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Abstract 40 

Exonic variants present some of the strongest links between genotype and phenotype. 41 

However, these variants can have significant inter-individual pathogenicity differences, known 42 

as variable penetrance. In this study, we propose a model where genetically controlled mRNA 43 

splicing modulates the pathogenicity of exonic variants. By first cataloging exonic inclusion from 44 

RNA-seq data in GTEx v8, we find that pathogenic alleles are depleted on highly included 45 

exons. Using a large-scale phased WGS data from the TOPMed consortium, we observe that 46 

this effect may be driven by common splice-regulatory genetic variants, and that natural 47 

selection acts on haplotype configurations that reduce the transcript inclusion of putatively 48 

pathogenic variants, especially when limiting to haploinsufficient genes. Finally, we test if this 49 

effect may be relevant for autism risk using families from the Simons Simplex Collection, but 50 

find that splicing of pathogenic alleles has a penetrance reducing effect here as well. Overall, 51 

our results indicate that common splice-regulatory variants may play a role in reducing the 52 

damaging effects of rare exonic variants.  53 

Introduction 54 

Incomplete penetrance is a well known phenomenon, where an individual carries a disease-55 

associated allele, but develops no symptoms of the disease themself (Forrest et al. 2022; 56 

Gettler et al. 2021; Shawky 2014). Similarly, variable expressivity refers to analogous gradual 57 

differences in disease severity; here we refer to both as variable penetrance. These instances 58 

are likely underreported in the literature due to ascertainment bias, when many studies are 59 

based on sequencing due to a prior genetic condition (Cooper et al. 2013; Dewey et al. 2016). 60 

Even amongst Mendelian disease variants, which are typically thought of as having strong 61 

effects on phenotype, differing levels of severity have been observed between carriers (Chen et 62 

al. 2016). These changes have been attributed to epistatic or additive effects of genetic 63 

modifiers, as well as environmental modifiers of penetrance, which can be difficult to control in 64 

an experimental setting (Maya et al. 2018). When looking at incomplete penetrance in specific 65 

diseases, genetic modifiers have been mapped, for example, to BRCA in breast cancer (Milne 66 

and Antoniou 2011), and RET in Hirschsprung’s disease (Emison et al. 2005). Modified 67 

penetrance has also been studied in the context of polygenic risk scores, where multiple 68 

common risk variants increase the expected pathogenicity of a disease-relevant variant (Fahed 69 

et al. 2020). However, genome-wide patterns underlying modified penetrance are still poorly 70 
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known. One potential mechanism for incomplete penetrance are cis-regulatory mechanisms that 71 

affect the regulation of a gene carrying a pathogenic variant. This model has been tested with 72 

expression quantitative trait loci (eQTLs) acting as modifiers of penetrance (Castel et al. 2018), 73 

but can be expanded to other types of gene regulatory processes, such as mRNA splicing. 74 

While eQTLs control the dosage of their target genes, splicing alters inclusion of variant-carrying 75 

exons in transcripts, which could potentially have a large effect on the overall pathogenicity of a 76 

damaging variant.  77 

 78 

Alternative splicing is responsible for the great diversity of isoform structures observed across 79 

human tissues and cell types (Keren et al. 2010). With regard to coding variant interpretation, 80 

exons with lower expression have been shown to be less likely to harbor pathogenic variants, 81 

while ubiquitously included exons can be prioritized for gene disrupting rare variants (Cummings 82 

et al. 2020). Autistic individuals with variants on the same exons have been shown to have 83 

remarkably similar disease phenotypes, putatively due to the variants having similar effects on 84 

gene dosage or function, a notable finding given the extreme heterogeneity of the condition 85 

(Chiang et al. 2021). Additionally, splicing can be influenced by common genetic variation, as 86 

evidenced by the many studies that use large scale WGS and transcriptomic datasets to map 87 

splicing quantitative trait loci (sQTLs) (Alasoo et al. 2019; Consortium 2020; Garrido-Martín et 88 

al. 2021; Kerimov et al. 2020).  sQTLs in general have been implicated in disease risk and other 89 

genetic traits (Li et al. 2016; Noble et al. 2020; Ongen and Dermitzakis 2015).  90 

 91 

In this study, we build upon the finding that transcript usage of genes containing alleles 92 

contributes to the allele’s pathogenicity, and ask if common splice-regulatory variants may 93 

partially drive this phenomenon and affect inter-individual variation in penetrance. Expanding on 94 

previous methodology (Castel et al. 2018), we look for non-random haplotype combinations of 95 

sQTL variants and putatively pathogenic rare variants in population scale datasets. Such an 96 

observation could indicate that haplotype combinations have an effect on fitness, and by proxy, 97 

disease risk. In doing so, we develop a general framework for modeling common and rare 98 

variant haplotypes in a population, with a corresponding test to detect deviations from the null 99 

(Figure 1, Supplemental Figure 1). These analyses will improve our understanding of how 100 

variants across the annotation and allele frequency spectrum act together to shape human traits 101 

and could ultimately aid our interpretation of rare variants in a clinical context.  102 
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Results 103 

Deleterious rare alleles accumulate at lowly spliced exons with respect to the 104 

population 105 

We first tested the hypothesis that rare pathogenic alleles (CADD > 15) (Rentzsch et al. 2019) 106 

are more likely to occur at less spliced-in exons (Figure 1). To accomplish this, we used bulk 107 

RNA-sequencing (RNA-seq) and whole genome sequencing (WGS) data from the Genotype 108 

Tissue Expression Project (GTEx) v8 release, which is representative of a general population 109 

free of severe genetic disease. We defined variants as rare if their variant frequency in gnomAD 110 

(Karczewski et al. 2020) was less than 0.5% and they appeared 5 or fewer times among the 838 111 

GTEx WGS donors.  112 

To begin, we calculated percent spliced in (PSI) scores for all annotated protein-coding gene 113 

exons across 18 GTEx tissues, and only kept exons with sufficient splicing variability across 114 

individuals (Methods, Supplemental Table 1, Supplemental Figure S2A). We extracted rare 115 

alleles that fell on variably spliced exons, separating alleles within 10bp of a splice junction to 116 

avoid cases where the allele is more likely to directly affect splicing. To compare the splicing of 117 

each donor with a deleterious allele to the population distribution per exon, we calculated PSI Z-118 

scores across all tissues with available data (Supplemental Figure S2B, Methods). We found 119 

that PSI Z-scores were significantly different between exons carrying deleterious (N = 19,178) 120 

and non-deleterious (N = 49,575) rare alleles (Mann-Whitney U-Test: p = 2.577x10-4). This rank 121 

difference was accounted for by a modest decrease in mean PSI Z-score among donors that 122 

carried deleterious alleles in a given exon, which was consistent across tissues and across 123 

variant consequence annotations (Figure 2, Supplemental Figure S3). Notably, stop-gained 124 

variants had the strongest association with low PSI Z-scores - even stronger than the signal for 125 

variants close to splice junction - but the overall result was present for multiple annotation 126 

