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Abstract: W/O/W emulsions can be used to encapsulate both hydrophobic and hydrophilic bioactive
as nutritional products. However, studies on protein stabilized gel-like W/O/W emulsions have
rarely been reported, compared to the liquid state multiple emulsions. The purpose of this study was
to investigate the effect of different oil–water ratios on the stability of W/O/W emulgels fabricated
with salt-soluble proteins (SSPs) of Sipunculus nudus. The physical stability, structural characteristics,
rheological properties, and encapsulation stability of vitamin C and β-carotene of double emulgels
were investigated. The addition of W/O primary emulsion was determined to be 10% after the
characterization of the morphology of double emulsion. The results of microstructure and rheological
properties showed that the stability of W/O/W emulgels increased with the increasing concentration
of SSPs. Additionally, the encapsulation efficiency of vitamin C and β-carotene were more than 87%,
and 99%, respectively, and still could maintain around 50% retention of the antioxidant capacity after
storage for 28 days at 4 ◦C. The aforementioned findings demonstrate that stable W/O/W emulgels
are a viable option for active ingredients with an improvement in shelf stability and protection of
functional activity.

Keywords: W/O/W emulgels; Sipunculus nudus; salt-soluble proteins; vitamin C; β-carotene;
co-encapsulation

1. Introduction

Double emulsions are a type of multiple emulsion in which oil-in-water (O/W) and
water-in-oil (W/O) co-exist, offering more advantages than conventional water-in-oil
(W/O) emulsions in the delivery system of bioactives [1–3]. Typically, they are split into
W/O/W and O/W/O multiple emulsions [4]. Double emulsions are gaining interest in the
food and drug delivery industry for encapsulating salt (salted creams), spices (condiments
and sauces), enzymes, vitamins, carotenoids, and omega-3 oils with improved stability [5–8].
However, their actual applications have relatively few examples because of their tendencies
of coalescence, flocculation, and aggregation [9]. Therefore, there are several important
strategies to keep the long-term storage stability of W/O/W emulsions. The crux of these
strategies is balancing the osmotic pressure of the internal and external aqueous phases to
provide good aggregation stability or reduce droplet mobility by increasing the fraction
of the middle oil phases to prevent droplet coalescence, expansion, or collapse [10–12].
Currently, an interesting trend in W/O/W emulsions research is the utilization of natural
emulsifiers and different oil–water ratios for the gel-like emulsion systems fabrication to
enhance their stability. Jiang et al. (2020) [13] found that zein nanoparticles as hydrophilic
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emulsifiers could improve the stability of forming W/O/W emulsions under the high oil–
water ratio (W1:O:W2 = 0.3:3:0.7). Tang et al. (2021) [9] used the fabricated sugar beet pectin-
bovine serum albumin nanoparticles (SBNPs) as a particle stabilizer to develop W/O/W
emulsion gels, which provided insights for improving the storage stability of bioactive
substances. Consequently, the addition of natural proteins as emulsifiers to improve the
stability of double emulgels has gradually attracted the attention of researchers.

Sipunculus nudus (S. nudus) belongs to marine worms, which are rich in numerous
active ingredients such as protein, polysaccharides, and fatty acids [14,15]. Previously, it has
been reported for its immunomodulatory, antioxidant, and anti-fatigue biological activity,
and so on [16]. However, there are few studies about the functional properties of the
S. nudus protein. In our previous study, the crude protein of S. nudus as the sole emulsifier
could successfully develop stable high internal phase emulsion (HIPE) [15]. However, such
a soluble surfactant requires high concentrations to maintain stable gel-like emulsions.
Interestingly, studies have found that salt-soluble proteins (SSPs) can dissolve and swell
(protein hydration) and create a soluble gel during the chopping process. These SSPs
can adsorb onto fat particles and form interfacial protein films to improve emulsification
stability [17]. The interfacial protein membranes can emulsify and fix the fat particles, and
a cohesive protein gel matrix can bind and limit the flow of fat and water [18]. Therefore,
in this study, SSPs of S. nudus were used to prepare the W/O/W emulgels and enhance the
stability of encapsulation of nutraceuticals.

