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Abstract: Chitosan, industrially acquired by the alkaline N-deacetylation of chitin, belongs to β-N-
acetyl-glucosamine polymers. Another β-polymer is hyaluronan. Chitosan, a biodegradable, non-
toxic, bacteriostatic, and fungistatic biopolymer, has numerous applications in medicine. Hyaluronan,
one of the major structural components of the extracellular matrix in vertebrate tissues, is broadly
exploited in medicine as well. This review summarizes that these two biopolymers have a mutual
impact on skin wound healing as skin wound dressings and carriers of remedies.

Keywords: antioxidants; chitin; hyaluronic acid; L-(+)-ergothioneine; MitoQ; resveratrol; SkQ;
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1. Introductory Remarks
1.1. Pharmacokinetics

The drug can enter the body in several ways depending on the route of administration,
which can be parenteral, or enteral, i.e., into the gastrointestinal tract. The concentration
of the drug at the site of its action depends on several processes, which include drug
absorption (resorption), distribution in individual tissues, and elimination. The principal
goal of drug administration in any form is the entry of the drug to the bloodstream through
circulation by which the drug is distributed to various parts of the body. On the other hand,
to transfer the drug to the site of action or to be metabolized and excreted from the body,
the drug must be transported across cell membranes. This transport is passive or active,
i.e., mediated by carriers.

Concerning lipophilic drugs, a passive transport through the lipid bilayer of cells
occurs by simple diffusion: the rate of diffusion depends on the size of the drug molecule,
the thickness of the membrane and the size of the resorption area. Drugs that are weak acids
or bases in the polar milieu exist simultaneously as ionized and non-ionized fractions. The
non-ionized drug form is usually liposoluble and, therefore, readily crosses membranes.
The ionized fraction is hydrosoluble and is difficult to pass through the lipid bilayer. The
ratio of both drug fractions is determined by the degree of ionization of a weak acid—pKa—
(pKb for the weak base), which is a physicochemical parameter: if the pKa of the drug is
identical to the pH of the solution, in which the drug is dissolved, then 50% of the drug is
ionized and 50% remains in a non-ionized form.

A wide range of drug dosage forms can be ingested orally and varies from liquid
(solutions) and semi-solid forms (emulsion pastes) to solid ones (tablets, capsules, granules,
powders). The disadvantage of oral ingestion is a slower onset of action of the drug, its
uneven absorption, degradation of the drug in the stomach, or interaction with food. The
so-called first pass effect is the uptake of a fraction of the ingested drug by the liver, which
ultimately reduces the dose of the drug that enters the bloodstream. One of the modes
of drug applications to circumvent the adverse first pass effect is to administer the drug
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through the skin, mucosa. This route of administration is primarily accompanied with a
local/pharmacological effect of the remedy. Since the skin is a relatively thick membrane,
liposoluble drugs readily pass through the membrane. In contrast, water-soluble drugs
penetrate to skin slowly and in small amounts.

When sustain- or smart-release of a drug or of an active/medical principle is incorpo-
rated into a reservoir/carrier, e.g., into a composite membrane, it is necessary to replace
the membrane with a new one, e.g., every day. The initial flow of the drug as well as the
final flow, i.e., 24 h after the application of the composite membrane must correspond to
the drug uptake into the skin in a concentration, which will be effective in the site of the
drug action—see Scheme 1.

Molecules 2021, 26, x  2 of 18 
 

 

which ultimately reduces the dose of the drug that enters the bloodstream. One of the 

modes of drug applications to circumvent the adverse first pass effect is to administer the 

drug through the skin, mucosa. This route of administration is primarily accompanied 

with a local/pharmacological effect of the remedy. Since the skin is a relatively thick mem-

brane, liposoluble drugs readily pass through the membrane. In contrast, water-soluble 

drugs penetrate to skin slowly and in small amounts. 

When sustain- or smart-release of a drug or of an active/medical principle is incorpo-

rated into a reservoir/carrier, e.g., into a composite membrane, it is necessary to replace 

the membrane with a new one, e.g., every day. The initial flow of the drug as well as the 

final flow, i.e., 24 h after the application of the composite membrane must correspond to 

the drug uptake into the skin in a concentration, which will be effective in the site of the 

drug action—see Scheme 1. 

 

Scheme 1. Concentration of a drug (blue; axis Y) during the period of treatment (axis X) must be in 

a range of effective treatment level of a drug (area marked in green), whereas it must never be in 

the range of levels of a drug, which is toxic (area marked in red) and should not be in the range of 

therapeutically ineffective level of a drug (area marked in yellow) in the site of the drug action. The 

time interval between two consecutive applications is indicated—i. 