categories (Supplemental Figure S3). This suggests that the signal is not solely driven by the 127 

most pathogenic variants nor direct rare variant effects on splicing. These results extend the 128 

previous work, comparing different exons and showing accumulation of stop-gained variants on 129 

those with lower inclusion (Cummings et al. 2020). Here, observe a similar pattern when 130 

comparing different individuals within a given exon, consistent with the hypothesis that the 131 

penetrance of coding alleles is reduced when they fall on more lowly included exons. However, 132 

this approach does not discern the underlying reasons for splicing differences between 133 
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individuals, including alleles that may drive a decrease in splicing and their haplotype 134 

combinations with rare alleles.  135 

A general model for coding allele-QTL haplotype configurations 136 

We next sought to test if regulatory alleles on the same haplotype as rare coding alleles 137 

contribute to this phenomenon, using phased whole genome sequencing (WGS) data. Since 138 

directly quantifying the penetrance of coding alleles is difficult, our approach was to observe 139 

modified penetrace through the lens of purifying selection, where high-penetrance haplotype 140 

combinations would be depleted from the general population. Advantageously, this technique 141 

allows us to use large phased WGS datasets where individual gene expression data is not 142 

available. 143 

 144 

Initially, splice-regulatory alleles were cataloged in GTEx through quantitative trait locus (QTL) 145 

mapping, using the percent spliced in (PSI or ψ) (Pervouchine et al. 2013) of each exon as a 146 

quantitative phenotype. These alleles are hence referred to as ψQTLs. We use the “ψ” 147 

nomenclature to differentiate from sQTLs, where the splicing phenotype can vary between 148 

studies and is often less interpretable for downstream applications. ψQTL mapping and 149 

properties are described in (Einson et al. 2022). Briefly, we mapped ψQTLs from GTEx v8 using 150 

the same filtered set of PSI scores across 18 tissues as in the previous analyses (see Methods). 151 

We compiled a set of 5,196 cross-tissue ψQTL genes (one sVariant and one sExon per gene), 152 

and recorded which alleles led to higher or lower sExon inclusion. We also mapped secondary 153 

sExons across ψQTL genes where the top sVariant was also associated with splicing in the 154 

same direction as the top sExon in the same gene, which were used to expand the amount of 155 

genic space where rare variants could be considered.  156 

 157 

Next, to robustly test for non-random haplotype combinations of rare exonic alleles and common 158 

ψQTL alleles, we describe an approach that quantifies the significance of deviations in 159 

haplotype combinations from the null in a dataset, taking variable ψQTL allele frequencies into 160 

account:In most datasets, ψQTL alleles that may have an effect on rare variant penetrance are 161 

non-uniformly distributed, and thus we expect an unequal number of high and low penetrance 162 

haplotypes under the null (Figure 3). To account for this, we model these data using the 163 

Poisson-Binomial distribution, a generalization of the Binomial distribution describing the sum of 164 

n independent but non-identically distributed Bernoulli random variables. (González et al. 2016; 165 

Hong 2013; Wang 1993) When looking at counts of haplotype combinations, the probability of 166 
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observing a high-penetrance haplotype is assigned according to the relevant ψQTL allele 167 

frequency, independently across QTL genes. To apply the model to haplotypes extracted from 168 

phased genetic data, we developed a bootstrapping procedure that approximates the 169 

cumulative distribution function of the Poisson-Binomial, constituting a convenient method for 170 

calculating the significance, enrichment/depletion effect sizes (ε) and confidence intervals when 171 

comparing enrichment scores between groups i.e. haplotypes with deleterious vs. non-172 

deleterious rare alleles (see Methods for details). In simulations, our method was well powered 173 

to detect deviations from the null across all tested theoretical allele frequency distributions, and 174 

performed well against other methods that directly calculate and approximate the CDF of the 175 

Poisson-binomial. (Figure 4, Supplemental Figure S4). This approach is generalizable to other 176 

analyses of haplotype combinations; here we apply it to test nonrandom combinations of ψQTL 177 

and rare coding alleles. 178 

High penetrance haplotypes are depleted in TOPMed and GTEx 179 

After defining a theoretical model that describes counts of common regulatory alleles and rare 180 

coding alleles in a given population, we tested three datasets for evidence of selection against 181 

high penetrance coding alleles driven by genetically regulated splicing.  182 

Enrichment in GTEx 183 

We identified ψQTL-rare allele haplotypes using population and read-backed phased (Castel et 184 

al. 2016) WGS data from GTEx V8, labeling haplotypes in putative high and low penetrance 185 

configurations according to whether the rare alternative allele was on the higher or lower 186 

inclusion ψQTL haplotype, respectively (Figure 1 & 3). We limited our analysis to European-187 

Americans, since the ψQTL data is dominated by European ancestries, with rare variants 188 

annotated to potentially deleterious (CADD > 15) and non-deleterious (CADD < 15) variants as 189 

described in Methods. In total, 14,767 haplotypes were identified, spanning 714 individuals and 190 

2,475 genes (Supplemental Figure S5). We observed an overall depletion of putative high-191 

penetrance haplotypes (ε = -0.0156, Poisson-binomial test p = 1.006x10-6), consistent with our 192 

hypothesis. However, we did not detect a stronger depletion for putatively deleterious rare 193 

alleles (p = 0.508, Figure 5), possibly due to the modest sample size of GTEx limiting our 194 

statistical power.  195 
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Enrichment in TOPMed 196 

Next, we increased our power to detect evidence of selection against putative high penetrance 197 

haplotypes by using population-phased WGS data from 44,634 European-American ancestry 198 

individuals in 19 TOPMed cohorts, post-filtering (Methods, Supplemental Figure S5). The large 199 

sample size in TOPMed allowed us to limit the analysis to exonic variants with 10 or fewer 200 

occurrences (excluding singletons due to limitations of population-based phasing), or <0.0213% 201 

minor allele frequency. With the same set of ψQTLs from GTEx, we identified the haplotype of 202 

38,869 rare alleles that fell in primary and secondary sExons. Across all protein-coding genes 203 

and rare alleles, we observed a modest but significant overall depletion of high penetrance 204 

haplotypes than expected (ε = -0.0037, Poisson-binomial p = 3.43x10-4). Haplotypes with 205 

putatively deleterious rare alleles had some indication of being more depleted than those with 206 

non-deleterious rare alleles, but not to a degree that reached statistical significance (p = .100, 207 

Figure 5). However, we hypothesized that this result would be more pronounced in genes with 208 

stronger ψQTLs, as well as genes known to be intolerant to loss of function variation. When 209 

focusing on genes with stronger ψQTLs where the ΔPSI score was in the top quartile (ΔPSI > 210 

0.076) the difference was again not significant (p = 0.248). However, when quantifying gene 211 

constraint with LOEUF (Karczewski et al. 2020) and limiting to genes in the first quartile among 212 

sGenes (LOEUF < 0.460), we detected a significant difference in high-penetrance haplotype 213 

depletion between the two groups (p = 0.048), suggesting that splicing may play a greater role 214 

in modifying penetrance in genes known to be constrained. Finally, while we would expect to 215 

see the greatest effects of purifying selection among constrained genes with strong ψQTLs, the 216 

small number of such genes limits our power and no significant association was detected (p = 217 