Vitamin C, a water-solution substance, is obtained from fruits, vegetables, and their
products. In addition, vitamin C is used in the food and cosmetic industry as an antioxidant
and nutrient [19]. Simultaneously, β-carotene is a model hydrophobic nutraceutical for the
properties of its potential as both a nutraceutical and natural food colorant [20]. Never-
theless, vitamin C and β-carotene have poor chemical stability under thermal conditions,
light conditions, and storage processes in the food industry, which greatly limits their
applications and reduced their health benefits.

Herein, the main objective of our study was to prepare the stable W/O/W emulgels
using S. nudus protein as an emulsifier of the outer aqueous phase at different oil–water
ratios. The microstructure and properties of double emulsions were analyzed by particle
size, microscopy, and dynamic rheology property measurements. In addition, to further
demonstrate that the emulsion system could be used as a carrier for active compounds, the
encapsulation rates of vitamin C and β-carotene by W/O/W emulgels were also evaluated
as well as the antioxidant activity under different storage conditions. The results of this
study might provide a potential application for producing edible and more stable delivery
systems of double emulsions using protein-based emulsifiers.

2. Materials and Methods
2.1. Materials

Fresh S. nudus were supplied by Dongfeng market in Zhanjiang, Guangdong, China.
Soybean oil (purity >98%, Arawan) was purchased from Wal-Mart (Zhanjiang, China).
Polyglycerol polyricinoleate (PGPR, >75%) was acquired from Shanghai Yuanye Indus-
trial Co., Ltd. (Shanghai, China). Fluorescein isothiocyanate (FITC, 95%, HPLC) and
Nile red (99%) were purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). β-
Carotene (>96.0%) and Vitamin C (>99.7%) were obtained from Aladdin Industrial Co., Ltd.
(Shanghai, China). All other reagents were of analytical grade.

2.2. Extraction and Analysis of Salt Soluble Protein (SSPs) from S. nudus

SSP extraction was carried out with slight modification according to the method
of Han et al. (2020) [21]. Firstly, the body wall of fresh S. nudus was ground using a
meat grinder (SD-JR39, Foshan Shunde Sandi Electric Appliance Manufacturing Co., Ltd.,
Foshan, Zhanjiang, China), and mixed with distilled water (Milli-Q grade, 15.0 MΩ cm)
at 1:2 (w/w) and left at 4 ◦C for 12 h. The mixture was washed twice with distilled water
and then centrifuged at 9569× g for 15 min at 4 ◦C (Sigma/3-30K, Sigma, Osterode am,
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Harz, Germany). Secondly, the precipitation was collected and dissolved in 0.8 mol/L NaCl
solution at 1:4 (w/v), and stirred overnight at 4 ◦C. Then, the solution was centrifuged at
9569× g for 15 min at 4 ◦C. Finally, the supernatants were dialyzed with the 1.0 kDa dialysis
bag in distilled water for 72 h. The dialysate was lyophilized (Alpha 1–4 LDplus, Chirst,
Germany) to produce SSP powders. The purity of SSPs was 92.5% by Dumas Nitrogen
Analyzer (D50, Haineng, Jinan, China). The mean particle size of SSPs was 995.2 ± 50.5 nm.

2.3. Preparation of the Emulsion

W1/O/W2 emulgels were prepared by a two-step process. The primary emulsion
(W1/O) was first prepared and then the primary emulsion and soybean oil were added to
the outer aqueous phase (W2) to prepare double emulgels [13].

2.3.1. Preparation of the Primary Emulsion (W1/O)

The primary emulsion was prepared by adding the phosphoric acid buffer solution
(PB, W1, 0.1 mM, pH 7.4) into soybean oil containing 3.0% (w/w) PGPR. The W1 (4 mL) was
mixed with soybean oil (16 mL) under magnetic stirring at 1000 rpm for 1 min (RT10, IKA,
Staufen, Germany), followed by homogenizing at 12,000 rpm for 3 min using a high-speed
homogenizer (Ultraturrax T18, IKA, Staufen, Germany). The ratio of oil–water was kept
as 2:8.

2.3.2. Type Analysis of Primary Emulsion

The type of primary emulsion was determined by dropping the prepared primary
emulsion (Section 2.3.1) into oil or water for observation. An emulsion was considered an
oil-in-water (O/W) emulsion if the droplets dissolve in water and accumulate in the oil,
and if it was insoluble in water, it was considered a water-in-oil (W/O) emulsion [22].