Transdermal drug delivery systems (TDDS) are formulations containing one or more 

drugs that are applied to the skin to achieve a systemic effect [1–8]. The first experiments 

with TDDS contained immunomodulators, contraceptives, and also antibiotics. The latter, 

especially for military purposes, date back to the 1970s. Currently, drugs incorporated 

into TDDS must have several characteristics, namely (i) low therapeutic level, (ii) good 

transport across the skin barrier, (iii) the affinity of the drug to the skin must be higher 

than to the delivery system, (iv) the molar mass range of the drug should be 100–800 Da, 

(v) the solubility of the drug in water and in octanol must be over 1 mg/mL, and (vi) the 

drug must have a minimum of polar/zwitterionic functional groups. Further criteria are: 

insignificant first pass metabolism of the drug in the skin, therapeutic efficacy at a dose 

<10 mg/day, biological half-life of the drug 6–8 h, as well as minimal toxicity and aller-

genicity to the skin during long-term application. The patient’s preferences for the use of 

TDDS are in particular the improved patient compliance due to simplicity of application. 

Scheme 1. Concentration of a drug (blue; axis Y) during the period of treatment (axis X) must be in
a range of effective treatment level of a drug (area marked in green), whereas it must never be in
the range of levels of a drug, which is toxic (area marked in red) and should not be in the range of
therapeutically ineffective level of a drug (area marked in yellow) in the site of the drug action. The
time interval between two consecutive applications is indicated—i.

Transdermal drug delivery systems (TDDS) are formulations containing one or more
drugs that are applied to the skin to achieve a systemic effect [1–8]. The first experiments
with TDDS contained immunomodulators, contraceptives, and also antibiotics. The latter,
especially for military purposes, date back to the 1970s. Currently, drugs incorporated
into TDDS must have several characteristics, namely (i) low therapeutic level, (ii) good
transport across the skin barrier, (iii) the affinity of the drug to the skin must be higher
than to the delivery system, (iv) the molar mass range of the drug should be 100–800 Da,
(v) the solubility of the drug in water and in octanol must be over 1 mg/mL, and (vi) the
drug must have a minimum of polar/zwitterionic functional groups. Further criteria
are: insignificant first pass metabolism of the drug in the skin, therapeutic efficacy at a
dose <10 mg/day, biological half-life of the drug 6–8 h, as well as minimal toxicity and
allergenicity to the skin during long-term application. The patient’s preferences for the use
of TDDS are in particular the improved patient compliance due to simplicity of application.
The patch size limit is 50 cm2, with the maximum transdermal dose of the drug being
limited to 5–20 mg/day [9]. In the last years, the production and application of TDDSs
have been broadly investigated in the field of drug sustain delivery, along with drugs in
the form of conjugates with a polymer and/or hydrogel depot systems [10].

It is of a great interest in the scientific community to investigate the alternatives of how
to administer drugs/biologically active substances to organisms safer. Namely, the mode
to administer the substance into the body by a more or less controlled penetration through
the skin has been accompanied with a valuable number of easy-to-implement procedures
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for the incorporation of several types of exogenous substances into a carrier/TDDS [11].
Achievements in widespread use of TDDS (patches) are documented by data in Table 1.

Table 1. Active/medical principle or a drug for transdermal applications.

Group Active/Medical
Principle, Drug

Water
Solubility References Note

− [12–18] Polymeric reservoir = free of any active/medical
principle, drug.

Antibiotics
√

[19–21]

Ref. [15]: Chitosan lactate 45–50%, HA 45–50%, antibiotic
5–10%.

Ref. [16]: Chitosan 25–40 parts, succinyl-chitosan 10–25
parts, HA sodium 5–15 parts, antibacterial 1–5 parts.a

Antiemetics Granisetron
√

[22] This drug exists also as Granisetron hydrochloride. Patch
matrix layer is an acrylate-vinylacetate copolymer.

Antiinflammatory,
NSAIDs

Diclofenac (
√

) b [23]
This drug exists also as Na salt with increased drug

solubility. Diclofenac epolamine is applied to
non-woven polyester.

Ketoprofen (
√

) [24] Patch matrix layer is an acrylic pressure-sensitive
adhesive polymer.

Piroxicam (
√

) [25] Multipolymeric
composite patch.

Quercetin (
√

) [2] N-carboxybutylchitosan and agarose film- or
foam-like reservoirs.

