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Abstract

Fatty acid—and retinol-binding proteins (FARs) belong to a unique family of excreted/
secreted proteins (ESPs) found exclusively in nematodes. Much of our understanding of
these proteins, however, is limited to their in vitro binding characteristics toward various fatty
acids and retinol and has provided little insight into their in vivo functions or mechanisms.
Recent research, however, has shown that FARSs elicit an immunomodulatory role in plant
and animal model systems, likely by sequestering lipids involved in immune signaling. This
alludes to the intricate relationship between parasitic nematode effectors and their hosts.

Significance

Parasitic nematodes infect billions of people worldwide as well as other mammals, insects, and
plants [1,2]. The soil-transmitted helminth Ascaris lumbricoides alone infects approximately 1
billion people globally, while plant-parasitic nematodes cause billions of dollars in crop dam-
age every year [3]. During infection, nematodes release a complex mixture of excreted/secreted
proteins (ESPs) into surrounding host tissues that can interfere with host signaling mecha-
nisms and immune homeostasis, allowing for a more successful infection [4-6]. Most of these
ESPs have not been studied in detail, although such studies are essential for our understanding
of host-helminth interactions as well as the outcome of infection. One unique protein family
in nematode ESPs is the family of fatty acid—and retinol-binding proteins (FARs) [7]. Numer-
ous studies describing the in vitro binding characteristics of FARs reveal that these proteins
bind fatty acid and retinol molecules, including those important to immune signaling, and
therefore have the potential to play a crucial role in modulating the host immune system.
Despite the wealth of information describing the binding properties of FARs, however, little is
known about how these proteins interact with host tissues and potentially alter host immunity
[8-20].

Introduction and history of nematode lipid binding proteins

Nematodes are unable to synthesize all necessary lipids de novo and have therefore evolved
sophisticated, protein-based mechanisms to sequester lipids and related precursor molecules
from diet and the environment [13]. Underpinning key aspects of nematode biology are the
nematode polyprotein antigens (NPAs), venom allergen-like proteins (VALs), and FARs [21].
NPAs are small, helix-rich proteins that are initially synthesized as a large polyprotein before
being cleaved into functional copies of approximately 15 kDa in size [4,12,14,22-24]. NPAs
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bind to fatty acids and retinoids and are secreted by nematodes and can elicit a strong host
immune response [12,22,25]. VALs are up-regulated during the parasitic life stage and can
bind lipids. VALs have also been studied for vaccine development and their roles in host-para-
site interactions [26].

Among fatty acid-binding proteins, FARs are an understudied and uniquely nematode
protein family having no orthologs in other animals or plants [27]. Initially, FARs attracted
attention for their ability to bind retinoids and therefore play a role in parasitic growth, differ-
entiation, and reproduction [28]. The initial significance of this retinoid binding role was ana-
lyzed primarily in the context of the nematode’s own biological functions. In Onchocerca
volvulus infections, for example, the concentration of retinol was shown to be much greater in
the nematode than in the surrounding host tissue where it was hypothesized to play a role in
growth and reproduction [29]. Moreover, retinoic acid, the primary metabolite derived from
retinol, is localized to developing embryos and is required for normal growth and development
[28]. Further studies revealed that FAR proteins can bind fatty acids in addition to retinol
[11,30]. More recently, the presence of FARs in ESPs and their ability to bind host lipids sup-
port a potential role in parasitism through immunomodulation that could be leveraged for
vaccine development [11,24,25].

FARs also have distinct features that allow for their secretion into and interaction with sur-
rounding host tissues. For example, the presence of a casein kinase II phosphorylation site in
addition to a hydrophobic leader signal peptide is thought to play a key role in regulation of
FARS’ secretion into host tissue [8,10,11,15,17,31]. Metabolic labeling experiments revealed
the presence of FAR proteins in supernatant of adult parasite cultures of different species,
which confirms the presence of FAR proteins in the excretory/secretory products of filarial
parasites [32]. Collectively, FARs are an important family of proteins that garner significant
interest for their roles in immune modulation, parasitism, and as potential therapeutic targets.

