [5,14]. 

In addition to acute respiratory failure, hypertension is one of the 
major co-morbidities associated with COVID-19 [15]. SARS-CoV-2 may 
influence the kinin–kallikrein and renin-angiotensin systems (RSS) that 
modulate vasodilation, inflammation and blood pressure [16]. Brady-
kinin (BK) activity is increased by the angiotensin-(1–9) axis generated 
by ACE2 [17] and decreased due to inactivation by ACE [18]. In normal 
conditions, ACE and ACE2 should be in balance, however, cells in 
bronchoalveolar lavage fluid from COVID-19 patients have decreased 
expression of ACE and increased expression of ACE2. It leads to exces-
sive levels of BK (the “Bradykinin Storm”) and hyaluronic acid in the 
body [19]. This phenomenon can produce a highly viscous substance 
that prevents oxygen uptake in the lungs of COVID-19 patients. On the 
other hand, blood cells from COVID-19 patients express less ACE2 than 
healthy donors; thus, the SARS-CoV-2 infection also influences the 
expression of blood pressure regulators [20]. 

The SARS-CoV-2 virus continues to evolve and, according to the 
Pango resource, there are now more than 1,600 unique lineages [21]. 
Because the virus has spread to all parts of the world, it is now able to 
make use of immunocompromised individuals to reemerge as a new and 
potentially dangerous strain for which a vaccine is unable to provide 
adequate defense [22]. Only a few of these lineages have spread to 
global proportions and, as a consequence, are of major concern to public 
health. These lineages include B.1.1.7 (also referred to as alpha), 
B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta). The omicron variant 
appearing in late 2021 was also recently declared as a variant of concern 
due to its high number of mutations compared to previously mentioned 
lineages [23]. Mutations observed between variants are spread 
throughout the SARS-CoV-2 genome including the spike protein itself. 

The outbreak of COVID-19 resulted in a massive effort to identify 
therapeutic strategies that would mitigate the severity of the infection. 
Several vaccines are now available, however, although their effective-
ness against infection by the ancestral virus and the alpha variant was 
high, it was reduced by around 20% against the delta variant [24]. 
Furthermore, in a more recent analysis carried out in England during the 
dominance of the delta variant, it was shown that 39% of the infections 
in fully vaccinated households had arisen from a fully vaccinated index 
case [25]. This highlights the need to identify drugs that can alleviate 
COVID-19 symptoms and speed up the recovery process. Previous 

research efforts to develop antiviral agents against members of Coro-
naviridae suggested several ways to disrupt the viral life cycle [26,27]. 
This includes (I) inhibiting viral entry to the cell by blocking either the 
spike protein or its molecular target ACE2; (II) disrupting processing of 
orf1ab and orf1a polyproteins by inhibiting viral proteases: main pro-
tease (Mpro, also called 3-chymotrypsin like protease) or papain-like 
protease (PLpro); (III) preventing viral replication through inhibition of 
the viral RNA-dependent RNA polymerase (RdRp). The outbreak of 
SARS-CoV-2 spawned multiple analyses where the goal was to identify 
substances potentially useful in COVID-19 treatment. Most of the studies 
apply a drug repurposing strategy that identifies new therapeutics from 
already approved substances, since de novo identification of drugs is a 
costly and lengthy process [28]. In one of the research studies, it was 
found that emodin, omipalisib, and tipifarnib can serve as inhibitors of 
RdRp [26]. Enalkiren, ethylsulfonamide-D-Trp-Gln-p- 
aminobenzamidine and Z-LY-CMK were found among 22 potential in-
hibitors of Mpro [29]. Another docking study revealed that the drugs 
cytarabin, raltitrexed, tenofovir, cidofovir, lamivudine and fludarabine 
are potent binders of the spike protein [30]. In other research, rather 
than finding specific protein targets, the authors analyzed gene- 
interaction networks and found several potential drugs including fluo-
rouracil, cisplatin, sirolimus, cyclophosphamide, and methyldopa [28]. 
Several other drugs such as chloroquine, hydroxychloroquine, remde-
sivir, galidesivir and others were also considered for potential treatment 
of COVID-19 patients [31]. Other therapeutic strategies involved the use 
of monoclonal antibodies or patient-derived plasma [32]. However, to 
date no definite treatment has been established, although only very 
recently the combination of the antiviral drugs nirmatrelvir and rito-
navir has been approved for treatment of mild and moderate cases of 
COVID-19 in the US (https://fda.gov). The latter compound is an in-
hibitor of the HIV protease, approved in 1996 [33]. This shows how drug 
repurposing can help overcome the global health problems. 

In this study, we focused on drug repurposing to expand the current 
catalogue of compounds targeting the SARS-CoV-2 spike protein. Drug- 
like substances were divided into two groups: (I) those already approved 
as drugs and (II) those only tested in vivo. Both groups were selected 
from the catalogue of molecules from the ZINC15 database [34]. Drugs 
were prioritize based on the binding free energy, predicted by Auto-
Dock4, followed by Molecular Dynamics (MD) simulations and free 
energy calculations using the Molecular Mechanics/Poisson–Boltzmann 
Surface Area (MM/PBSA) approach [35]. To account that SARS-CoV-2 
evolves and substances effective against the Wuhan-1 strain may not 
be useful in infections caused by novel variants of concern, drugs were 
tested against the spike proteins of five lineages: B.1.1.7 (alpha), B.1.351 
(beta), P.1 (gamma), B.1.617.2 (delta), and C.36 lineage. Among the 
approved drugs, we only considered substances that are administered 
orally because it is simple, safe and convenient for the patient. The two 
most promising candidates selected in this study are zafirlukast and 
simeprevir. According to the AutoDock4 results, both compounds are 
among the top 1% binders among the tested ligands. Moreover, 
throughout the 100 ns MD simulations, they remain bound to the spike 
near its interface with ACE2 and their average MM/PBSA binding en-
ergy was –22 kcal/mol. From among the in vivo tested molecules, drug 
candidates were prioritized based on the predicted binding energy and 
the most promising ADME (absorption, distribution, metabolism, and 
excretion) properties that indicate possible oral administration. After 
MM/PBSA calculations among the in vivo substances, which showed the 
most promising inhibition for all analyzed lineages, we selected 
BDBM50136234 (ZINC id: ZINC000049888620). This substance was 
previously analyzed as a potential agonist of the prostaglandin E2 re-
ceptor [36]. 
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2. Materials and methods 