0.982). We found that across genes in general, ΔPSI and LOEUF were positively correlated, so 218 

genes with high ΔPSI and low LOEUF were uncommon (Supplemental Figure S6C). While 219 

subtle, these results suggest that deleterious rare alleles are more likely to be carried on exons 220 

that are skipped due to the effects of common regulatory variants, especially in constrained 221 

genes.  222 

 223 

Next, we wanted to explore if any genes or classes of genes drove our observation of high-224 

penetrance haplotype depletion. To this end, using the same TOPMed data, we tested for 225 

nonrandom haplotype combinations on a gene-by-gene basis, instead of pooling haplotypes 226 

across all genes as in the previous approach. For 2,396 genes with more than 10 ψQTL-coding 227 

variant haplotypes across all available individuals, we ran a Poisson-binomial test for high-228 

penetrance haplotype depletion (Supplemental Figure S7). We observed little signal, with 229 
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approximately equal numbers of genes with enrichment and depletion of high and low 230 

penetrance haplotypes. However, only 411 of the genes had more than 30 deleterious allele 231 

haplotypes, indicating that our power is quite limited. Thus, our results indicate that observing 232 

signals of modified penetrance at the gene level in population cohorts is very challenging.  233 

 234 

Genetically controlled splicing’s contribution to disease gene variant penetrance 235 

In addition to studying the general population as above, we next turned to investigate 236 

nonrandom distribution of ψQTL-coding allele haplotypes in a disease cohort: the Simons 237 

Simplex Collection (SSC) with 2,380 Autism Spectrum Disorder (ASD) simplex families. Rare 238 

coding variants are known to contribute to the etiology of ASD (Iossifov et al. 2014; Sanders et 239 

al. 2015; Sanders et al. 2012), and the large set of transmission-resolved WGS data available in 240 

the SSC make it a suitable dataset to search for haplotype patterns indicative of modified 241 

penetrance. While de novo variants also play an important role in autism risk (Iossifov et al. 242 

2014), their number is so low that we chose to focus on inherited variants.  243 

First, we sought to replicate the depletion of potential high-penetrance haplotypes observed in 244 

TOPMed, using SSC parents, who are a cohort of unrelated individuals, phenotypically healthy 245 

but with potential enrichment of ASD risk variants due to having a child with ASD. We analyzed 246 

all genes with a ψQTL in GTEx, limiting our analysis to coding alleles with 3 or fewer 247 

occurrences across all parents, and removing genes with an unusually high number of rare 248 

variant haplotypes (Supplemental Figure S5). Singleton variants were included, since their 249 

haplotype can be confidently resolved using phasing by transmission. We recapitulated the 250 

patterns observed in TOPMed, with a significant depletion of high-penetrance haplotypes with 251 

deleterious rare alleles (ε=-0.019, Poisson-binomial p = 2.11x10-8), with high-penetrance 252 

haplotypes carrying deleterious rare alleles more depleted than those carrying non-deleterious 253 

rare alleles (Comparison p-value = 0.042, Figure 5).  254 

 255 

Next, we sought to analyze potential splicing modifiers of the penetrance of disease-causing 256 

alleles in SSC by focusing on rare inherited variants in ASD-implicated genes. These alleles, 257 

while potentially contributing to ASD in the proband, are also carried on the same haplotypic 258 

background by a healthy parent and often a healthy sibling. Thus, both increased or decreased 259 

penetrance ψQTL configurations could be possible (Supplemental Figure S8) To test this, we 260 

analyzed deviation in haplotype frequencies in parents, probands, and siblings, among the 218 261 

out of the 1,010 genes implicated in ASD risk according to SFARI Gene (Banerjee-Basu and 262 

Packer) that also had a ψQTL. No significant deviation was detected in SSC parents (ε = -263 
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0.0278, p = 0.122). Interestingly, across probands and unaffected siblings we found that 264 

putatively highly penetrant haplotypes with deleterious coding alleles were depleted (ε = -0.055 265 

& -0.047, p = 0.020 & 0.088 respectively). While it seems counterintuitive to see depletion of 266 

penetrant haplotypes in individuals with ASD, we reason that this penetrance reducing effect 267 

may be acting to protect parents from developing phenotypes of ASD. We find that the SFARI 268 

genes tend to be highly constrained, compared to all protein coding genes (Supplemental 269 

Figure S8B) (Neale et al. 2012), and that these same alleles were also highly depleted among 270 

unrelated individuals in TOPMed (Figure 6), further corroborating the overall observed pattern of 271 

selection for penetrance reducing haplotype combinations.   272 

Discussion 273 

In this study, we have expanded our model of cis-regulatory alleles as modifiers of penetrance 274 

of coding variants (Castel et al. 2018) to directly consider splice-regulatory alleles as potential 275 

additional drivers. We first show that individuals carrying potentially deleterious rare mutations 276 

at variably spliced exons tend to use those exons in transcripts less frequently. This observation 277 

could indicate that the penetrance of these rare alleles is reduced by their exclusion from 278 

transcripts. However, this approach does not reveal the reason. One approach to potentially 279 

shed light on this would be analysis of allele-specific transcript structure, but this is not possible 280 

with short read RNA-sequencing. However, our model could be tested in larger future studies 281 

with long-read sequencing technology (Glinos et al. 2021). 282 

 283 

Thus, we investigate common splice-regulatory variants (ψQTLs) as potential modifiers of 284 

penetrance of rare alleles in their target exons. Across different datasets, we have 285 

demonstrated and replicated the result that high-penetrance haplotype configurations of rare 286 

alleles and ψQTLs alleles are depleted. These findings emphasize the importance of alternative 287 

splicing as one of the many processes that regulate human traits, and suggest that splicing is 288 

involved in variable penetrance of coding variants.  289 

 290 

Through this research, we derived a novel approach for calculating the cumulative distribution 291 

function of the Poisson-binomial distribution, as well as a metric for evaluating a dataset’s 292 

deviation from an expected distribution or difference between two data sets (the comparison 293 

test). This method is well suited for very large datasets, and has further applications in genetic 294 

and non-genetic analyses where data is expected to follow the Poisson-binomial.  295 
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 296 