2.3.3. Preparation of W1/O/W2 Emulgels

For W1/O/W2 emulgels, briefly, the SSPs with different concentrations (0.5, 1.0, 1.5,
2.0, and 2.5 wt%) were dissolved in the buffer solution (PB, 0.1 mM, pH 7.4) as a hydrophilic
emulsifier (W2). The double emulgel (20 g) was prepared by adding the different levels
of W1/O primary emulsion (5, 10, 15, and 20%, w/w), soybean oil, and 25% (w/w) of W2
(1.0% SSPs) to a 50 mL beaker, and then homogenized the dispersions by homogenizer
at 10,000 rpm for 3 min. The sodium azide (0.01 wt%) was added to the emulsions as an
antimicrobial preservative.

2.4. Determination of Particle Size and ζ-Potential

The particle size of double emulgels was measured according to previously reported
methods with some modifications [20]. The particle size distribution and droplet size (d3,2)
of the droplets in W/O/W emulgels were determined using laser diffraction (Mastersizer
2000, Malvern Instruments 164 Ltd., Malvern, Worcestershire, UK). The ζ-potential was
calculated using a Malvern Zetasizer Nano (ZSU5800, Malvern Instruments, UK). Specifi-
cally, the double emulsions were diluted with buffer solutions of the same pH (7.4) to avoid
multiple scattering effects. The buffer solutions and the soybean oil mixtures’ respective
refractive indices were determined to be 1.330 and 1.474. All measurements were constant
in triplicate at 25 ◦C.

2.5. Optical Microscopy and Confocal Laser Scanning Microscopy (CLSM)

The optical micrographs of W/O/W emulgels were observed using an inverted micro-
scope with 20× and 63× objective lens (Leica DMI6000 B, Leica, Heidelberg, Germany). A
confocal laser scanning microscope (FV 3000, OLYMPUS, Tokyo, Japan) was used to obtain
the fluorescence images of the multiple emulsions. Before observation, the oil phase and
the outer aqueous phase were stained with Nile Red and FITC, respectively. The samples
were diluted 10 times with distilled water, then a 10 µL drop was placed on a glass slide
and covered with a cover slip for observation.



Foods 2022, 11, 2720 4 of 15

2.6. Rheological Properties

The rheological properties were measured using a dynamic rheometer (MARS III, TA
Instruments, New Castle, DE, USA) with a parallel plate geometry (steel parallel plate:
P 35 mm, gap: 0.5 mm) according to the method of Cao et al. (2021) [23] with some
modifications. The frequency sweep test was enforced to analyze the dynamic stress–strain
relationships with angular frequency from 0.1 to 100 rad/s at a fixed shear strain of 1.0%
(with the LVR). The shear sweep test was conducted from 0.1 to 100 s−1 to study the change
in the shear rate on the apparent viscosity (η) of emulsion. All samples were measured
at 25 ◦C.

2.7. Storage Stability

The fresh W/O/W emulgels were prepared and stored at 4 ◦C for 0, 10, and 30 days
for stability measurements. The visual appearance and optical micrographs were obtained
to record the phenomenon of cream or sedimentation of emulsions during storage.

2.8. Encapsulation of Vitamin C and β-Carotene

To investigate the encapsulation stability of multiple emulsions, encapsulation yield
and antioxidant activity test of vitamin C (20 mg/mL) in the inner aqueous phase (W1)
and β-carotene (1 mg/mL) in the oil phase of the W1/O/W2 emulgels were conducted
as follows.