2.1. Ligand selection 

Two datasets of ligands were selected for this study based on the data 
available in the ZINC15 database. The first contains drugs approved in 
major jurisdictions and is based on the “world” subset from ZINC15. It 
comprises 5,903 unique molecules; however; 3D structures of only 4,380 
compounds are available in the database. The second dataset consist of 
substances tested in both animals and man. It is based on the “in vivo” 
subset from ZINC15. This dataset has nearly 130,000 compounds; 
however, as with the “world” subset, only 39,623 3D structures are 
available (not including the molecules already present in the “world” 
dataset). The 3D structures for ligands were download from ZINC15 and 
processed with the AutoDock Tools [37]. The non-polar hydrogen atoms 
were removed and the Gasteiger charges were added to the ligands. 

2.2. Protein preparation 

The genomic sequences of the specific SARS-CoV-2 lineages were 
downloaded from the GISAID database (https:/gisaid.org) and the spike 
protein sequences were obtained using the nextclade tool v 1.7.0 [38]. 
The following samples from GISAID were used as the representatives of 
the SARS-CoV-2 lineages: EPI_ISL_581117 (Pango lineage - B.1.1.7), 
EPI_ISL_660190 (B.1.351), EPI_ISL_792683 (P.1), EPI_ISL_8402453 
(B.1.617.2), and EPI_ISL_6376910 (C.36). Homology models of the 
proteins were proposed using the following approach. The structure of 
the spike protein of SARS-CoV-2 in the active conformation was selected 
as a template based on analysis of the available structures in the RCSB 
database [39]. The pdb|7dwz structure was solved using electron mi-
croscopy to 3.3 Å resolution. The sequence-to-structure alignment was 
proposed using MAFFT v7.475 [40]. The 3D models of the proteins were 
built with MODELLER [41]. A model quality assessment was carried out 
using the MolProbity web server [42]. Prior to molecular docking, each 
protein underwent energy minimization using the procedure described 
in detail in Section 2.6 with the only difference being the lack of a ligand 
in the simulation box and a shorter simulation time of 10 ns. The sim-
ulations utilized the full trimeric structure of the protein. The receptor 
binding domain (RBD) from the last snapshot of the simulation was 
extracted and converted to pdbqt format using the AutoDock Tools. The 
docking grid was centered close to the Gly496 residue, a part of the 
spike-ACE2 interface. The grid spacing was set to 0.3 Å and the box size 
was 27 × 30 × 12 Å. 

2.3. Molecular docking simulations 

All docking simulations were carried out with the GPU-accelerated 
version of AutoDock4 [43]. The docking parameters for the Lamarck-
ian Genetic Algorithm were as follows: the population size – 150, 
number of runs – 150, crossover rate – 80%, and rate of gene mutation – 
2%. A Root Mean Square Deviation (RMSD) tolerance of 2 Å was used to 
cluster the results of the docking simulation. The results were visualized 
using PyMOL 2.4 and BIOVIA Discovery Studio Visualizer 2021. 

2.4. Ligand selection 

Two approaches were used to prioritize ligands for the MM/PBSA 
calculations. For molecules already approved as drugs, the raw docking 
score was the main criterion; however, we discarded substances that are 
not administered orally. For each lineage, we selected up to three best- 
fitting compounds for further analysis. Furthermore, we selected the five 
most promising inhibitors of all lineages based on the average rank 
obtained from molecular docking simulations. A ligand could be 
selected twice; i.e., it was among both the best compounds working on a 
specific lineage and had potential to inhibit other lineages. For sub-
stances that were only tested in vivo, we also prioritized molecules based 

on their docking score; however, for the first 500 best hits, we also 
analyzed their ADME parameters and toxicity using the ADMETlab 2.0 
web server [44]. Substances were prioritized if they indicated possible 
oral administration. Candidate substances met the following criteria: (I) 
the Lipinski Rule with at most one violation (molecular weight ≤ 500 
Da, logP ≤ 5, hydrogen acceptor count ≤ 10, and hydrogen donor count 
≤ 5); (II) topological polar surface area ≤ 75 Å2; (III) human intestinal 
absorption ≤ 0.7; (IV) human oral bioavailability 30% ≤ 0.7; (V) the 
drug’s half-life ≤ 0.8; (VI) carcinogenicity ≤ 0.3; (VII) AMES toxicity ≤
0.3. 

2.5. Molecular dynamics (MD) simulations 

Molecular Dynamics (MD) simulations were carried out for the 
selected ligand–protein complexes using GROMACS 2020.2 [45]. For 
ligands, the General Amber Force Field (GAFF2) was used in combina-
tion with partial charges obtained from the Austin Model 1 semi-
empirical molecular orbital technique combined with Bond Charge 
Correlations (AM1-BCC). The associated force field and charges were 
assigned to the ligand using the acpype program [46] in conjunction with 
AmberTools21 [47]. The simulation box was dodecahedron-shaped with 
a specified distance of 1.4 nm separating the point between the largest 
principal radius of the centered protein and the edge of the dodecahe-
dron. Periodic boundary conditions were applied in all directions. For all 
simulations, the AMBER99sb force field was applied to the protein along 
with SPC water. Also, 100 mM NaCl was added to the simulation box, 
including neutralizing counterions. Short-range nonbonded interactions 
were cut off at 1.2 nm and long-range electrostatics were calculated 
using the Particle Mesh Ewald (PME) method. The system underwent the 
following simulations steps. First a steepest descent minimization was 
carried out until the maximum force of the system was below 1000 kJ/ 
mol/nm. Next, the system underwent a 100 ps restrained NVT simula-
tion followed by a 100 ps of restrained NPT simulation. The Berendsen 
thermostat (set to 310 K) and Berendsen barostat (set to 1 bar) were 
used. Finally, an unconstrained 100 ns simulation was performed using 
the Berendsen thermostat and Parrinello-Rahman barostat. 