While we were able to detect a genome-wide signal of nonrandom combinations of splice-297 

associated and coding alleles, it must be noted that finding evidence of modified penetrance in 298 

population cohorts is difficult, and requires very large sample sizes. This is particularly true on 299 

an individual gene level: Even in a dataset as large as TOPMed, which contains tens of 300 

thousands of donors, few genes have reasonable statistical power to detect depletion of high-301 

penetrance haplotype configurations individually. Furthermore, the biologically and medically 302 

important genes where variant penetrance is of most interest are also highly constrained and 303 

depleted of functional genetic variation overall, further limiting the data to test for haplotype 304 

combinations in the general population.  305 

 306 

An alternative approach is to study regulatory variation underlying modified penetrance in 307 

disease cohorts with well annotated disease-causing variants, linking haplotype patterns with 308 

phenotype variation between and within families. The Simons Simplex Collection had some 309 

limitations in this respect: most ASD-contributing rare variants are not known and the trait is 310 

highly polygenic, making it difficult to compare penetrance of variants in the same gene between 311 

families. Furthermore, in simplex families many causal variants are de-novo, but their total 312 

number is small for statistical analysis. In the future, large ASD studies with multiplex families 313 

may better capture ASD instances with heritable variant etiology. Furthermore, experimental 314 

validation, for example with genome editing, may be a fruitful approach. 315 

 316 

Overall these results suggest that depletion of high-penetrance ψQTL - coding variant 317 

haplotypes is robust across many data sources and gene sets. However, the data does not 318 

sufficiently support the hypothesis that modified penetrance by genetically controlled splicing is 319 

a significant driver for ASD risk, but that may provide some protection in families with a known 320 

incidence of autism.  321 

 322 

In conclusion, this study provides evidence that splice-regulatory alleles play a role in controlling 323 

the impact of rare coding alleles with putatively deleterious effects. Understanding the 324 

importance of these mechanisms will be crucial for building a holistic model of genetic 325 

contribution to human phenotypic variation. We hope that in the future the prognosis of 326 

individuals carrying rare variants will be informed by genomic context that extends beyond 327 

coding regions. 328 

 329 
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Methods 330 

Data Sources 331 

In this project, we utilize bulk RNA sequencing and WGS from the Genotype-Tissue Expression 332 

(GTEx) Project Version 8 (Consortium 2020), WGS from 19 cohorts included in the Trans-333 

Omics for Precision Medicine Project freeze 8 (https://topmed.nhlbi.nih.gov/topmed-whole-334 

genome-sequencing-methods-freeze-8) (Supplemental Table 2) and WGS from simplex families 335 

in the Simons Simplex Collection (SSC).  336 

GTEx PSI quantification and filtering 337 

Percent spliced in (PSI) was calculated from GTEx V8 RNA-seq data. We limited our analysis to 338 

18 tissues, which were chosen for their coverage of tissue diversity GTEx and their coverage of 339 

the most coding genes possible (Table S1). Exon PSI for protein-coding genes was quantified 340 

using the Integrative Pipeline for Splicing Analysis (IPSA),(Pervouchine et al. 2013; 2020) which 341 

was run on Google Cloud through Terra  (https://github.com/guigolab/ipsa-nf). The 342 

‘-unstranded’ flag was used during the sjcount process. Exons were defined by the modified 343 

version of Gencode annotation v26 used in GTEx V8, which collapses genes with multiple 344 

isoforms to a single isoform per gene  345 

(https://storage.googleapis.com/gtex_analysis_v8/reference/gencode.v26.346 

GRCh38.genes.gtf).  347 

 348 

For downstream analyses, PSI data for each tissue was prepared by 1) removing exons with 349 

data available in less than 50% of donors and 2) removing exons with fewer than 10 unique 350 

values across all available donors (Table S1). These data were normalized for QTL mapping by 351 

randomly breaking any ties between two individuals with the same PSI at an exon, then 352 

applying inverse-normal transformation across all individuals. Filtered and normalized PSI calls 353 

were saved in BED format with start/end position corresponding to each gene’s transcription 354 

start side (TSS), which serves as a reference for where to define windows for QTL mapping. 355 

The gene containing each exon was included in the BED files for use with QTLtools’ group 356 

permutation mode.  357 
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PSI Z-Score Analysis in GTEx 358 

We compiled a list of all exons with sufficiently variable splicing in at least one GTEx tissue, as 359 

defined in the previous step, and saved the genomic coordinates of these exons in BED format. 360 

Rare variants (gnomAD AF < .01) that fell on variably spliced exons were extracted from GTEx 361 

WGS VCFs, and were subsequently filtered to variants that appeared less than 6 and greater 362 

than 1 time. Rare variant CADD scores and annotations with respect to the relevant gene were 363 

extracted as well. Some rare variants were annotated as ‘intronic’ because CADD v1.5 uses a 364 

different annotation that in rare cases does not correspond to gencode v26. Rare variant calls 365 

from exons represented disproportionately, either due to length or to high number of variants at 366 

the exon, were removed. Threshold for removing an exon was defined as Q3 + 1.5 * IQR, where 367 

Q3 is the third quartile of the number of rare variants per exon, where IQR is the interquartile 368 

range of the number of rare variants per exon. For all remaining variants, we computed the PSI 369 

Z-score of the individual that carried the variant at that specific exon, across all tissues where 370 

the exon was expressed and sufficiently variable. The PSI-Z score for a particular individual i at 371 

an exon j in tissue k is calculated as (ψijk - μjk)/σjk,  where ψijk is an individual’s PSI level at a 372 

particular exon and tissue, and μj and σj are the mean and standard deviation of PSI for an exon 373 

j across all individuals with data available for that exon in tissue k. Importantly, we do not 374 

normalize PSI for this analysis, to preserve signal from exons with high PSI Z-scores.  375 

Primary ψQTL mapping, collapsing, and secondary ψQTL mapping 376 

For each of the 18 GTEx V8 tissue groups, QTL mapping was run on every exon that passed 377 

filtering, using all genetic variants with an allele frequency greater than 5% within 1Mb of the 378 

gene’s transcription start site. We used QTLtools (Delaneau et al. 2017) run in grouped 379 

permutation mode, with groups defined by gene. This strategy controls for correlation between 380 

exons that are part of the same gene. 15 PEER factors recalculated from normalized PSI, 5 381 

genetic principal components (PCs), as well as sex, WGS PCR batch, and sequencing platform 382 

were also included as covariates in the QTL model, as recommended in the GTEx V8 STAR 383 

methods.(Consortium 2020) 384 

 385 

For every exon, we selected the most significant variant, and for every gene the most significant 386 

exon. We then compiled the ψQTL results across tissues to achieve a set of cross-tissue top 387 

ψQTLs. When a gene was significant across multiple tissues, we used the tissue where the 388 

effect size (𝚫PSI score) was the highest. This process ensured that a gene was only included 389 
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once in our final set of ψQTLs, and was labeled by one variant that is associated to splicing 390 

(sVariant).  391 

 392 

Since the splicing of multiple exons within a gene is often correlated, we implemented an 393 

approach to identify additional exons whose splicing the sVariant is associated with. 394 

Consideration of multiple exons per gene is desirable because it increases the amount of 395 

genetic space where rare variant haplotypes can be identified. For each gene with a significant 396 