2.8.1. Encapsulation Efficiency (EE)

The encapsulation efficiency of the double emulgels was determined based on Hang
et al. (2019) [24] with slight modification. Briefly, 10 mL of the fresh double emulsion
formed was centrifuged at 2392× g for 10 min at 4 ◦C. The separated phase (the aqueous
phase and oil phase) was collected, and the encapsulation efficiency was determined. The
β-carotene content was identified according to the previous method [25]. The samples were
diluted with n-hexane/absolute ethanol (1:2, v/v), and then measured at 450 nm by an
ultraviolet–visible spectrophotometer (U-T6A, Yipu Instrument Manufacturing Co., Ltd.,
Shanghai, China). A linear calibration curve was established using different β-carotene
concentrations (0.5–5.0 µg/mL, y = 0.1948x + 0.0038, R2 = 0.995). Similarly, the vitamin C
content was determined in high-performance liquid chromatography (HPLC, Agilent 1260,
Kyoto, Japan) with a C18 analytical chromatography column (250 mm × 4.6 mm, 5 µm;
118 × 20243; Zhongpu science Inc., Fujian, China) as Wang et al. (2019) [19] described, with
some slight modifications. Vitamin C was dissolved by dimethyl sulfoxide (DMSO) and
then filtered through a 0.22 µm nylon filter prior to analysis. A gradient of the mobile phase
composed of methanol (solvent A) and 0.01% (v/v) phosphoric acid solution (solvent B)
was used according to the following program: 0–5 min, 5% A; 5–6 min, 5 to 15% A; 6–8 min,
15% to 35% A; 8–13 min, 35% to 5% A; 13–20 min, 5% A. The measurement was carried
out with a flow rate of 0.1 mL/min. The eluate was detected using a model UV detector,
set at 245 nm. The injection volume was 10 µL and chromatographed was performed at
25 ± 1 ◦C. The calibration curve was performed using the standard vitamin C solution
(10–600 µg/mL, y = 52359x + 7 ×106, R2 = 0.997). The EE of vitamin C and β-carotene
could be expressed as Equations (1) and (2):

EE vitamin C (%) =
(Nv − Nsi)

Nv
× 100% (1)

EE β-carotene (%) =
(Nc − Nso)

Nc
× 100% (2)

where Nv and Nc were the amounts of vitamin C and β-carotene added into the emulsion,
respectively. Nsi and Nso were the amount of vitamin C and β-carotene in the separated
phase, respectively.
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2.8.2. Determination of Antioxidant Activity

Antioxidant activity evaluation of vitamin C and β-carotene in W/O/W emulgels was
carried out by measuring DPPH· scavenging activity and ABTS+ radical scavenging, based
on the previously described method [26]. Encapsulated vitamin C and β-carotene were
extracted from double emulgels. The emulsions were mixed and stirred with n-hexane and
absolute ethanol (1:2, v/v). The mixtures were centrifuged at 9569× g for 15 min, and the
supernatant was collected for the antioxidant activity test.

In the ABTS+ radical scavenging experiment, a stock solution of 0.0384 g of ABTS+ and
0.0065 g of potassium persulfate in deionized water (10 mL) was obtained and incubated
for 12–16 h in the dark, followed by diluting to 0.700 (±0.001) with ethanol using a UV–
visible spectrometer (UV-8000, Shanghai Yuanxi Instrument Co., Ltd., Shanghai, China).
Then, the sample was added to the mixture of ABTS+, and the absorbance was measured
at 734 nm after 30 min. The standard curve was determined with Trolox as standard
(y = 0.1063x + 0.0008, R2 = 0.990). The retention of antioxidant activity (RA, %) of the
samples against the ABTS+ free radical was obtained using the following Equation (3):

RA =
Gt

G0
× 100% (3)

where G0 and Gt (µg Trolox/g sample) are the radical scavenging activity of initial emul-
sions and of the measured emulsions, respectively.

For the DPPH· scavenging activity test, samples were incubated with 4 mg/100 mL
of methanolic solutions of DPPH· in the dark for 30 min, and absorbance was recorded
at 517 nm. The DPPH· scavenging activity was also assessed with Trolox as standard
(y = 0.0846x + 0.0137, R2 = 0.995). The retention of antioxidant activity (RA, %) of the
samples against the DPPH· free radical was calculated according to Equation (3).

2.9. Statistical Analysis

All the statistical analysis was conducted in triplicate. The data were analyzed using
SPSS 16.0 (2010, IBM, Armonk, NY, USA) by ANOVA (p < 0.05), and the means values were
separated by Duncan’s test.

3. Results and Discussion
3.1. Characterization of the Primary Emulsion

Figure 1a showed the visual appearance of primary emulsions in oil or water, which
displayed that it was dispersed in oil and aggregated in the water phase. Therefore, the
primary emulsion was identified as a water-in-oil (W/O) emulsion.