2.6. Molecular Mechanics/Poisson–Boltzmann surface area (MM/PBSA) 
calculations 

MM/PBSA is one of the most widely employed methods for esti-
mating protein–ligand affinities due to its high accuracy, efficiency, and 
correlation with the experimental data [35]. The free energy of binding 
(ΔGMM/PBSA) of a receptor-ligand complex is calculated from 

ΔGMM/PBSA
PL =ΔGvacu

PL +
(
ΔGsolv

PL − ΔGsolv
P − ΔGsolv

L

)
+
(
ΔGapol

PL − ΔGapol
P − ΔGapol

L
)

where, ΔGvacu
PL represents the binding energy between the ligand and 

protein in vacuo and comprises van der Waals and electrostatic energies. 
These values were extracted from MD simulations using the GROMACS 
energy module. The solvation free energy (ΔGsolv) was calculated sepa-
rately for ligand, protein and the protein–ligand complex based on the 
results of MD simulations using APBS v.1.4.1 [61]. Nonpolar solvation 
energy (ΔGapol) was extracted with the g_mmpbsa program [48]. 

The ΔGMM/PBSA was calculated for each frame extracted every 
nanosecond from the simulation and averaged to obtain the final value. 

3. Results and discussion 

3.1. Structural analysis of coronavirus spike protein 

The membrane-bound spike protein of SARS-CoV-2 utilizes ACE2 as 
a cellular receptor. Furthermore, during internalization of the virus, this 
protein mediates fusion of the viral and host cell membranes, thus of-
fering an attractive target for anti-COVID19 drugs. The key part of the 
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protein responsible for ACE2 recognition is the receptor-binding domain 
(RBD); however, as SARS-CoV-2 evolves so does the sequence of the 
RBD. In our study, we selected five variants for analysis rather than 
focusing on the Wuhan-1 strain of SARS-CoV-2. As of January 2022, 
three of these are designated as the Variants of Concern – B.1.351 (beta), 
P.1 (gamma), B.1.617.2 (delta) – and two as de-escalating variants – 
B.1.1.7 (alpha), C.36 (https://ecdc.europa.eu/en/covid-19/variants-c 
oncern). The 3D models of these variants were proposed using a ho-
mology modelling approach, the procedure described in the Materials 
and Methods. The template for the modelling was the SARS-CoV-2 
trimer (pdb|7dwz). Each variant of the spike protein was solved with 
one of its RBD in the active conformation. 

There are several notable differences in the sequences of the selected 
proteins near the spike-ACE2 interface (Fig. 1), including Lys417, 
Leu452, Thr478, Glu484 and Asn501 (residue numbering according to 
the Wuhan-1 strain). These mutations alter the properties of the RBD, 
like the Asn501Tyr mutation where an amino acid with an aromatic side 
chain is introduced. This mutation is linked with enhanced trans-
missibility of SARS-CoV-2 [49]. These mutations also influence the 
conformation of neighboring residues that must accommodate for the 
altered environment within the RBD with respect to that from the 
Wuhan-1 strain. This is a crucial factor for our downstream analysis 
since, for virtual screening, a rigid docking procedure was used and only 
changes to the conformation of the ligand, but not the protein, were 
allowed. To remove any potential steric clashes that might have arisen 
due to the modelling procedure, each model underwent a short 10 ns 
unconstrained MD simulation using the procedure described in Section 
2.6. The full trimer of the spike protein was simulated and we calculated 
the changes to the RMSD for the Cα atoms with respect to the initial 
conformation (see supplementary data). In all the cases, we observed a 
plateau within the first few nanoseconds of the simulation with no large- 
scale changes to the protein conformations. The RBD was extracted from 
the final snapshot from each of simulations and used for virtual 
screening. The quality of this conformation was analyzed using the 
MolProbity webserver. The clash-score ranged from 0.65 for the alpha 
variant to 2.62 for the delta. That value is well within the 98th 

percentile, based on analysis of 1,784 crystal structures. The Molprobity 
score ranged from 1.34 for the alpha variant to 1.9 for C.36. The latter 
value is within 81st percentile (out of 27,675 structures). In conclusion 
the quality of these structures is sufficient for the virtual screening step. 

3.2. Virtual screening of drugs and drug-like substances 

3.2.1. Inhibitors of individual lineages 
Drug repurposing is a strategy in which compounds already 

approved as drugs are used to identify medications for new diseases. 
This permits a quicker introduction of new therapeutics due to the 
already established list of their side effects and known ADME parame-
ters. In our study, a preselected set of drugs was downloaded from the 
ZINC15 database. First, we used the “world” subset that contain 5,903 
drugs approved in major jurisdictions. We analyzed 4,366 that have 
their 3D structure available in the database. The second dataset 
considered in this work contains 129,565 substances that were tested in 
either human or animal. In our work we analyzed 39,609 compounds 
after excluding those that already belong to the “world” subset and for 
which the 3D structures were not available in the database. 

The molecular docking was carried out using the procedure 
described in Section 2.3. For docking, only the region of the spike pro-
tein near the ACE2 interface was considered. The protein remained rigid 
throughout the simulation with the RBD in the active state, while the 
ligand remained fully flexible to sample its best conformation. The re-
sults are based only on the ligand conformation with the highest docking 
score. Despite the differences in the RBDs for the analyzed lineages, the 
correlation between the predicted free energy of binding (ΔGbinding) for 
the analyzed ligands was remarkably high. For example, the Pearson 
correlation value was 0.9 for the docking experiment involving the beta 
and gamma lineages, regardless whether we analyzed drugs or the 
compounds tested in vivo. The lowest observed correlation was 0.77 
between the results of docking to C.36 and the delta variant. Considering 
the generally poor reproducibility of docking [50], this is a positive, yet 
surprising output. It must be noted that there are two major differences 
between the docking experiments involving the two lineages. One is the 