ψQTL, we ran a nominal QTLtools pass of just the sVariant against PSI of all other exons in the 397 

gene. We then considered secondary exons with a Bonferroni-corrected p<0.05 if QTL effect 398 

direction was the same as the top exon.  399 

 400 

This procedure produced the final set of common variant-exon pairs used in all downstream 401 

analyses (10,901 sExons, across 5,198 sGenes). Haplotype calls from phased, filtered WGS 402 

datasets (see next section) were compiled by extracting rare variants that fell within sExons, 403 

and recording if the variant appeared on the same haplotype as the high inclusion or low 404 

inclusion ψQTL allele. (Code available at https://github.com/jeinson/mp_manuscript)  405 

WGS filtering across datasets 406 

Genotype Tissue Expression Project (GTEx): Read-aware Phased WGS data was used from 407 

all 838 samples included in GTEx v8. (Consortium 2020), (Supplementary Information Section 408 

2.4) For use in haplotype calling, the following filters were applied 1) Variants were extracted with 409 

an allele frequency less than 0.005 in gnomAD, and singleton variants without read-backing to 410 

support their phase call were removed. 2) Samples from donors that did not self-identify as 411 

European American were removed. Since the  ψQTL data from GTEx is based on 85% European 412 

Americans, the sVariants selected from these data may not capture allele frequencies and 413 

haplotype structures in other ancestries, and differing numbers of  rare variants across ancestries 414 

might bias the results. 3) Haplotype calls from genes represented disproportionately, either due 415 

to length or to high number of variants at the gene, were removed. Threshold for removing a gene 416 

was defined as Q3 + 1.5 * IQR, where Q3 is the third quartile of the number of haplotypes per 417 

gene, where IQR is the interquartile range of the number of haplotypes per gene.  418 

 419 

Trans-Omics for Precision Medicine Initiative (TOPMed): Population-phased WGS data from 420 

donors of European-American ancestry were used from TOPMed, since this matches the 421 

population source of the sQTL data from GTEx (see above). To define individuals of European 422 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2023. ; https://doi.org/10.1101/2023.01.31.526505doi: bioRxiv preprint 

https://github.com/jeinson/mp_manuscript
https://doi.org/10.1101/2023.01.31.526505
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 

ancestry, we used the approach outlined in (Morris et al. 2019). Briefly, TOPMed samples were 423 

projected onto the first 20 principal components estimated from the 1000 Genomes Phase 3 424 

(1000G) project (Auton et al. 2015) using FastPCA v2.0 (Galinsky et al. 2016). Only bi-allelic 425 

variants shared between the two datasets, and that passed a strict set of criteria (MAF >1%, minor 426 

allele count >5, genotyping call rate >95%, Hardy-Weinberg p-value >1x10-6) were used to 427 

calculate the principal components. Expectation Maximization (EM) (Chen and Maitra 2015) 428 

clustering  was used to compute the probabilities of cluster membership and eigenvectors 1, 2, 5, 429 

6 and 8 were selected for efficiently separating the individuals of White European and American 430 

ancestry (subpopulation codes CEU, GBR, FIN, CEU, IBS and TSI) from other ancestry groups. 431 

Finally, eight predefined clusters were chosen for EM clustering based on sensitivity analyses. 432 

This resulted in 52,426 TOPMed individuals clustering together with the 1000G CEU, GBR, FIN, 433 

CEU, IBS and TSI subpopulation, and they were termed of White ancestry. We kept 19 cohorts 434 

(Supplemental Table 2), and 49,542 individuals, filtering out the remaining cohorts which 435 

collectively contained less than 5% of all haplotypes.  436 

 437 

To define rare coding variants for downstream analysis, we extracted SNPs and small indels with 438 

more than 1 and 10 or fewer occurrences; singletons were removed due to unreliable population-439 

based phasing. To account for unusually long genes, and genes with an unusually high number 440 

of rare variants, we applied the same filtering procedure as step 3 from the GTEx analysis to 441 

produce a final set of rare variant haplotypes.  442 

 443 

Simons Simplex Collection (SSC): Phased WGS data was used from 2,380 families. Simplex 444 

families consist of a proband child diagnosed with Autism Spectrum Disorder (ASD), an 445 

unaffected sibling, and two unaffected parents (Turner et al. 2016). We genotype the SSC whole-446 

genome data set (An et al. 2018; Ruzzo et al. 2019; Yoon et al. 2021) using the transmission 447 

mode of our Multinomial Genotyper (Iossifov et al. 2012) that produces only high-quality 448 

mendelian family genotypes. The whole-genome sequence and the genotype calls are available 449 

to qualified researchers through the Simons Foundation. In addition, we transmission-phased the 450 

heterozygous variants on a per-variant basis when possible, using the genotypes of both parents. 451 

Since this method is accurate for singleton variants in probands, these were included in 452 

downstream analysis.  453 

 454 
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We additionally removed genes that contained an unusually high number of rare coding variants 455 

across parents, using the same outlier definition as in the previous two datasets. This set of 456 

variants post-filtering were considered in siblings and probands in downstream analyses.   457 

Haplotype calling from phased genetic data and filtering 458 

ψQTL-coding allele haplotypes were generated using a similar procedure across all three 459 

phased-resolved WGS datasets. First, all rare variants were extracted among sExons using the 460 

filters described above, considering variants that fell in primary and secondary sExons, taking 461 

account of the haplotype phase assignment. Then, the genotype of sVariants, and phase for 462 

heterozygous cases, was extracted from VCFs and haplotypes were labeled as high-penetrance 463 

(β = 1) and low penetrance (β = 0) according to our model for splice QTLs as a modifier of 464 

penetrance (Figure 1).  465 

 466 

Table 2: Properties of 3 WGS datasets used in this study 467 

Across all datasets, we extract rare variants that fall on primary and secondary sExons.  468 

 GTEx TOPMed SSC - Parents 

N Donors 714 44,634 4,731 

Phasing Method 

Population Based & Read 

backed phasing 

(SHAPEIT2(O’Connell et al. 

2014) and PhASEr (Castel et 

al. 2016)) 

Population Phasing 

(Eagle) (Loh et al. 

2016) 

Phasing by 

transmission 

Singletons 

included 

Yes, in calls with RNA-seq 

read backing. Otherwise, no No Yes 

Rare variant 

allele frequency 

cutoff 

0.5% MAF in gnomad. (No 

count cutoff due to the 

relative small size of the 

GTEx WGS dataset) 

Appears 10 or fewer 

times (i.e. 0.0257% 

MAF) 

Appears <= 3 times 

(i.e. 0.126% MAF) 

 469 
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Test for depletion of regulatory haplotypes that increase penetrance 470 