In this part, to explore the possibilities of W/O/W emulgels stabilized by SSPs at
different oil–water ratios, the addition of W/O primary emulsion was gradually increased
from 5% to 20% while keeping the concentration of SSPs. All fresh double emulsions
exhibited gel-like behavior, and the droplet size gradually increased with the increasing
addition of primary emulsions from optical micrographs (Figure 1b,c). The percentage
of PGPR and internal water phase of W/O/W emulsion gel system increased with the
increase addition of primary emulsion. Interestingly, previous studies have reported that
the droplet size of the W/O emulsions reduced with increasing PGPR due to its lipophilic
emulsification characteristics [27,28]. However, the droplet size of W/O/W emulgels
increased from 11.23 to 13.07 µm with increasing primary emulsions from 5% to 20%
(Figure 1d). This suggested that the primary emulsion might have influenced the tendency
for the double emulsion to aggregate. Here, we proposed two possible reasons for the
above phenomenon: (1) Competitive absorption of the excessive PGPR and protein (W2)
at the external interface during the formation procedure of the double emulsion, which
weakened the absorption efficiency of protein. (2) The osmotic pressure difference between
the inner and outer aqueous phase was affected by the increase in the inner aqueous
phase, which resulted in the diffusion of the inner aqueous phase to the outer aqueous
phase [29]. Additionally, there was little change (non-significant) (p > 0.05) in the ζ-potential
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(Figure 1e) values in all double emulsions. It suggested that the interfacial composition of
fresh emulsion with different W/O primary emulsion additions was relatively constant [30].
As shown from confocal laser scanning microscopy (CLSM) in Figure 2, it was obvious that
the inner aqueous phase, the oil phase, and the outer aqueous phase of double emulgels
were not dyed (bleak), Nile red dyed (red), and FITC dyed (green), respectively. Thus, the
double emulgel was a type of water-in-oil-in-water (W/O/W) emulsion.
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Figure 1. The type of primary emulsion (3.0% PGPR) (a); Visual appearance (b) and optical micro-
graphs (c) of W1/O/W2 emulgels (W2, 1.0 wt% SSPs) prepared by different additions of W1/O
primary emulsion (5, 10, 15 and 20%). Scale bars, 100 µm and 50 µm, respectively. Droplet size (d3, 2)
(d) and ζ-potential (e) of W1/O/W2 emulgels with different addition of W1/O primary emulsion.
Different letters in sub-figure (d) means significance difference (p < 0.05).

Rheological properties could provide some valuable information for the application
of emulsions [25]. Frequency sweep curves and apparent viscosity curves were presented
in Figure 3. For the frequency sweep test (Figure 3a), W/O/W emulgels prepared by
adding different primary emulsions always had higher energy storage modulus (G′) than
loss modulus (G′), which indicated that these emulsions were of a gel-like structure. In
Figure 3b, the viscosity of all samples decreased as the shear rate increased, and the
increased addition of W/O primary emulsion resulted in a lower viscosity. Therefore, the
number of primary emulsions used to formulate the double emulgels had a major impact
on their stability.

Overall, these results indicated that the fresh W/O/W emulgels system formed by
the addition of different W/O primary emulsions could maintain the gel-like state, but
the stability of the double emulsion gradually decreased when the addition of primary
emulsions exceeded 10% (w/w).
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Figure 3. Rheological properties of W1/O/W2 emulgels (W2, 1.0 wt% SSPs) with different additions
of W1/O emulsion (5, 10, 15, and 20%). Frequency sweeps curves (a) of the multiple emulgels at
fixed strain (1.0%, with the LVR) with frequency ranging from 0.01 to 15 Hz; Apparent viscosity
(b) of the samples with shear rate from 0 to 100 1/s.
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3.2. Effect of the SSP Concentration on the Stability of the W1/O/W2 Emulgels