Fig. 1. (A) Spike–ACE2 interface as depicted in the 
pdb|6m0j structure. ACE2 is colored light blue, while 
the spike protein is colored white. The variable resi-
dues between the five analyzed lineages are depicted 
in green. (B) Multiple sequence alignment between 
the analyzed lineages and the Wuhan-1 strain. Only 
residues near the spike-ACE2 interface are shown. The 
number of residues that are not shown are indicated 
in parenthesis. Variable residues between are high-
lighted in cyan. (For interpretation of the references 
to colour in this figure legend, the reader is referred to 
the web version of this article.)   
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mutations in the RBD and the other is changes in the conformations of 
the residues introduced by 10 ns MD simulation. All the analyzed ligands 
achieved negative values of ΔGbinding that ranged between − 1.17 to 
− 13.14 kcal/mol for drugs and between − 0.66 to − 13.6 kcal/mol for 
the in vivo tested compounds. This can be attributed to the size of the 
RBD as the solvent accessible surface of the residues in the RBD is be-
tween 2,775 and 2,989 Å2. Additionally, there are no major cavities in 
the area, resulting in the possibility of a multitude of molecules binding 
the protein surface and creating multiple strong interactions. The lack of 
any major steric constraints on the ligand might result in selecting as top 
hits large compounds that show little specificity toward the spike pro-
tein. Thus, most of the molecules would show only transient binding. 

Below, we discuss the results of the docking procedure for the ligands 
selected from among the already approved drugs. We focus our attention 
on two categories of ligands. Firstly, we present the top three binders for 
each individual SARS-CoV-2 lineage that are the most promising targets 
for anti-COVID-19 drugs. These compounds may not always show the 
highest binding score, as we only kept those administered orally, 
excluding metabolites or substances used in diagnostics. Secondly, we 
identified five compounds that showed a strong affinity toward all tested 
lineages simultaneously. The latter were chosen based on their average 
rank in individual docking simulations. 

The best compounds for B.1.1.7 lineage are candesartan cilexetil, 
azelnidipine and forasartan with ΔGbinding of − 11.16, − 9.91 and − 9.82 
kcal/mol, respectively. The candesartan cilexetil was the best scored 
molecule while the latter two compounds were ranked 5th and 6th, 

respectively. The candesartan position is stabilized within the RBD by 
several contacts (Fig. 2A,C). First, the ligands’ tetrazole ring, biphenyl 
and methoxyl groups form cation-pi contacts with Arg403 with the 
additional hydrophobic interactions involving both Tyr495 and Tyr501. 
The latter residue is also involved in stacking interaction with the 
biphenyl group. The cilexetil group of this ligand forms a hydrogen bond 
with Gln493 and the ligands’ hexane group is placed near the hydro-
phobic Leu455 and Phe456. Forasartan, is structurally similar to can-
desartan with both compounds containing a tetrazole ring connected to 
a phenyl group. Both drugs also share a common molecular function as 
angiotensin II receptor antagonists. Interestingly, forasartan adopts a 
very similar conformation that is also stabilized by interactions with 
Arg403 (Fig. 1B, C). The less negative ΔGbinding of this compound 
compared to candesartan cilexetil can be attributed to the lack of the 
cilexetil group that can form multiple strong polar interactions with the 
protein. 

The main differences between the RBD of the C.36 and alpha lineages 
involve the substitutions of Leu452Arg and Tyr501Asn. As a conse-
quence, most of the highest scoring ligands for the C.36 lineage drift 
toward position 452 that is now occupied by a polar residue. The most 
promising candidate targeting the C.36 lineage was montelukast with a 
predicted ΔGbinding of − 10.25 kcal/mol. This compound is a leukotriene 
receptor antagonist used in asthma treatment. Arg452 provides the most 
important stabilizing effect by forming hydrogen bonds with the 
carboxyl and hydroxyl groups of the ligand (Fig. 3A,C) and Pi-Cation 
interactions with a phenyl group. The carboxyl group is additionally 

Fig. 2. Binding of candesartan cilexetil and forasartan with the spike protein of the alpha lineage. 2D contact map for (A) candesartan cilexetil (B) forasartan. The 
type of interaction between the protein and the ligand is colored according to the provided legend. The blue hue indicates the relative solvent accessibility of the 
atom. (C) A 3D visualization of the superimposed highest scored conformations of both drugs. The carbon atoms are colored magenta for candesartan cilexetil and 
cyan for forasartan. Key residues involved in stabilization of both drugs are indicated. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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stabilized by a hydrogen bond with Asn450. The chlorine substituted 
quinoline is placed in a pocket formed by Arg403, Tyr453, Gln493, 
Tyr495 and is stabilized by a Pi-Alkyl interaction with Tyr505. The 
abovementioned candesartan cilexetil was also among the strongest 
binders for the C.36 strain (ranked 19th); however, changes observed to 
the RBD of this variant could cause the re-orientation of the ligand with 
respect to the conformation from the alpha variant (Fig. 3B,C). The 
tetrazole ring is now stabilized by Ser494, which however leads to a 
potential unfavorable interaction with Arg452. The cilexetil group is 
now occupying roughly the same area near Tyr453, Tyr495, Asn501 as 
the tetrazole ring did in the conformation observed for the alpha variant. 
The carbonyl groups are mainly stabilized via hydrogen bonds with 
Lys417, and the backbone of Gly496. These differences between can-
desartan’s conformations results in an RMSD of 9 Å. The predicted 
ΔGbinding is − 9.63 kcal/mol, only slightly higher than that of the alpha 
lineage. Manidipine, the third selected drug, occupies a similar area of 
the RBD as candesartan cilexetil and montelukast. Arg452 provides the 
stabilizing Pi-Cation interactions with one of the ligand’s phenyl groups. 
Additional contacts are formed with residues Arg403, Lys417, Gln493. 
The ΔGbinding for this compound is − 9.66 kcal/mol, also similar to that 
of candesartan cilexetil. 