We sought to test the hypothesis that QTL-coding allele haplotype combinations are present in 471 

the population at frequencies that deviate from a baseline expectation, based on allele 472 

frequencies alone. Such a result could indicate high-penetrance haplotypes with deleterious 473 

variants being removed from the population by natural selection. The total number of high 474 

penetrance haplotypes arising from ψQTLs with varying allele frequencies can be modeled by 475 

the Poisson-Binomial distribution, which is a generalization of the binomial distribution. While a 476 

binomial describes the sum of n independent identically distributed bernoulli random variables, 477 

the Poisson-binomial describes the sum of n independent but non-identically distributed 478 

bernoulli random variables. Therefore, the distribution must be parameterized by a vector of 479 

probabilities of length n. While we could calculate P-values using a variety of methods that 480 

obtain the CDF of the Poisson-binomial, (Hong 2013) these methods all lack a way to quantify 481 

the magnitude of the effect size. Furthermore, they measure deviation from the null but do not 482 

allow comparison of two data sets (in our case, haplotypes carrying non-deleterious and 483 

deleterious coding alleles) Therefore, we developed the following procedure that approximates 484 

the Poisson-binomial CDF. This has the advantage of generating a quantifiable effect size for 485 

deviation from the null model, as well as corresponding confidence intervals.  486 

 487 

Our procedure for approximating the Poisson-binomial, and subsequently testing for non-488 

random occurrences of putative high-penetrance haplotypes, which we applied to each WGS 489 

dataset in this study, is as follows: 490 

 491 

For each observation of a heterozygous coding allele that falls in a sExon, let L and H represent 492 

the low and high exon inclusion ψQTL haplotype respectively, and let B and b represent the 493 

coding variant reference and minor allele respectively. Here, we focus on rare variants, with our 494 

main interest being deleterious ones, and we here treat rare alleles as independent. Using 495 

variant phasing information, for a given haplotype g, we define an indicator function β which is 496 

set equal to 1, corresponding to putatively high-penetrance, if the coding allele falls on the 497 

highly included sExon, and 0 otherwise. The genotype of the major coding allele is irrelevant, 498 

and for rare variants b/b homozygotes are absent in practice.  499 

 500 

 501 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2023. ; https://doi.org/10.1101/2023.01.31.526505doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.31.526505
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 

Next, we define an expectation function on β, under the null model where observing a high-502 

penetrance and low-penetrance haplotype are equally likely. E[β(g)] is dependent on the 503 

heterozygosity of the ψQTL variant in an individual. Assuming independence of rare variants, if 504 

an individual is heterozygous for a ψQTL allele, the probability that an exonic variant will land in 505 

a high-penetrance configuration is 0.5. If an individual is homozygous for the ψQTL allele, the 506 

probability that the exonic variant will land in a high-penetrance configuration is dependent on 507 

the ψQTL’s allele frequency.  508 

 509 

 510 

 511 

We define the expectation of observing a homozygous ψQTL allele as the proportion of high 512 

inclusion ψQTL homozygotes in the dataset, plus a pseudo-count, to avoid getting an 513 

expectation of 0 in datasets where the low inclusion allele is much more common. This method 514 

does not assume Hardy-Weinberg equilibrium for the ψQTL allele, but requires that the 515 

proportion of homozygotes for the two alleles be recalculated on each dataset. This approach 516 

was used for the GTEx and TOPMed analyses. Alternatively, the expectation of β under the null 517 

model can also be calculated as follows: 518 

 519 

 520 

 521 

Where f(H) is the population frequency of the high exon inclusion ψQTL allele. We took this 522 

approach for haplotypes from SSC, where counting alleles across the whole dataset was 523 

infeasible due to the structure of the dataset, and used ψQTL allele frequencies from gnomad 524 

3.0 (Karczewski et al. 2020).  525 

 526 

The function β is evaluated across all individuals, sGenes, and rare variants in sExons in a 527 

dataset. The average observed deviation from the expected totals of high and low penetrance 528 

haplotypes (ε) is calculated as follows: 529 

 530 

 531 

 532 
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where N is the total number of considered haplotypes. ε can be interpreted as the effect size of 533 

depletion/enrichment of high-penetrance haplotypes in the dataset such that ε < 0 would 534 

indicate a depletion of high-penetrance haplotypes.  535 

 536 

We quantify the significance of ε by bootstrapping all haplotypes, generating 95% confidence 537 

intervals and drawing two-sided empirical P-values as 538 

 539 

 540 

 541 

where B is the total number of bootstraps. In practice, we found that 1,000 bootstraps was 542 

enough to accurately approximate the Poisson-binomial distribution, while managing runtime.  543 

 544 

Although the test was designed for counts of haplotypes, this approach is generalizable to any 545 

system that can be modeled by a Poisson-binomial distribution. Therefore, to benchmark our 546 

test, we simulated data from several theoretical allele frequency distributions by sampling from 547 

beta distributions with various shape parameters, including one distribution where its 548 

parameters were estimated direction from our set of ψQTLs from GTEx using the method of 549 

moments estimator (Figure 3, Supplemental Figure 4). We found that our bootstrapping 550 

procedure accurately approximated the Poisson-binomial distribution for all inputs tested. 551 

However, the magnitude of ε - but not direction - is dependent on the shape of the theoretical 552 

allele frequency distribution, so comparing magnitudes of ε across distinct datasets should be 553 

done with caution. The accuracy of our method increased with larger sample sizes. Therefore, 554 

we recommend using this approach when handling data where N > 1,000 (Supplemental Figure 555 

S4).  556 

 557 

As an extension to this procedure, we can also conveniently calculate the significance of a 558 

difference in ε between two similar datasets A and B, for example, between haplotypes where 559 

the rare variant is putatively deleterious vs. haplotypes where the rare variant is non-deleterious:  560 

 561 

 562 
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We then apply the bootstrapping procedure as in the standard case, and draw P-values 563 

accordingly. The corresponding P-value from this procedure is referred to as the “comparison 564 

test” in the main text.  565 

 566 

This test is implemented in the STatististic for Modified PENetrance (STAMPEN) R package 567 

that is available to download here (https://github.com/jeinson/stampen)  568 

Data Availability 569 

All code used to perform analyses and generate figures is available at 570 

https://github.com/jeinson/mp_manuscript. Qualified researchers requiring data access can 571 

apply for GTEx, and TOPMed data through dbGaP, and SSC data through the Simons 572 

foundation. We include a function to generate simulated data in the stampen R package 573 

(https://github.com/jeinson/stampen). PSI and ψQTLs from GTEx v8 can be download from the 574 

repository for (Einson et al. 2022) at https://zenodo.org/record/7275062#.Y9gc0OzMJf0  575 
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(phs001032) was performed at Broad Institute Genomics Platform (3R01HL092577-625 

06S1).  626 

14. Genome Sequencing for NHLBI TOPMed: Hispanic Community Health Study - Study of 627 

Latinos (phs001395) was performed at Baylor College of Medicine Human Genome 628 

Sequencing Center (HHSN268201600033I).  629 

15. Genome Sequencing for NHLBI TOPMed: Severe Asthma Research Program 630 

(phs001446) was performed at New York Genome Center Genomics 631 

(HHSN268201500016C).  632 

16. Genome Sequencing for NHLBI TOPMed: Massachusetts General Hospital Atrial 633 

Fibrillation Study (phs001062) was performed at Broad Institute Genomics Platform 634 

