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Caenorhabditis elegans has been used in research for years to clarify the genetic

cascades and molecular mechanisms of aging, longevity, and health span. Health span

is closely related to frailty; however, frailty has a different concept and is evaluated using

various parameters in humans, such as Fried’s Frailty Criteria. The C. elegans model

has several advantages when performing a chemical screen to identify drug candidates.

Several mouse models of frailty were recently developed, including a homozygous

IL-10 knockout. These mouse models are useful for understanding human frailty;

however, they are not appropriate for primary drug screening because they require large

spaces, expensive cost, and time consuming assessments. Therefore, a combination

of these models may be a promising tool for discovering drugs and understanding the

mechanisms of frailty. In addition, natural products, and herbs are attractive sources

of novel drugs with pharmacological activity and low toxicity, in fact, over 60% of

currently-available drugs are estimated to be related to natural compounds. In this review,

the possibility of identifying natural agents (i.e., herb extracts and compounds) that could

improve frailty are proposed, and the advantages and limitations of these models are also

discussed.
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INTRODUCTION

Frailty is a complex geriatric syndrome that is associated with increased vulnerability and a reduced
physiological reserve that could lead to adverse health outcomes such as an increased risk of
falls, dependency, disability, hospitalization, and mortality (1, 2). Shimada et al. performed a
population-based survey to ascertain the prevalence of frailty in 5104 older (≥65 years; mean age:
71 years) Japanese adults (3). The authors showed that the rate of frailty increased with age and
the overall prevalence of frailty was 11.3% (5.6, 7.2, 16, and 34.9% in the 65–69, 70–74, 75–79, and
≥80 age groups, respectively) (3). The global prevalence of physical frailty assessed using Fried’s
criteria was summarized by Choi et al. (4). The authors included data from the USA, Europe, and
Asia and found that the prevalence of frailty and prefrailty varied between 4.9 and 27.3%, and 34.6
and 50.9%, respectively (4).

The global population is aging rapidly. In 2015, ∼8.5% of the global population (7.3 billion)
was aged ≥65. The number of older individuals is continuing to increase and is estimated to reach
12.0% (equivalent to 1 billion people) of the global population by 2030, and 16.7% (9.4 billion) by
2050. This increase in population is mainly due to low fertility and increased life expectancy (5).
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Frailty is associated with multisystem impairments and
chronic disease risk factors including cognitive impairment,
diabetes, osteoporosis, chronic cardiovascular disease, kidney
disease, malnutrition, chronic inflammation, and sarcopenia (2,
6, 7). These risk factors are related to the quality of life of older
people and eventual mortality (2, 8–10). Therefore, given the
emergent trend in global aging, interventions against frailty are
a major concern (11).

FRAILTY CRITERIA IN HUMANS

Clinical frailty criteria were first introduced in cardiovascular
health studies and included unintentional weight loss, self-
reported fatigue or feelings of unusual tiredness or weakness, low
activity levels (based on the frequency and duration of physical
activity), slow walking times, and low grip strength (based on
body mass index). These criteria were used to define frailty as
either non-frail, prefrail, or frail (Fried Frailty Index) (10). In
addition, the Clinical Global Impression of Change in Physical
Frailty (CGIC-PF) (12); the Fatigue, Resistance, Ambulation,
Illnesses, and Loss of Weight questionnaire (FRAIL scale) (13);
the Canadian Study of Health and Aging (CSHA) clinical frailty
scale (14); and the Gerontopole Frailty Screening Tool (GFST)
(15) are also used to assess frailty.

Frailty is considered to be a dynamic process of accelerated
aging in the absence of disability (16); however, it is difficult to
understand the molecular and genetic mechanisms of human
aging and frailty due to the ethical problem, genetic diversity, and
lifestyle variability of the older human population.

MAMMALIAN MODELS OF FRAILTY

Several mouse models and their assessment tools were recently
developed and provided an invaluable opportunity to conduct
research into the mechanisms of frailty, the interventions to
ameliorate frailty, and the effects of frailty on adverse outcomes
using validated models (17–24).