The beta variant of the SARS-CoV-2 emerged in South Africa in late 
2020 [51] and still remains one of the Variants of Concern. The main 
differences in the spike protein with respect to the Wuhan-1 strain 
include Asp80Ala, Asp215Gly, Lys417Asn, Glu484Lys, Asn501Tyr, and 
Ala701Val. Three of these positions (417, 484 and 501) are part of the 

spike-ACE2 interface. This leads to an altered list of potential ligands 
compared to that reported for the alpha and C.36 lineages. The most 
promising candidates for this lineage are lutein, pranlukast and 
canthaxanthin. These compounds ranked as 3rd (ΔGbinding = − 9.93 
kcal/mol), 8th (− 9.36 kcal/mol), and 9th (− 9.34 kcal/mol) based on 
the AutoDock4 results, respectively. Lutein is a xanthophyll used both as 
a drug and dietary supplement. The ligand is predominantly hydro-
phobic with only two carbonyl groups capable of forming hydrogen 
bonds. One of them, based on the highest-scored conformation, is 
formed with the backbone of Asn417 while the second hydrogen bond is 
formed with Gly447 (Fig. 4A, C). Among the five tested lineages, Asn417 
is found only in the beta and gamma variants, again explaining the 
difference between the best drug candidates for different SARS-CoV-2 
lineages. The remaining contacts involve mostly Pi-Alkyl interactions 
formed with Tyr449, Tyr453, and Tyr495. Pranlukast is a leukotriene 
receptor-1 antagonist. Like candesartan cilexetil and forasartan, pran-
lukast contains the tetrazole ring that is stabilized by Asn448. This 
residue is located near the Arg452 that was important for the cande-
sartan cilexetil interactions with the C.36 variant (Fig. 4B, C). The li-
gand’s amide group forms a hydrogen bond with Tyr449 while the 
alkoxy group is interacting with the backbone of Ser494. 

Manidipine, a calcium channel blocker, which was already identified 
as one the best binders for the C.36 lineage, is the best inhibitor for the 
delta variant. This can be attributed to the fact that both these lineages 
share the Leu452Arg mutation and they lack Tyr501, which is charac-
teristic of all the other lineages analyzed in this work. Other changes to 

Fig. 3. Binding of montelukast and candesartan cilexetil with the spike protein of the C.36 lineage. 2D contact map for (A) montelukast (B) candesartan cilexetil. The 
type of interaction between the protein and the ligand is colored according to legend provided in Fig. 2. (C) A 3D visualization of the superimposed highest scored 
conformations of both drugs. The carbon atoms are colored magenta for montelukast and cyan for candesartan cilexetil. Key residues involved in stabilization of both 
drugs are indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the delta variant RBD include Thr478Lys that is not observed in the 
other four analyzed lineages. Manidipine forms contacts with Arg452 for 
both the delta- and C.36-bound conformations (Fig. 5A, C). However, 
while for the delta variants, Arg452 is close to the ligands’ nitrobenzene 
group, for the C.36 variant it interacts with the phenyl group located on 
the opposite side of the molecule (Fig. 5 B, D). For the C.36 lineage, the 
nitrobenzene group forms hydrogen bonds with Arg403 and Lys417. As 
a result of these changes, the RMSD between these conformations is 
10.9 Å. To better understand this phenomenon, we looked for possible 
sources of differences between the analyzed variants. As mentioned 
above, the only difference in the sequences of both variants is 
Thr478Lys; however, Lys478 is located more than 15 Å away from the 
nearest atom of manidipine. Thus, we looked for changes in the con-
formations of the other residues in the RBD that arose after the MD 
simulations. In our opinion, a key player is the altered conformation of 
Lys417. For C.36, this residue extends towards Arg403 in a conforma-
tion that allows the nitro group to form a hydrogen bond. However, for 
the delta variant, Lys417 moves away from Arg403 and the ligand is 
unable to simultaneously bind to both Lys417 and Arg452. This exem-
plifies the possible pitfalls of rigid docking, where even small alteration 
in the protein conformation can have a huge impact on the results. 
However, despite the change in the ligand’s conformation of the delta 
variant, the ΔGbinding is − 11.2 kcal/mol and is comparable to that 

observed for the C.36 lineage that is − 9.66 kcal/mol. The two remaining 
candidates for the delta variant inhibitors are lercanidipine (ΔGbinding =

− 10.90 kcal/mol) that is also a calcium channel blocker that shares a 
substantial similarity to manidipine. The diphenyl group of both ligands 
share almost exactly the same position near Phe497 and Tyr505. Finally, 
zafirlukast, is the third candidate to inhibit the delta lineage. The 
compound has identical therapeutic indications to pranlukast that was 
identified as a potential hit for the beta variant. The ΔGbinding for 
zafirlukast is − 10.40 kcal/mol. 

Finally, for the gamma variant saquinavir was found to have the best 
ΔGbinding of − 10.20 kcal/mol. It was followed by candesartan cilexetil 
(ΔGbinding = − 9.88 kcal/mol) and zafirlukast (ΔGbinding = − 9.63 kcal/ 
mol). The latter two drugs have already been identified among strong 
inhibitors of other SARS-Cov-2 lineages. Saquinavir is a HIV protease 
inhibitor and potentially can interfere with the viral reproductive cycle 
at multiple stages. The ligand interactions are predominantly through 
hydrogen bonds with the side chains of Gln493 and Ser494 and the 
backbone of Phe490. Additional contacts include alkyl-pi interactions 
with Leu452, Leu455, Phe456 and Tyr489 (Fig. 6 A, B). Gln493 and 
Ser494 are also stabilizing candesartan cilexetil conformation, high-
lighting the importance of these residues. 

Fig. 4. Binding of lutein and pranlukast with the spike protein of the beta lineage. 2D contact map for (A) lutein (B) pranlukast. The type of interaction between the 
protein and the ligand is colored according to legend provided in Fig. 2. (C) A 3D visualization of the superimposed highest scored conformations of both drugs. The 
carbon atoms are colored magenta for lutein and cyan for pranlukast. Key residues involved in stabilization of both drugs are indicated. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.2.2. Inhibitors of multiple variants 
The high sequence similarity of all analyzed RBDs and agreement of 

the docking results prompted us to identify molecules that could act as 
inhibitors of multiple lineages simultaneously. Such compounds would 
be of great benefit as their use would speed up the treatment process. To 
identify such molecules, an average rank of each compound was 
calculated based on the results of individual docking experiments. Like 
previously, only compounds administered orally that are not metabo-
lites of other substances were selected. The top drug identified with this 
procedure was zafirlukast. It is a potentially strong inhibitor of the beta 
(rank of 12.5), gamma (7th) and delta variants (6th) , although its 
binding to the alpha (27th) and C.36 variants (rank of 28.5) was slightly 
attenuated compared to other tested drugs. As a result its average rank 
was 16. As mentioned previously, different conformations of a given 
ligand can achieve a very similar docking score. For example, for 
zafirlukast the average RMSD between its alpha bound conformation 
and the conformations bound to other variants was 8.8 Å. There are, 
however, notable exceptions to this observation. The conformation 
bound to the gamma and C.36 variants have an RMSD value of 3.4 Å. 
Despite this, the average ΔGbinding for zafirlukast was predicted to be 
− 9.6 kcal/mol with a standard deviation of 0.5 kcal/mol. 