Seeking to study the influence of SSPs on the stability of the double emulsions, varied
concentrations of SSPs (0.5 to 2.5 wt%) were used to stabilize the W/O/W emulgels. The
visual appearance pictures (Figure 4a) of the double emulgels (W1/O primary emulsion,
10%) showed that the gel-like appearance could be maintained after inversion. This might
have led to the formation of a stable gel-like double emulsion by restricting the fluidity of
the internal phase [31]. A similar phenomenon was found in the hydrogenated soybean oil
double emulsions [30].
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W1/O/W2 emulgels are illustrated in Figure 4c,d. The mean particle diameter decreased
from 15.876 to 9.013 µm with increasing the SSP concentration from 0.5 wt% to 2.5 wt%.
There was no significant (p > 0.05) change in double emulsion particle size between 2.0 wt%
and 2.5 wt% SSPs. This effect could also be observed in particle size distribution. As
the concentration of SSPs increased, the main peak around 10 µm shifted slightly to the
left and decreased in intensity. These phenomena could be attributed to the sufficient
number of SSPs adsorbing onto the oil–water interface to cover the larger interfacial
area, resulting in the generation of smaller droplets [23]. According to earlier research,
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smaller oil droplets pack together more tightly, creating an emulsion system that is more
stable [32]. Therefore, the stability of double emulgels was strengthened by increasing
the SSPs concentration. Meanwhile, the ζ-potential values (Figure 4e) of emulsions were
40 ± 5 mV, which was slightly changed (p > 0.05) at different protein concentrations. The
relatively high negative charge leads to strong electrostatic repulsion between the droplets
to maintain good physical stability [1,34]. Additionally, the optical micrographs (Figure 4b)
showed the obvious W/O/W structure features with small water droplets dispersed inside
the larger oil droplets. The CLSM image (Figure 5) showed that the green on the left side of
the image was the outer aqueous phase stained with FITC, and the red and black in the
middle were the oil phase and inner aqueous phases. It further verifies the water-in-oil-in-
water type of the W/O/W emulgels in Figure 4b.
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Rheological analysis was conducted to characterize the gelling behavior and viscoelastic
property of emulsions. The frequency sweeps test of double emulgels is depicted in Figure 6a.
All emulsions showed a higher storage modulus (G′) than the loss modulus (G′′), and there
was no crossing-over between G′ and G′′. This phenomenon could be regarded as an elastic
behavior, demonstrating the establishment of a gel-like network structure [35]. This might
be because SSPs have a strong gel property, which could form a viscoelastic interface layer
at the oil–water interface [36]. In addition, G′ gradually enhanced as the amount of SSP
concentration increased, which indicated that the stability of the W/O/W emulgels system
also gradually increased. The apparent viscosity test was depicted in Figure 6b, where the
viscosity of the emulsion tends to decrease as the shear rate increases from 0 to 20 1/s,
indicating the shear-thinning characteristic. These results manifested that the emulsion had
a pseudo-plastic behavior [37]. Moreover, the apparent viscosity of double emulgels was
increased with the increase in SSP concentration. This was mainly attributed to the decrease
in particle size and the increase in the specific surface area of the emulsion, which leads to an
increase in the number of emulsion droplets and droplet-droplet interactions [23]. There were
similar research findings by Guo et al. (2020) [32].
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3.3. Storage Stability

To determine the potential shelf life of double emulgels, the visual appearance (W2:
0.5 wt%, 1.0 wt%, 1.5 wt%, 2.0 wt%, and 2.5 wt%) and optical micrographs (W2: 2.0 wt%
and 2.5 wt%) were evaluated by observing the stable W/O/W emulgels during storage
at 4 ◦C for 0, 10, and 30 days, respectively. In the inverted visual appearance images of
Figure 7, the gel-like structure could be found in fresh double emulgels (0 days). The
double emulsion sample remained gel-like at 2.5 wt% of SSP concentration after 30 days
of storage. In addition, the fluidity of the formed double emulgels increased and could
flow freely at values of 0.5 wt% to 1.5 wt% of the SSPs when the storage time was increased
from 0 to 10 days. A similar phenomenon could be confirmed in the optical micrographs.
Compared to the fresh emulsion, the droplet size of double emulgels (W2: 2.0 wt%, 2.5 wt%)
increased significantly (p < 0.05) after storage. This result revealed that aggregation of the
emulsions occurred during storage. This could be due to the disruption of the gel state
of the double emulsions, leading to oil-off, and thus affecting the stability of the overall
emulsion system [30].