Parks et al. were the first to attempt to establish a mouse frailty
scale, which contained 31 parameters including activity levels,
hemodynamics, body composition, and serum analysis. The
authors found that frailer oldermice showed the greatest myocyte
hypertrophy and the worst peak contraction (17). However, this
assessment had its limitations, as the experimental equipment
used is uncommon for most laboratories. Whitehead et al.
were the next to report an animal frailty index that contained
visually-inspected and non-invasive assessment parameters (18).
Liu and Graber et al. reported another mouse frailty index that
used an activity wheel, a rotarod, and an inverted-cling grip
device and resembled the Fried Frailty Test used in humans
(19).These criteria provide a platform for validated preclinical
animal models and have been implemented for a wide range of
applications (25).

Graber et al. evaluated the effects of physical interventions in
old mice using the mouse frailty index established by themselves
(19). The authors found that voluntary aerobic exercise
significantly improved the frailty score in C57BL/6 mouse (26).

The effects of dietary and pharmaceutical interventions on frailty
were also investigated using the criteria developed by Whitehead
(18), and these treatments significantly reduced the mouse frailty
index in DBA/2J and C57BL/6J mouse (27).

In addition, a rat frailty index was also recently developed
(28, 29). Miller et al. selected criterion tests and configured
appropriate cutoff points and indices to identify frailty in aged
Fischer F344 rats. This model adapted existing clinical and
preclinical indices, including grip strength, endurance, walking
speed, and physical activity, that were used in human and mouse
frailty indices. Yorke et al. also independently developed a rat
frailty index for aged Fischer F344 rats using 27 criteria (29).

Animal models, such as transgenic and gene knockout mice,
continue to be useful tools for preclinical studies in various
diseases. Walston et al. reported a frail mouse model (i.e., IL-
10tm/tm) and characterized the physical and biological features
to be similar to those seen in human frailty (30, 31). Mice
carrying a homozygous targeted mutation of the IL-10 gene (IL-
10tm/tm) were first generated by Kuhn et al. (32). This mouse
was developed as a model of colitis but was found to exhibit a
frail phenotype that was characterized by inflammation, reduced
muscle strength, and a reduced health span. Aged IL-10tm/tm

mice showed stiffer vasculature, which was in accordance with
the increased COX-2 activity and thromboxane A2 receptor
activation (33). In addition, ATP synthesis and the free energy
released from ATP hydrolysis in skeletal muscle was reduced in
this frail mouse model, which provides some mechanistic insight
into skeletal muscle weakness in mouse and human frailty (33).
Higher glucose level may be a risk factor for frailty in older
human adults (34), and frail and prefrail older adults present
lower estimated resting metabolic rate (eRMR) than non-frail
adults, together with lower expired volume (Ve) and oxygen
consumption (VO2) values that were partially compensated by
an respiratory frequency (RF) increase (35).

Westbrook et al. investigated the older IL-10tm/tm mice
concerning on metabolic parameters shown in older humans,
i.e., glucose metabolism, oxygen consumption (VO2),
respiratory quotient (RQ), spontaneous locomotor activity,
body composition, and plasma adipokine levels. Interestingly,
VO2, fat mass, plasma adiponectin, and leptin were decreased
with age in IL 10 tm/tm mice compared to controls, although
insulin sensitivity, glucose homeostasis, locomotor activity, and
RQ were not significantly altered. These findings suggest that
frailty of this mouse model may be caused by reduction of fat
mass, hormonal secretion and energy metabolism (36). Deepa
et al. reported a new mouse model of frailty, Sod1KO mouse
lacking the antioxidant enzyme Cu/Zn superoxide dismutase
(24). The Sod1KO mice exhibited some features of human frailty
including weight loss, weakness, low physical activity levels,
exhaustion, increased inflammation, and sarcopenia. Dietary
restriction in the Sod1KO mouse prevented the progression of
frailty (24).

Thus, mouse frailty indices and normal and genetically-
modified mouse models are important research tools that allow
us to understand the biological mechanisms of frailty and
evaluate novel interventions to ameliorate frailty. However, drug
screening in mammalian models is expensive, time-consuming,
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requires large amount of drug candidates, and is relatively low
throughput for many laboratories, although mammalian models
are the most reliable and important platforms for preclinical
studies.