(3U54HG003067-12S2 / 3U54HG003067-13S1; 3U54HG003067-12S2 / 635 

3U54HG003067-13S1; 3UM1HG008895-01S2).  636 

17. Genome Sequencing for NHLBI TOPMed: Heart and Vascular Health Study 637 

(phs000993) was performed at Broad Institute Genomics Platform (3R01HL092577-638 

06S1).  639 

18. Genome Sequencing for NHLBI TOPMed: Groningen Genetics of Atrial Fibrillation Study 640 

(phs001725) was performed at Baylor College of Medicine Human Genome Sequencing 641 

Center (3UM1HG008898-01S3).  642 

19. Genome Sequencing for NHLBI TOPMed: Genetics of Cardiometabolic Health in the 643 

Amish (phs000956) was performed at Broad Institute Genomics Platform 644 

(3R01HL121007-01S1).  645 
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Figures 794 

 795 

 796 

Figure 1. Splice-regulatory variants as modifiers of penetrance hypothesis 797 

The hypothesis of this study is illustrated with an example of an individual who is heterozygous 798 

for both a ψQTL and a coding variant. The two possible haplotype configurations result in either 799 

a reduced or increased penetrance state of the coding allele, depending if the allele is on the 800 

more lowly or highly included exon respectively. We predict that natural selection would deplete 801 

those that fall in a high penetrance configuration in the general population. See Supplementary 802 

Figure S1 for a quantitative description of the model.  803 
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 806 

Figure 2: Mean PSI Z-scores across tissues 807 

Mean decrease in PSI Z-scores among individuals carrying rare alleles at variably spliced exons 808 

across 18 GTEx tissues, split by deleterious (CADD > 15) and non-deleterious (CADD < 15) 809 

rare variants. The number of deleterious and non-deleterious alleles respectively are printed 810 

below each tissue name. Error bars represent 95% bootstrapped confidence intervals.  811 
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 814 

Figure 3: ψQTL high inclusion allele frequencies and haplotype counts in GTEx.  815 

A. Distribution of allele frequencies for ψQTLs that lead to higher exon inclusion. High inclusion 816 

ψQTL allele frequencies are skewed to the right, meaning ψQTLs that include their target exon 817 

are more common in the general population. B. As a result of the nonuniform frequency 818 

distribution of high inclusion sQTL alleles, we expect to see more high penetrance haplotype 819 

configurations in general. This motivates the necessity to design a test that accounts for this 820 

difference.  821 
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 823 

Figure 4: The Poisson-binomial distribution models haplotype configuration counts 824 

a. We use phased variant calls from WGS across large populations to test for deviation in the 825 

frequencies of ψQTL-coding variant haplotype configurations. The magnitude and effect 826 

direction of deviation, which we call ε, is calculated using a procedure described in Methods. 827 

The magnitude of ε - but importantly not its direction - depends on the underlying ψQTL allele 828 

frequency distribution, as the probability of observing a high penetrance haplotype is dependent 829 

on the ψQTL allele frequency at each gene. Counts of highly penetrant haplotypes are modeled 830 

by the Poisson-Binomial distribution. When running our test, we frequently divide haplotypes 831 

into those with deleterious (CADD > 15) and non-deleterious (CADD < 15) coding variants, 832 

which serve as a negative control where we do not expect to see evidence of purifying 833 

selection. b. To verify that our test captures deviations from the null under any theoretical allele 834 

frequency distribution, we simulated datasets by drawing samples from various Beta 835 

distributions with different parameters. The Beta is defined by shape parameters α and β. The 836 

parameters α = 1.387 and β = 0.954 were estimated from the high-inclusion ψQTL allele 837 

frequency distribution in GTEx using the Method of Moments estimator. c. We benchmarked our 838 

test by simulating data from distributions with increasingly larger deviations from the expected 839 

mean, in order to test how the magnitude of ε differs depending on the input distribution. This 840 

diagram can be used as a reference for how to interpret the magnitude of epsilon, given a 841 

dataset’s underlying probability distribution d. P-values from a simulated dataset of haplotypes 842 

from 1,000 individuals across 1,000 genes, with ψQTL allele frequencies matching those in 843 

GTEx. We find that our method accurately replicates the results from the Poisson-binomial 844 

distribution, calculated using the ‘poibin’ (Hong 2013) R package.  845 
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 847 

Figure 5: Rare alleles carried in predicted high penetrance ψQTL configurations in GTEx, 848 

TOPMed, and SSC Parents 849 

We tested for deviation in the frequencies of coding allele - ψQTL configurations across all 850 

protein coding genes with a significant ψQTL. A negative value of ε indicates fewer haplotypes 851 

than expected given the population’s ψQTL allele frequencies. Individual p-values and 95% 852 

confidence intervals were generated using our approximation of the Poisson-binomial cdf, with 853 

1,000 bootstraps. Comparison P-values were generated with 1,000 bootstraps.  854 
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858 

Figure 6: ψQTL haplotype configurations in Autism Spectrum Disorder implicated genes 859 

in ASD families.  860 

We tested for deviation in the frequencies of high penetrance variant - ψQTL configurations in 861 

ASD-implicated genes in parents, probands  and unaffected siblings in SSC families.  862 

 863 
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Supplemental Figures 865 

866 

 867 

 868 
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Figure S1 - Splicing as a modifier of penetrance, in detail: 871 

Under  the modified penetrance model that we consider here, regulatory variation that alters the 872 

dosage effect that a loss-of-function variant has on a gene is the primary driver of incomplete 873 

penetrance of the LoF variant. In this project, we focus specifically on exon splicing as a driver 874 

of this phenomenon. Generally, we consider regulatory alleles in this model to be selectively 875 

neutral, which is likely to be the case for most common regulatory variants.  876 

 In the top example, we present a scenario where two splicing isoforms for a particular 877 

gene exist, and their ratio is controlled by a ψQTL where one allele causes a target exon to be 878 

included 100% of the time the gene is expressed, and the other allele causes the exon to be 879 

skipped 50% of the time it is expressed. If by chance, an individual carries a  loss-of-function 880 

allele on the target exon (either by transmission or de-novo mutation), functional exon dosage is 881 

reduced to 75% if the loss-of-function variant lands on lower included haplotype. The functional 882 

dosage is further reduced to 50% if the loss-of-function variant lands on the higher included 883 

haplotype. In this example, it is important to note that loss of functional gene dosage is driven 884 

only by the haplotype carrying a loss-of-function allele, and its ψQTL allele being a potential 885 

modifier of this. The other haplotype is fully functional and its sQTL allele is irrelevant. This is a 886 

subtle but pertinent distinction between the eQTL as a modifier of penetrance hypothesis 887 