The second most promising candidate was also mentioned: pranlu-
kast, which was among the best candidates for inhibitor of the beta 
variant. The average rank of this drug is 30, and it is lower than that of 
zafirlukast due to weaker binding to the delta variant (ranked 52nd). 
Nevertheless, the average ΔGbinding of pranlukast is − 9.3 kcal/mol, close 
to that of zafirlukast. The remaining three compounds were candesartan 
cilexetil (average rank 31.8, ΔGbinding = − 9.5 kcal/mol), saquinavir 
(40.4, ΔGbinding = − 9.2 kcal/mol) and finally, simeprevir (41.9, 
ΔGbinding = − 9.2 kcal/mol). All these compounds, except simeprevir, 
were already discussed in Section 3.2.1. Simeprevir, is used as an 

inhibitor of HCV protease and, like saquinavir, can interfere with the 
SARS-CoV-2 replication cycle on multiple levels. The ranks and ΔGbinding 
of all these ligands are summarized in supplementary data. 

3.2.3. Inhibitors derived from in vivo tested compounds 
To expand the catalogue of possible spike inhibitors, we carried out 

molecular docking using the in vivo tested compounds selected from the 
ZINC15 database. As before ligands were docked to spike proteins of the 
five previously mentioned lineages. Unlike the ligands from Section 
3.2.1, the in vivo tested compounds were prioritized based on their 
docking score, and additionally, by their favorable ADME parameters 
and minimal toxicity. ADME parameters and toxicity were calculated 
using the ADMETlab 2.0 server for the 500 best compounds either 
showing strong inhibition of individual lineages or inhibiting multiple 
lineages simultaneously. The ligands had to meet specific criteria, as 
described in Section 2.4, which should prioritize molecules that can be 
administered orally. As it turns out, only eleven molecules with unique 
ZINC id passed our filters. 

This might be a reflection of the same issue observed for molecular 
docking experiments involving approved drugs. Larger compounds 
capable of forming multiple contacts with the protein were selected as 
best inhibitors due to the shape of ligand binding site. However, since 
one of our filters included restriction on the compound’s mass and 
number of hydrogen bond donors and acceptors (in accordance with the 
Lipinski rule of five), most such compounds were then removed. As a 
result, the list of compounds that inhibit individual lineages and all 
lineages simultaneously is almost identical. ZINC000049888620 
(BindingDB id BDBM50136234), a possible prostaglandin receptor 
antagonist [52] , was selected as the most universal compound because 
it showed an average rank of 788 and an average ΔGbinding of − 8.8 ±
0.2 kcal/mol. After removing substances with poor ADME parameters, 

Fig. 5. Binding of manidipine to the delta and C.36 variants. 2D contact map for manidipine with the delta lineage (A) and the C.36 lineage (B). The type of 
interaction between the protein and the ligand is colored according to legend provided in Fig. 2. (C) A 3D visualization of the highest scored conformations of 
manidipine with the delta lineage (D) same but with the C.36 lineage. Key residues involved in stabilization of this drug and Lys417 are indicated. 
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this compound turned out to be the best inhibitors of the alpha lineage 
despite its initial rank of 505. For the gamma and C.36 lineages, the 
ZINC000027711299 (BindingDB id BDBM50087164) molecule was 
selected as the most promising inhibitor. This compound was previously 
tested as a acetylcholinesterase inhibitor [53]. For the gamma lineage, it 
was ranked as the 94th ligand with ΔGbinding of − 9.9 kcal/mol. This 
compounds’ lower average rank compared to the previous molecule is 
the result of a poor rank among inhibitors of the alpha and beta lineages 
(2351st and 1374th ligand, respectively). Despite this fact, the average 
ΔGbinding is similar to that of BDBM50136234 and equals to − 8.9 ± 0.9 
kcal/mol. A stereoisomer of this compound was selected as the best hit 
for the delta variant with ΔGbinding of − 10.4 kcal/mol. However, since 
each stereoisomer has a different ZINC id, they are considered separate 
hits. Finally for the beta variant, Soyasapogenol B was selected to be the 
198th ligand, ΔGbinding of − 9.0 kcal/mol. Surprisingly, this compound’s 
binding to all the other lineages was poor, thus in our opinion it might be 
a false positive hit. 

3.3. Molecular dynamics simulations of selected ligands 

As discussed previously, even slight changes to the conformation of a 
protein might have a dramatic impact on the results of molecular 
docking. Furthermore, changes to the conformation of a protein–ligand 
complex will impact the predicted binding energy of a potential inhib-
itor. To account for these effects and issues, we carried out the following 
procedure. First, for the most promising candidates selected during 

virtual screening step, we performed an unconstrained 100 ns MD 
simulations. This was followed by free energy of binding calculations 
using the MM/PBSA method, according to the procedure described in 
Sections 2.4, 2.6 and 2.7. We analyzed both the top four inhibitors for 
each individual lineage (three drugs plus one in vivo tested compound) 
and six molecules showing activity on more than one lineage (five drugs 
and one from the in vivo set). The initial conformation of each ligand was 
identical to that proposed by AutoDock4. Similarly, to the molecular 
docking, only the RBD of the spike protein was included in the 
simulation. 