CAENORHABDITIS ELEGANS: A
BENCHTOP ANIMAL MODEL FOR INITIAL
DRUG SCREENING

Non-mammalian model organisms are attractive options for
discovering antifrailty drugs. Among the various well-known
model organisms (i.e., Danio rerio (zebrafish), Drosophila
melanogaster (fruit fly), and the nematode, C. elegans), C. elegans
is the most studied animal in the field of aging, lifespan, and
health span (37). It was first introduced to the field of basic
biology in 1963 and has been used in a variety of studies assessing
development (38), cell death (39), RNA interference (RNAi)
(40), and aging (41). In fact, the genetic basis of aging has
first recognized in C. elegans via the discovery of age-1, daf-
2, and daf-16 mutants (42–44). The lifespan was doubled by
mutations in the age-1 (PI3K, phosphoinositide 3-kinase) or daf-
2 (InR, insulin/IGF-1 receptor) genes, and reduced in the daf-16
(FOXO transcription factor) mutant. Following this pioneering
discovery, many researchers have used this model to focus on
the genetic analysis and exploration of chemical interventions for
longevity.

The pioneering research using C. elegans revealed that
numerous pathways, including insulin/insulin-like growth

factor-1 signaling, target of rapamycin signaling, AMP-activated
protein kinase, sirtuins, mitochondrial stress-signaling pathways,
and caloric restriction (45), were conserved in different
organisms (e.g., C. elegans, D. melanogaster, andMus musculus),
and several chemicals have been investigated as potential
candidates for extending life-span (41, 46, 47) (Figure 1).

C. elegans have many desirable features for drug discovery,
such as their ease of maintenance in the laboratory, their
transparent bodies for anatomical observation, their high genetic
homology (60–80%) to humans, the publication of the complete
genome sequence (48–50), conserved biological molecular
responses, essentially no ethical problems, their high fertility rates
(∼250 eggs/worm within several days), and the availability of
molecular biology tools (i.e., transgenic, gene knockouts, and
RNAi knockdowns) (37). In addition, their short lifespan (∼3
weeks) and small size are favorable for the screening of antiaging
drugs due to the reduced experimental costs and their capacity
for high throughput (51) (Table 1).

Frailty is defined as a condition of decreased physiological
reserves by multisystem dysregulation and increased
vulnerability to stressors (2). Similarly, aging is defined as
the decreased adaptability to internal and external stress
and increased vulnerability to disease and mortality by an
accumulation of deficits derived from the progressive structural
and functional decline of proteins, cellular organelles, tissues,
and organs (52, 53). Both of these definitions have a lot in
common, although the phrases are different.

Moreover, many age-associated features described in
mammals, including neuromuscular degeneration, weakness

FIGURE 1 | Aging modulating compounds. 1; Metformin (biguanide antiglycemic agent, AMPK activation), 2; Rapamycin (immune suppressing agent, mTOR

inhibitor), 3; Resveratrol (polyphenol, sirtuin activator), 4; Spermidine (polyamine, induction of autophagy), 5; Aspirin (COX inhibitor, antithrombosis, antioxidant), 6;

Masoprocol (catechol, antioxidant, antiinflammation).
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TABLE 1 | Feature of C. elegans.

• Multicellular animal

• Small size (∼1mm in length)

• Short life cycle (∼3 days)

• High progeny production (∼250 offspring in ∼3 days)

• Conservation of cellular processes and genes

(Homologs have been identified for 60–80% of human genes)

• ADMET characteristics

• Low husbandry and animal costs

• Simple and high-throughput screening assays

• Availability of mutant and transgenic strains

to stressors, elevated infection levels, decreased physiological
activity, and increased mortality, are also observed in C. elegans
models (54).

Aging in C. elegans is also characterized by a severe
loss of muscle mass and function (sarcopenia) (55), which
gradually interferes with movement and the ingestion of food.
Muscle mitochondrial energy dysregulation (56–58) and an
accumulation of oxidative damage and aggregates in muscle
cells are also likely to be related to muscle dysfunction in aged
C. elegans (59, 60).