Diversity of FARs

FAR proteins contain on average 130 to 170 amino acids [8,10,11,17,33], and the number of
FARs encoded in each nematode genome appears to be lineage specific. For example, Brugia
malayi contains 3 FAR proteins, Caenorhabditis elegans contains 9, and the insect parasitic
nematode Steinernema carpocapsae contains 45 putative FAR proteins, leading to the hypothe-
sis that FAR proteins play a significant role in parasitism and are expanded to ensure interac-
tion with host tissues [11,16,18,19,34-36]. For a comprehensive evolutionary analysis of FAR
proteins, readers are referred to a recent study by Yuan and colleagues [27]. Notably, when
multiple FAR proteins exist in a species, they tend to have distinct sequences and display bio-
chemical and functional variability. For example, both Heterodera avenae Ha-FAR-2 and B.
malayi Bm-FAR-2 have been reported to have weaker binding affinities to retinol and fatty
acids compared to Ha-FAR-1 and Bm-FAR-1, respectively [19,36].

The diversity of FARs is also observed at the level of posttranslational modifications such as
glycosylation. For example, O. volvulus Ov-FAR-1 has 3 predicted glycosylation sites, B. malayi
Bm-FAR-1 and Loa loa LI-FAR-1 have 1, while Brugia pahangi Bp-FAR-1and Wuchereria ban-
crofti Wb-FAR-1 have none [37]. Glycosylation in FARs is N-linked, although it has been
found that the location for glycosylation can differ between species—Bm-FAR-1 and LI-FAR-1
glycosylation sites, for example, are distinct from the 3 sites of Ov-FAR-1. Degree of glycosyla-
tion can also vary, as seen in Onchocera species where FAR proteins are differentially glycosy-
lated, leading to native proteins with 2 different masses. In contrast, a FAR from
Acanthocheilonema viteae, a filarial parasite of rodents, is predicted to have at least 1 glycosyla-
tion site, and only 1 native protein size is observed [37]. Although the specific function of
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glycosylation in FARs is still unclear, it has been noted that species with glycosylated FARs
possess unsheathed microfilariae instead of sheathed, which might be linked to the transfer of
FARs through the sheath [32].

Differing localization patterns in the nematode’s body also contributes to FAR protein
diversity. Most FAR proteins in parasitic nematodes can be found in the hypodermis, cuticle
surface region, and esophageal glands, which suggests their presence in nematode secretions
and potential role in mediating host-parasite interactions [11,16,38]. FARs are also often
found in reproductive glands, in larvae, and in higher amounts in females, suggesting a biolog-
ical importance in development and reproduction in addition to secretion [11,13,23,39,40].
Moreover, sequence analysis of some of the most well-studied FARs reveals a wide-ranging
degree of conservation at the protein level (Fig 1). Not surprisingly, FARs from closely related
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Fig 1. Comparison of FAR proteins across free-living and parasitic nematode species. (A) Table of percent identity
among various FAR proteins showing Ov-FAR-1 with the highest similarity to Bm-FAR-1 (82 percent). (B)
Phylogenetic tree of FAR sequences included in alignment created in ClustalW. (C) The FAR protein sequences are
aligned with clustalW2 with secondary structures shown as an estimation based on the N. americanus Na-FAR-1
(4XCP) crystal structure using ESPript [23,51]. Sequence identities are as follows: Na-FAR-1 (XP_013293708), Bm-
FAR-1 (Q93142), Ov-FAR-1 (Q25619), Mj-FAR-1 (AFZ77091), Ce-FAR-1 (CAA79616), Ce-FAR-7 (NP_493708), and
Sc-FAR-1 (TKR66991). The various secondary structures are labeled o with squiggles for large alpha helices and n with
squiggles for 3, helices. Alternate residues are highlighted with gray stars. Residues that are identical among all groups
are highlighted in red, and conserved residues are shown in red; both are outlined in blue. FAR, fatty acid-and retinol-
binding protein.

https://doi.org/10.1371/journal.ppat.1010424.g001
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species, such as within the Meloidogyne clade, have higher a higher degree of sequence identity
relative to those from more disparate clades [36,41].