3.3.1. Some ligands do not retain binding to the RBD after the MD 
simulations 

The first aspect we analyzed was the changes to the conformation of 
the ligand within the RBD. For several complexes, the ligand does not 
retain its conformation within the RBD, but rather, dissociates from the 
protein or binds to a different part of protein’s surface. For example, in 
Fig. 7A, changes to the distance between one of the atoms of pranlukast 
and the Cα atom of Tyr495 of the delta variant throughout the simula-
tion are indicated. As can be seen, the ligand stays inside the RBD of the 
delta lineage for around 50 ns of the simulation; however, afterwards, it 
drifts away and binds to a neighboring cavity (Fig. 7B). This situation is 
not unique as several other protein–ligand complexes exhibit similar 
behavior; like simeprevir bound to the spike from the C.36 lineage or 
candesartan cilexetil in complex with the spike from the delta or C.36 
lineages. Such profound changes to the ligand’s conformation is not 

Fig. 6. Binding of saquinavir and candesartan cilexetil with the spike protein of the gamma lineage. 2D contact map for (A) saquinavir (B) candesartan cilexetil. The 
type of interaction between the protein and the ligand is colored according to legend provided in Fig. 2. (C) A 3D visualization of the superimposed highest scored 
conformations of both drugs. The carbon atoms are colored magenta for saquinavir and cyan for candesartan cilexetil. Key residues involved in stabilization of both 
drugs are indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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without biological impact, as binding outside the RBD most likely 
wouldn’t obstruct the formation of the spike-ACE2 complex. We next 
noticed that the dissociation of the ligands rarely occurs when a simu-
lation involves a spike protein in complex with one of the top binders. To 
further explore this idea, we divided the complexes into two groups. The 
first group (“in-RBD”) comprised complexes where the ligand remains 
bound to the ligand binding site, albeit sometimes in a very different 
orientation than the initial one. The second group (“out-RBD”) included 
complexes where the ligand moved away from the RBD. A boxplot 
showing the distribution of ligands’ ranks based on the AutoDock4 score 
for the complexes from both groups is presented in Fig. 7C. It can be seen 
that the “in-RBD” group comprises mostly the ligands of low rank; hence 
they tend to be the best binders for a given lineage. On the other hand, 
the “out-RBD” group includes complexes where the ligand’s rank was 
higher. 

As discussed previously, the ligands assumed very different confor-
mations depending on the lineage it was associated with. This could be 
partially attributed to the rigid docking approach where small changes 
in the protein RBD impose large changes to the ligand’s 3D structure. 
This, however, is not an issue with molecular dynamics where the full 

motion of a protein might allow a ligand to converge to similar con-
formations regardless of the lineage its bound to. Fig. 8A shows con-
formations of zafirlukast from all five variants after 100 ns MD 
simulation. The ligand retains its binding to the RBD but the RMSD 
between the conformations is 20.6 Å with alpha bound conformation as 
a reference. Still, these conformations would retain their ability to block 
the spike-ACE2 interactions. The same analysis applied to all other 
compounds yielded similar conclusions. For pranlukast, the average 
RMSD was 7 Å (with the alpha bound conformation as a reference), 
while after MD simulations it increased to 14 Å even after excluding the 
delta bound variant which moved outside the RBD (Fig. 8B). 

Although the orientation of all ligands changed dramatically 
throughout the simulations, the proteins’ structure did not. For example, 
Fig. 8C depicts the RMSD for Cα atoms calculated with respect to the 
initial conformation for all the complexes involving pranlukast. 
Throughout the 100 ns simulations, the RMSD value rarely exceeded 3 
Å. Changes to the RMSD value were not affected by the ligand involved 
in the simulations. Considering other cases, the simulation of saquinavir 
bound to the spike from the beta variant yielded the highest observed 
RMSD for the protein (4.2 Å). This suggests that 10 ns simulation of the 

Fig. 7. Changes to the pranlukast orientation in the RBD of the spike protein from the delta lineage. (A) The distance between the Cα atom of Tyr495 and one of the 
carbon atoms of the ligand (indicated as black square). (B) Initial (magenta) and final (cyan) conformation of pranlukast. (C) Boxplot showing the ranks of ligands for 
complexes (red box) ligand remained bound to the RBD at the spike-ACE2 interface and (blue) ligand moved away from the spike-ACE2 interface. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Changes to the ligands after the MD simulations. (A) Different zafirlukast conformations (C.36 bound conformation - orange, alpha – red, beta – blue, gamma 
– yellow, delta – cyan) (B) Same as (A) but for pranukast (C) RMSD of RBD (Cα atoms) calculated with respect to the starting conformation of the protein. Results 
based on simulations of pranlukast bound to the RBDs from different lineages (colored according to the legend). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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apo-form of a protein prior to the molecular docking was sufficient to 
alleviate any steric clashes that might have arisen due to the homology 
modelling procedure. 