Several research papers have recently documented the
relationship between lifespan, health span, and frailty in
C. elegans. Newell et al. reported that mutants of age-related
pathway genes in C. elegans showed that long-lived mutants
displayed prolonged midlife movement and did not prolong the
frailty period assessed by locomotor decline (56, 61); however,
Bansal et al. previously reported controversial results showing
that some long-lived mutants increased the proportion of the
frailty period rather than health span (62).

When considering an improvement in quality of life, the
health span-to-gerospan ratio is much more important than
lifespan extension alone (62). Therefore, interventions focusing
on the health span along with lifespan of the aging population
are favorable.

Aging is characterized by muscular dysfunction as observed
in sarcopenia and frailty. These two phenotypes are substantially
overlapped with each other, and many of the adverse outcomes of
frailty are probably mediated by sarcopenia (63–65).

In aged C. elegans, a gross decline in general behaviors
(i.e., locomotion and feeding) is correlated with degeneration
of muscle structure and contractile function (55). Loss of
muscle mass is the major cause of aging-related functional
decline, sarcopenia, and frailty. Several factors are correlated
with sarcopenia including contraction-related cellular injury,
oxidative stress, endocrine changes, and a reduced regenerative
potential. In addition, both functional and structural decline in
the pharynx during aging is significantly delayed in mutants with
reduced muscle contraction rates that affect the initiation and
progression of sarcopenia during aging (55, 60).

In addition,C. elegans containing a transgenic strain of human
amyloid beta 1–42 (Aβ) under a neuron-specific promoter, as an
Alzheimer’s disease model, showed eight-fold slower locomotion

SCHEME 1 | Plausible work flow for anti-frailty agents.

than wildtype worms. This model seems consistent with the
frailty seen in Alzheimer’s patients (66–68). Tan et al. found a
high prevalence of frailty in Parkinson’s disease recently (69).
The transgenic C. elegans of human α-synuclein gene as a
Parkinson’s disease model has been used for the demonstration
of a natural product, squalamine, for the reduction of α-synuclein
aggregation and muscle paralysis (70).

Sonowal et al. recently showed that small molecules, indole
and derivatives, e.g., indole-3-carboxaldehyde and indole acetic
acid, from commensal microbiota could extend the health span
(i.e., the non-frailty period) of C. elegans. These compounds were
also effective inD. melanogaster andM.musculus, therefore these
compounds may become potential drug candidates to extend the
health span and reduce frailty in humans (71). In this research,
a lifespan assay (to measure longevity), two locomotion assays
related to sarcopenia (e.g., a thrashing motility assay and a
pharyngeal pumping assay), and a heat-stress assay (to measure
vulnerability) were performed in C. elegans. These assays are
popular, reliable, and well-studied so far as the C. elegans health
span assay (72).

CONCLUSION

According to the 2016 review by Newman and Cragg, natural
products continue to be an important source of clinical trial drugs
and drug candidates; for example,∼65% of small-molecule drugs
approved from 1981 to 2014 were directly or indirectly related to
natural compounds (73). Among the various natural resources
(i.e., plants, microbials, and marine organisms), plants have a
long history ofmedicinal use that goes back to the ancient records
of Mesopotamia, which chronicled their use in the treatment of
various diseases. The total number of higher plants species in
the world is estimated to be around 250,000; however, many of
these remain to be characterized phytochemically. Thus, natural
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products and herbs are still attractive sources of novel drugs with
pharmacological activity and low toxicity (74).

The C. elegans model is advantageous when performing a
chemical screen to identify drug candidates to increase the
health span. Among the various health span assays, longevity,
thrashing motility, pharyngeal pumping, and heat stress assays
are preferable as they have already been successfully utilized for
the discovery of candidate compounds (71).

Wildtype and genetically-modified mouse models are useful
for estimating efficacy on human frailty; however, they have
several disadvantages for primary drug screening because of their
scale, cost, and labor intensiveness. Therefore, the combination

of these models may provide a promising workflow to discover
drugs and understand the mechanism of frailty (Scheme 1).
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