FARs adopt a unique alpha-helical bundle fold

Despite an abundance of available FAR sequence and biochemical information, only 2 FAR
protein structures have been determined to date; the apo (ligand-free) structure of C. elegans
Ce-FAR-7 was reported by Jordanova and colleagues in 2009 [31], and the apo and palmitate
bound forms of Necator americanus Na-FAR-1 were reported by Rey-Burusco and colleagues
in 2015 [23]. The original structural analysis of Ce-FAR-7 revealed a multihelix bundle archi-
tecture (Fig 2A, left panel) distinct from any previously defined lipid binding protein [31]. Ce-
FAR-7, however, is notably phylogenetically distant from parasitic nematode FARs [32], such
as Na-FAR-1, with which it shares approximately 23% sequence identity, lacks a signal peptide,
and displays distinct lipid binding characteristics [32]. Despite these phylogenetic and func-
tional differences, the overall helical architecture of Ce-FAR-7 is surprisingly well conserved in
Na-FAR-1 (Fig 2A, right panel). Nuanced structural differences include the number of helices
in the bundle, and the relative orientation and packing of the helices that, while not signifi-
cantly altering the overall fold, are likely to influence ligand binding.

Several studies have shown that nematode FARs bind fatty acids and retinol [8,9,13,15,32],
and the Ce-Far-7 and Na-FAR-1 structures provided important insight into the mechanism of
ligand coordination. The apo Ce-FAR-7 structure revealed 2 deep hydrophobic pockets (P1
and P2) with the smaller P1 pocket predicted to bind fatty acids and the larger P2 pocket pre-
dicted to bind bulkier retinoids [31]. The P1 and P2 pockets, which are joined by a cleft that
authors postulated, could facilitate binding of multiple different ligands of varying aliphatic
chain length [31]. This hypothesis was ultimately confirmed through steady-state fluorescence
spectroscopy titration experiments that showed binding of chemically and structurally differ-
ent ligands, some of which were able to displace retinol bound in the P2 pocket [31]. The suc-
cessful determination of the apo and palmitate bound Na-FAR-1 structures allowed for a more
detailed mapping of the internal hydrophobic cavities (Fig 2B, palmitate ligands shown as yel-
low surfaces) [23] including characterizing the structural changes associated with ligand bind-
ing. Structural analysis also revealed the potential for more than 1 entry point for hydrophobic
molecules to access the internal cavities facilitated by mobile alpha helices that may serve as
structural gatekeepers. Fluorescence-based binding studies with Na-FAR-1 showed binding of
the fluorescent fatty acid analogue 11-(Dansylamino) undecanoic acid (DAUDA) and the nat-
urally fluorescent lipid retinol [23]. Intriguingly, Ce-FAR-7 does not appear to bind DAUDA
[32], and binding to retinol showed no saturation [31]. The Na-FAR-1 study also expanded
the repertoire of potential ligands to include a broad range of lipid classes including phospho-
lipids. The diversity in hydrophobic ligands bound by FARs may provide parasitic nematodes
the ability to colonize a variety of biological niches. Further studies, however, are required to
correlate in vitro binding studies with biological outcomes.