3.3.2. MM/PBSA binding free energy calculations 
Finally, to further refine the list of ligands identified with virtual 

screening, we calculated ΔGbinding using the MM/PBSA method. The 
total binding energy comprises the following energy terms: (I) van der 
Waals energy; (II) electrostatic energy; (III) electrostatic contribution to 
the solvation free energy, and (IV) nonpolar solvation energy approxi-
mated using the solvent accessible area as discussed in Section 2.7. The 
ΔGbinding was calculated for every nanosecond of the simulation and 
averaged to obtain the final value. The results of this procedure for 
selected ligands are presented in Table 1. The ΔGbinding calculations 
included snapshots of the simulation where the ligand had drifted 
outside the RBD. This fact resulted in increased values of ΔGbinding for 
some of the complexes, indicating that the ligand cannot carry out its 
proper function as an inhibitor of the spike protein. As it turns out, the 
ΔGbinding for most molecules is comparable or slightly better than that 
predicted by AutoDock4. For example, the ΔGbinding for zafirlukast- 
alpha spike complex was − 9.2 kcal/mol according to AutoDock4. 
However, the ΔGbinding calculated with the MM/PBSA method was 
closer to − 21.6 kcal/mol, although considering measurement uncer-
tainty, it could be as high as − 14.2 kcal/mol. The average ΔGbinding for 
this ligand, considering all the analyzed SARS-CoV-2 lineages, was 
around –22 kcal/mol, with the ligand occupying the RBD in all the 
analyzed cases. A similar average ΔGbinding was obtained by simeprevir; 
however, for its complex with the spike from the C.36 lineage, the ligand 
binds near the loop between Ser438 to Lys444, outside the spike-ACE2 
interface. Thus, despite the ΔGbinding of − 20.8 kcal/mol for this com-
plex, simeprevir might not block access of ACE2 to the C.36 RBD. The 
three remaining ligands (candesartan cilexetil, pranlukast and saquin-
avir) obtained an average ΔGbinding between − 12 to − 17 kcal/mol. 
However, they usually failed to remain bound to the RBD of at least one 
tested lineage. This resulted in a substantial reduction of ΔGbinding. For 
example, for candesartan cilexetil, the upper value of the predicted 
ΔGbinding with the spike from the delta variant was positive, indicating 
no complex is formed spontaneously with this drug. Next, we observed 
that ligands selected based on their ability to inhibit specific lineages 
usually obtained lower ΔGbinding than ligands that inhibited multiple 
lineages simultaneously. This is in agreement with the results from the 
docking experiments. Finally we analyzed the compounds from the in 
vivo group. ZINC000049888620 selected as a potential inhibitor of 
multiple lineages showed the average ΔGbinding of − 11.5 kcal/mol. This 
indicates that this ligand is a weaker inhibitor than the ligands selected 
from among the known drugs. It must also be noted that during the 

simulation with the delta variant of spike, ZINC000049888620 sepa-
rated from the RBD, hence, it exhibits a relatively poor binding to that 
lineage. 

4. Concluding remarks 

Researchers have made extensive use of computational tools ranging 
from chemoinformatic searches to advanced molecular dynamics sim-
ulations to determine potential drugs for COVID-19. Most of them utilize 
a drug repurposing strategy that allows identifying compounds that do 
not require time-consuming clinical trials and can be quickly introduced 
on the market. However, SARS-CoV-2 evolves rather rapidly and there 
are now more than 1,700 variants of the virus. As a result, new com-
pounds effective against novel strains must be found, especially the 
Variants of Concern. Furthermore, it is important to reevaluate if com-
pounds effective against the Wuhan-1 strain remain active. 

The results of our study showed that the most favorable ligands 
among drugs administered orally are zafirlukast, pranlukast, cande-
sartan cilexetil, saquinavir and simeprevir. Their predicted AutoDock4 
ΔGbinding was around − 10 kcal/mol for all analyzed lineages - alpha, 
beta, gamma, delta, and C.36. This indicates that their inhibition con-
stant is in nanomolar range. These compounds interact with a diverse set 
of residues from the RBD of the spike protein, some of which are lineage- 
specific. For candesartan cilexetil, there is a clear difference in the li-
gand’s conformation when bound to either spikes from alpha or C.36 
lineage. This can be linked to the Leu452Arg mutation located in the 
RBD of the spike near its interface with ACE2. Changes to the ligands’ 
conformation did not, however, dramatically alter the predicted 
ΔGbinding for this compound. Furthermore, we tested more than 30,000 
compounds from substances previously tested in vivo to expand the list of 
possible anti COVID-19 drugs. The compounds selected from the in vivo 
dataset had to show ADME parameters indicating plausible oral 
administration and minimal toxicity; we selected BDBM50136234 as a 
molecule of interest. Finally, because molecular docking can only 
roughly approximate the ligand binding energy, we used MD simula-
tions coupled with MM/PBSA to better estimate this parameter. As it 
turns out, some of the tested drugs did not remain within the RBD near 
its interface with ACE2 but rather dissociated or bound to other parts of 
spike. This is not the case for zafirlukast, which remained bound to the 
RBD, albeit with a different conformation than that predicted by Auto-
Dock4. The average ΔGbinding for this ligand, considering all the 
analyzed SARS-CoV-2 lineages, was around − 22 kcal/mol. Other com-
pounds identified with molecular docking obtained the ΔGbinding be-
tween − 11.5 kcal/mol to − 22 kcal/mol. 

Many of the molecules identified with our study were already indi-
cated as potential targets for COVID-19, albeit often targeting proteins 

Table 1 
Result of the MM/PBSA calculations for the selected protein − ligand complexes. The mean ΔGbinding is shown with standard deviation in units of kcal/mol. The gray 
fields indicate that the ligand migrated from the RBD during the simulation. From among the top three inhibitors selected for individual lineages, we show the results of 
the best compound (“Best among top 3”). The compound’s name is provided in parentheses in the appropriate column.  
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other than spike. Zafirlukast is a leukotriene receptor antagonists used in 
asthma treatment; however, in the work of Mehyar et al., the authors 
used molecular docking and FRET-based assay to show that it is also 
active against the SARS-CoV-2 helicase [54]. In another work, it was 
shown using machine learning that pranlukast could be repurposed as an 
effective drug for COVID-19 [55]. Montelukast is a third leukotriene 
receptor antagonist found in our analysis. According to multiple in silico 
and in vitro studies, it has the dual potential to inhibit both the SARS- 
CoV-2 Mpro and viral entry into the host [56]. Saquinavir and simepre-
vir are inhibitors of proteases from HIV and HCV, respectively. Sa-
quinavir was also indicated as a viable inhibitor of Mpro after applying 
QSAR and HQSAR models [57], while the latter compound was identi-
fied as an Mpro inhibitor using molecular docking [58]. Candesartan 
cilexetil, which according to our study can inhibit spike from various 
lineages, had an IC50 value of approximately 67 μM against Mpro in a 
FRET-based activity assay [59]. This drug can have a dual effect as it is 
used in high blood pressure treatment, which is also one of the hallmarks 
of COVID-19 due to the SARS-CoV-2 influence on the RSS. Azelnidipine, 
a calicum channel blocker used in hypertension, was found among 15 
compounds to exhibit anti-infective effects in Vero E6 cells [60]. 
Consequently, many of the compounds we identified may possibly target 
multiple steps in the viral life cycle, not only host cells recognition. 
However, to determine the true potential of compounds identified in this 
study and their role as spike inhibitors further in vitro and in vivo studies 
are required. 
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