(Castel et al. 2018), where the LoF haplotype is considered non-functional, and the the non-LoF 888 

haplotype is responsible for maintaining normal downstream function as modified by its eQTL 889 

allele. All assumptions about haplotype frequency in the population and haplotype frequency in 890 

diseased patients are the same across the two models.  891 

 In the lower figure, we generalize the model to include ψQTLs of all effect sizes. For 892 

heterozygotes, the upper left corner of the plot represents putative high-penetrance haplotypes, 893 

and the lower right corner represents putative low-penetrance haplotypes. For ψQTL 894 

homozygotes, deleterious or non-deleterious haplotype designations depend on the PSI of the 895 

alternative ψQTL allele. At the population level, we hypothesize that purifying selection acts 896 

more strongly against high-penetrance haplotype combinations. However, we do not account for 897 

quantitative changes in functional dosage as they are likely to be highly gene-specific and 898 

mostly unknown.  899 
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 901 

Figure S2: PSI among exons carrying a rare variant and PSI Z scores.  902 

A. Distribution of percent spliced in (PSI) scores of all exons with sufficient variability across 903 

individuals in GTEx that carry rare variants. Colors indicate CADD score of the rare variant. In 904 

general, variants on more highly included exons are assigned a higher CADD score. B. PSI Z-905 

scores are generated by fitting a normal distribution to PSI levels across GTEx individuals for a 906 

particular exon.  For each exon, the PSI Z-score is in reference to the splicing of the same exon 907 

in the same tissue across all other donors with RNA-seq data available for that tissue.  908 
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 910 

Figure S3: Mean Z-score (+/- 95% bootstrap CI) across annotations 911 

The number of rare alleles with deleterious and non-deleterious CADD designations 912 

respectively are printed beneath each rare variant annotation. When data is available for an 913 

individual in multiple tissues, we calculated the mean Z-score. When collapsing across tissues 914 

and viewing by annotation, we see that deleterious alleles are depleted in most annotation 915 

classes as well. Some variants may be annotated as “intronic” even though their loci are labeled 916 

as exonic in the annotation used in the rest of the study.  917 
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918 

Figure S4: Runtime and Accuracy benchmark of the Bootstrapped Poisson-Binomial 919 

For all benchmarking analyses, we compare our method, which approximates the cumulative 920 

distribution function (CDF) of the Poisson-binomial distribution using a bootstrapping procedure, 921 

to four other methods included in the ‘poibin’ R package. (Hong 2013) We use 5,000 bootstrap 922 

samples here, but we found that in general 1,000 bootstrap samples balanced accuracy and 923 

runtime. a. We measured the runtime to calculate the CDF of simulated datasets with uniform 924 

probability distributions. We found that the bootstrap method outperformed the Direct Fourier 925 

Transform (DFT) method for datasets with N > 10,000. DFT exceeded allocated memory for 926 

more than 10,000 samples, which we frequently encounter when analyzing real data. b. The 927 

bootstrap method performed more accurately with larger sample sizes, measured as the 928 

absolute difference between the estimation method and the DFT method. We tested across 929 
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datasets with different distributions of pj , the vector of probabilities that define each binary 930 

observation. pjs were sampled from various beta distributions. The “naive approach,” for 931 

comparison, is a binomial test where p is the mean of pj.  932 

 933 
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935 

Figure S5: Summaries of haplotype calls across the 3 WGS datasets 936 

In GTEx, TOPMed, and parents in the Simons Simplex Collection, we balanced sample size 937 

and allele frequency cutoffs to compile the best set of haplotype configurations. Across each 938 

dataset, we plot from left to right 1) the distribution of high exon inclusion ψQTL allele 939 

frequencies; 2) The number of haplotypes identified per donor, given the rare variant allele 940 

frequency cutoffs (see Table 2). The larger the dataset, the more stringent we can be for 941 

defining a ‘rare’ variant; 3) The number of haplotypes identified per gene; 4) The minor allele 942 

frequency in gnomad of all rare variants considered in the haplotype frequency analysis. 943 

Deleterious and non-deleterious refer to the CADD score designation (less than and greater 944 

than 15 respectively).   945 
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 947 

Figure S6: cSNP annotation counts in TOPMEd 948 

A. More deleterious (higher CADD) variants tend to fall on exons with higher baseline PSI. B. 949 

Haplotypes grouped by ΔPSI Quantile. More rare variants, both deleterious and non-950 

deleterious, appear at exons with larger effect size sQTLs. C. Genes that are tolerant to loss-of-951 

function variants (high LOEUF) have ψQTLs with a higher effect size (ΔPSI).  952 

 953 
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 955 

Figure S7: Gene by gene analysis in TOPMEd 956 

a. Depletion of high-penetrance haplotype observations on a gene-by-gene basis in TOPMed. 957 

For each gene with more than 10 observed haplotypes across donors, we test if any genes or 958 

classes of genes are driving the overall pattern of high-penetrance haplotype depletion. Each 959 

point represents a single gene. b. Comparison of haplotype deviation between deleterious and 960 

non-deleterious rare coding variants, among genes with greater than 10 haplotypes in both 961 

categories. Under a model where highly penetrant deleterious cSNPs are depleted in the 962 

population, we expect more blue-labeled genes in the third quadrant.  963 

 964 
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 966 

Figure S8: Transmission patterns of splicing haplotypes  967 

a. When a parent carries a exonic variant in a putative low (green text) or high (red text) 968 

penetrance haplotype configuration, they will almost always transmit it to a child in the same 969 

haplotype configuration. b. Distribution of LOEUF scores among genes identified as relevant to 970 

Autism Spectrum Disorder, by SFARI Gene. ASD genes have significant depletion of predicted 971 

loss-of-function variants in general.  972 
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Supplemental Tables 974 

Supplementary Table 1: GTEx Tissues utilized for ψQTL calling, and the number of exons 975 

pre and post filtering.  976 

Tissue 

N Exons 

per tissue 

pre-filtering 

N Exons per 

tissue post-

filtering 

Percent 

usable 

Genes 

covered 

per tissue 

Adipose_Subcutaneous 260,800 29,180 11.19% 8,585 

Artery_Tibial 253,109 27,453 10.85% 8,127 

Brain_Cerebellum 239,928 36,095 15.04% 8,605 

Brain_Cortex 240,439 26,121 10.86% 7,857 

Brain_Nucleus_accumbens_basal_ganglia 247,074 26,372 10.67% 7,998 

Cells_Cultured_fibroblasts 230,752 28,486 12.34% 8,479 

Cells_EBV.transformed_lymphocytes 220,547 37,837 17.16% 9,291 

Colon_Transverse 231,647 29,066 12.55% 8,630 

Esophagus_Mucosa 245,627 26,721 10.88% 7,984 

Liver 224,469 21,605 9.62% 6,283 

Lung 265,555 34,585 13.02% 9,387 

Muscle_Skeletal 240,921 22,664 9.41% 6,788 

Nerve_Tibial 261,375 30,771 11.77% 8,783 

Pituitary 259,310 32,795 12.65% 8,774 

Skin_Sun_Exposed_Lower_leg 259,438 29,570 11.40% 8,588 

Spleen 241,122 30,379 12.60% 8,277 

Thyroid 266,364 30,035 11.28% 8,586 

Whole_Blood 236,866 23,135 9.77% 6,039 

 977 

Supplemental Table 2: TOPMed cohorts utilized and number of samples from each 978 

cohort  979 

 980 

Supplemental Table 2.xlsx 981 
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