Plant-parasitic nematode FAR functions

Much work has been done to evaluate the roles of FARs in plant parasite interactions and has
served as a foundation to understand the immunomodulatory effects of these unique proteins.
Plant-parasitic nematode FARs have been shown to positively affect the nematode infection
process. For example, the first plant FAR discovered was Gp-FAR-1 in Globodera pallida that
binds to precursors of the jasmonic acid signaling pathway and inhibits lipoxygenase activity
in vitro [8]. Lipoxygenase activity is part of the octadecanoid signaling pathway that eventually
leads to the synthesis of jasmonic acid, a signal transducer in systemic plant immunity.
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Side view Top view

Fig 2. Secondary structure representations of the fatty acid and retinol binding proteins Ce-FAR-7 from C.
elegans and Na-FAR-1 from N. americanus. (A) Rainbow color scheme of Ce-FAR-7 (2W9Y) and Na-FAR-1 (4XCP)
ranging from blue (amino terminus) to red (carboxyl terminus) that highlights the conserved alpha-helical fold. (B)
Side and top views of NA-FAR-1 bound to palmitate (yellow surface) that highlights the large central ligand binding
cavity. Structure figures were generated using PYMOL (www.PyMOL.org). FAR, fatty acid-and retinol-binding
protein.

https://doi.org/10.1371/journal.ppat.1010424.9002

Jasmonic acid mediates responses against environmental stress, which can range from herbi-
vore damage to pathogen infection by inducing expression of genes that produce chemical
defense compounds such as alkaloids and terpenoids [42]. By interfering with this pathway,
Gp-FAR-1 likely modulates host immunity and thereby contributes to a more successful nem-
atode infection. Bursaphelenchus xylophilus Bx-FAR-1 expression levels are up-regulated in
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the earlier infection stages of B. xylophilus, and RNA interference (RNAi) of this FAR reduced
infection rates [40]. The expressions of pr-6 and lox-5, genes that are part of the jasmonic acid
immune response pathway, are also found to be much higher when Bx-FAR-1 is silenced, sug-
gesting that Bx-FAR-1 could interfere with this immune response process upon infection [40].
In Meloidogyne incognita, knockdown experiments of Mi-far-1 also showed that the infection
process and parasite reproduction are greatly reduced when Mi-FAR-1 is reduced. Mi-FAR-1
also appears to play a role in nematode defense against bacterial infection, as its reduction
results in increased bacterial endospore attachment [43]. In Pratylenchus penetrans, suppres-
sion of Pp-FAR-1 protein reduced nematode reproduction by up to 70% compared to control
lines [33].

The strongest evidence that FARs alter susceptibility to infection in plants is associated with
Melodogyne javanica Mj-FAR-1 that influences parasitic infection of tomato roots. Transgenic
tomato roots constitutively expressing Mj-FAR-1 showed a higher susceptibility to nematode
infection and allow for faster nematode growth once infected. RNA interference experiments
showed that nematode maturation slows when Mj-far-1 is silenced [44]. Furthermore, expres-
sion of Mj-far-1 resulted in suppression of jasmonic acid responsive genes such as pin2 and X-
thionin, similar to findings in Bx-FAR-1 research, although LOX gene expression is not signifi-
cantly affected [44]. These are striking data on phenotypic changes in immunity and resilience
to infection in plants. Silencing of Ha-far-1 resulted in a significant reduction in reproduction
of H. avenae, and analysis of gene expressions showed that Ha-far-1 transcript levels during
parasitic stages are higher compared to nonparasitic stages [16,36].

In Radopholus similis, comparison between a highly pathogenic population (Rs-C) and a
less pathogenic population (Rs-P) showed that Rs-far-1 expression is 2.5 times higher in the
highly pathogenic population. RNA interference assays also indicated that Rs-FAR-1 regulates
levels of allene oxide synthase (AOS), a component of the jasmonic acid pathway, and a reduc-
tion in reproduction and pathogenicity was also observed after Rs-far-1 knockdown, and Rs-
far-1 expression level is also increased in the more pathogenic nematode population [20]. In
Arabidopsis thaliana, compared to control plants, AOS expression is significantly decreased
when treated with regular R. similis, but is significantly increased when treated with Rs-far-1-
silenced R. similis [20]. Taken together, these findings suggest that FAR proteins assist in para-
sitic infections by manipulating the host plant jasmonic acid immune signaling pathway and
contribute to the nematodes’ reproduction in host tissues.