3.4. Encapsulation of β-Carotene and Vitamin C in the W1/O/W2 Emulgels

Multiple emulsions as the special two-compartment structure could simultaneously
encapsulate both water-soluble and lipid-soluble active ingredients, especially environmen-
tally sensitive substances (ease of degradation and oxidation) [38]. The embedding stability
of the W1/O/W2 emulgel system was evaluated by analyzing the encapsulation efficiency
of vitamin C and β-carotene and antioxidant capacity under different storage temperatures.
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3.4.1. Encapsulation Efficiency

The ability of gel-like emulsions as delivery systems for the simultaneous encapsulation of
hydrophilic and hydrophobic was analyzed. As shown in Figure 8, the encapsulation efficiency
of vitamin C embedded in the W/O/W emulgels stabilized by 1.0% and 2.0% SSP was 87.3%
and 91.2%, while the β-carotene was 99.7% and 99.8%, respectively. The encapsulation rate
of β-carotene did not significantly increase (p < 0.05) when the concentration of SSPs in the
external aqueous phase was raised from 1.0% to 2.0%, while the encapsulation rate of vitamin
C did. This phenomenon further indicated that the stability of the double emulsion system
increased with increasing SSP concentration. Compared with the previous study, the encapsu-
lation efficiency of β-carotene was different to other delivery systems such as 6.0% bran wax
(EE = 94.0%) [39], nanoemulsion (EE = 86.8%) [40], and zein microcapsule (EE = 91.7%) [41]. For
vitamin C, the encapsulation rates of other delivery systems are as follows: whey protein-pectin
(EE = 84.0%) [42], bovine serum albumin and pectin (EE = 65.3%) [43], and 2.0 mmol/g gelatin-
sodium caseinate (EE = 97.0%) [44], and so forth. Therefore, the encapsulation efficiency of the
double emulgel system, encapsulating vitamin C and β-carotene, was acceptable compared
to other delivery systems for bioactive substances. Additionally, compared with β-carotene,
there was a relatively low encapsulation efficiency of vitamin C in the W/O/W emulgels. This
was mainly due to the hydrophobic environment between the inner and outer aqueous phases
where more vitamin C was transferred to the outer aqueous phase during the preparation of
W/O/W emulgels [9].
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3.4.2. Antioxidant Ability

Antioxidant capacity experiments were performed to evaluate the ability of the emulsion
delivery system to protect against the functional activity materials. Figure 9 showed the retention
of antioxidant capacity of vitamin C and β-carotene embedded in the W/O/W emulgel system
under different temperatures. There was a similar trend in all curves at 4, 37, and 55 ◦C, which
was that the retention of antioxidant ability decreased with increasing storage days. Specifically,
as the storage time increased, the retention of ABTS+ scavenging activity of double emulgels
reached 49.2–93.2%, 17.6–37.5%, and 6.0–23.5%, and the DPPH· reached 56.3–95.8%, 10.9–65.1%,
and 8.8–14.7% when the temperatures were 4, 37, and 55 ◦C, respectively. It was obvious
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that vitamin C and β-carotene loaded in double emulgels had higher retention of antioxidant
activity during storage compared to unencapsulated at different temperatures. On the one
hand, these results showed that the reduction in vitamin C and β-carotene in double emulgels
was delayed, which might be due to the existence of two interfaces that hindered oxygen
exposure, slowing the degradation of the embedded substances [45]. On the other hand, the
storage temperature had a greater impact on the retention of antioxidant ability of vitamin C
and β-carotene encapsulated in all multiple emulsions. It illustrated that the heat treatment
decreased the stability of the W/O/W emulgels.
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4. Conclusions

In summary, the gel-like W/O/W emulsion system could be successfully formed from
food-grade ingredients using a relatively rapid and simple method at different oil–water
ratios. The stability of the emulsion system was influenced by different additions of W/O
primary emulsion. In order to obtain a double emulgel system with better stability, the
addition of primary emulsion of 10% was identified. Moreover, the gel-like structure of the
fresh formation emulsion system could be engendered at the SSP concentration in the range
of 0.5–2.5 wt%, and the stability of double emulgels increased with the increase in SSP
concentration. Additionally, these gel-like structures of double emulsions could provide
an important delivery system for simultaneous embedding hydrophilic and hydropho-
bic components. Co-encapsulation of vitamin C and β-carotene in this delivery system
resulted in a higher encapsulation efficiency and longer shelf-life. Overall, the structure
of these double emulgels provided a better appearance, longer shelf-life, and unique rhe-
ology compared to conventional W/O/W double emulsions. We are convinced that the
fabrication of gel-like double emulsion using natural materials as a high encapsulation
rate of bioactive molecules and stability might have great potential for applications in the
food, cosmetics, and pharmaceutical industries. However, the bioaccessibility and thermal
stability of hydrophobic and hydrophilic elements contained in W/O/W emulgels should
be investigated in future research.
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