Animal-parasitic nematode FAR functions

Research on the immunomodulatory effects of FARs in animal-parasitic nematodes is much
more limited compared to their plant-parasitic counterparts. FARs are secreted into host tis-
sues during parasitic nematode infection, yet little is known about how FARs interact with
host tissues [45,46]. In Strongyloides stercoralis, analysis of differential gene expression showed
that in the infective life stage, a gene coding for a FAR protein is among the most highly
expressed genes, suggesting that the protein plays a significant role during the infection pro-
cess [39]. Bm-FAR-1 and Bm-FAR-2 from B. malayi are targets of strong IgG1, IgG3, and IgE
antibody responses in infected individuals, showing that FARs are targets of host immune
responses during a nematode infection [19]. The stage-dependent abundance of FARs and
their ability to elicit strong immune responses in mammalian hosts hint at their importance
during infection processes.

In S. carpocapsae, experiments with FAR-expressing transgenic Drosophila melanogaster
showed that FAR proteins directly modulate host immunity [47]. Flies expressing or injected
with Sc-FARs exhibited a significant decrease in C18s and their oxylipin derivatives, such as
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linoleic acid, 9,(10)-EpOME, and 9-HODE, a decrease in resistance to bacterial infection, and
a significant reduction in other aspects of fly immune responses such as the phenoloxidase cas-
cade and antimicrobial peptide production [47]. Sc-FAR-1 and Sc-FAR-2 bound strongly to
linoleic acid and 9,(10)-EpOME in vitro and altered availability of linoleic and oleic acids, 9,
(10)- and 12,(13)-EpOME, 9,(10)- and 12,(13)-DiHOME as well as 9- and 13-HODE in circu-
lation in vivo, suggesting a mechanism for immunomodulation in animals through depletion
of lipid signaling molecules necessary for immune response pathways [47]. These C18s and
oxylipin derivatives are hypothesized to act as signaling molecules in a similar way to eicosa-
noids function in mammalian systems [48]. Little is known about the immunomodulatory role
of the retinol binding pocket; however, retinol and retinoic acid are known to play a role in the
differentiation and maturation of innate immune cells [49]. Currently, the strongest evidence
supporting an immunomodulatory role for FARs in an animal system are derived from an
insect model [47], and so more experiments need to be done in a mammalian model system to
elucidate the connection between FAR proteins and host immunity.

FARs as a target for therapeutic designs

Parasitic nematode FAR proteins do not have an equivalent in mammals [27], highlighting the
possibility that they may serve as a potential new target for antihelminthic treatments [29,50].
For example, ivermectin, one of the main drugs used to treat helminth infections, has been
shown to inhibit the function of FARs by competing with ligands in the retinol-binding sites
[50]. Moreover, FARs elicit a strong antibody response in animal hosts, highlighting their
potential as vaccine candidates targeting parasitic nematodes. Intriguingly, early vaccination
experiments have shown a decrease in worm burden in vaccinated hosts upon infection [13],
and vaccination of gerbils with recombinant Bm-FAR-1 lead to a significant reduction in adult
B. malayi worms, alluding to the importance of FARs to nematode survival in the host [19].

Conclusions

FARs are a unique protein family found in most nematodes, but there are no obvious ortho-
logs in plants or other animals. They have immunosuppressive effects on plant and animal
host immune systems including the jasmonic acid pathway, phenoloxidase activity, and anti-
microbial peptide production. Detailed ligand binding and structural studies combined with
functional characterization support a role for FARs in modulating host immunity. Future
work to further evaluate the role of FARs in the complex mammalian immune system will lead
to a better understanding of immune signaling in helminth infections. Interdisciplinary work
between plant and animal model systems will also aid to further elucidate FARs’ functions in
parasitism.
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