Antiparkinsonians

Rotigotine (
√

) [26] This drug exists also as Rotigotine
hydrochloride. Multipolymeric composite patch.

Selegiline (
√

) [27]
This drug exists also as Selegiline

hydrochloride.
Multipolymeric composite patch.

Antiseptics Chlorhexidine
diacetate

√
[28] Multipolymeric composite patch.

Analgesics,
Anesthetics,
Anodynes

Buprenorphine (
√

) [29] This drug exists also as Buprenorphine hydrochloride.
Multipolymeric composite patch.

Fentanyl (
√

) [30]
Multipolymeric composite patch. This drug is

incorporated within a patch as Fentanyl:Citric acid, 1:1,
which increases the drug solubility.

Ketorolac (
√

) [31] Chitosan-cellulose patch.

Lidocaine (
√

) [32]
Chitosan patch. This drug exists
also as Lidocaine hydrochloride,

which increases the drug solubility.

Contraceptives,
Hormoness

Estradiol (
√

) [33]
Encapsulation to cyclodextrin increases estradiol

solubility in water. This drug is combined within a patch
also with Noretisterone or Progesterone.

Testosterone (
√

) [34] Encapsulation to cyclodextrin increases testosterone
solubility in water.

Parasympatholytics
Scopolamine This drug exists also as Scopolamine hydrobromide.
Oxybutynin

hydrochloride
√

[35] Multipolymeric composite patch.

Psychostimulants
Rivastigmine

√
[36] Multipolymeric composite patch.

Methylphenidate
hydrochloride

√
[37] Patch polymer matrix comprises

styrene-isoprene-styrene or polyisobutylene polymers.

Vasodilatant Nitroglycerine
√

[38] Patch contains acrylic-based adhesives with a resinous
cross-linking agent.

Varia
Clonidine (

√
) [39] Multipolymeric composite patch.

Nicotine
√

[40] Multipolymeric composite patch.
a The preparation contains also a pain/inflammation diminishing agent 2–8 parts, starch 5–20 parts, and plasticizer 2–10 parts. b (

√
)

Sparingly soluble in water.
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1.2. Tissues Covering the Organisms

Multicellular organisms, whose body forms an integrated set of organs, are usually
separated from the surrounding environment by a soft, flexible tissue covering their body—
the skin or by a hard cover, e.g., the exoskeleton of crustaceans and mollusks. One of the
hard exoskeleton biopolymeric components is chitin. The elastic skin besides numerous
components is also composed of another biopolymer, namely hyaluronan (HA).

The skin in an adult human covers an area of approx. 1.5–2 m2; its thickness is in a
range of 0.5–5 mm. The slightly acidic pH value of 4.5–5.5 ensures that the skin surface
prevents the growth of bacteria, yeasts, and fungi. Skin has several functions such as
protective, thermoregulatory, sensory, and immune. Of the protective functions, we denote,
e.g., protection against adverse external physical (injury, sunlight), chemical and biological
(invasion of microorganisms) properties. Several minor mechanical injuries and skin
damages heal spontaneously. However, the more severe skin defects in patients may be
accompanied with chronic injuries with a fatal outcome.

1.3. Chitin, Chitosan, and Hyaluronan

The structural unit of the chitin biopolymer—{C8H13O5N}n—N-acetyl-D-glucosamine
(GlcpNAc), or more precisely 2-(acetylamino)-2-deoxy-D-glucose, the monomer (n = 1) is
well water soluble. The crystalline structure of chitin is the result of a complex biosynthesis,
which is accompanied by a reorganization of the chains to form antiparallel arrangements
in case of α-chitin or parallel in case of β-chitin. These features explain their insolubility
and different reactivities. Chitin in a solid phase is used in industry in many processes,
e.g., nanocrystal chitin particles serve as stabilizers of food hydrocolloids [41]. There is
a growing interest of industry in products acquired from chitosan. To a much greater
extent, a chitin derivative—chitosan—is employed as scaffolds in studies concerning tissue
growing and wound healing.

Chitosan, a linear polysaccharide composed of randomly distributed GlcpNAc and its
deacetylated unit β-(1→4)-linked D-glucosamine, is synthesized by partial deacetylation
of chitin with, e.g., aqueous NaOH solution. The deacetylation degree in commercially
available chitosans varies from 60 to 100%. The average molar mass of commercially used
chitosan macromolecules is up to 20 kDaltons. The amino groups in chitosan have pKa
values of approx. 6.5, thus, in neutral aqueous solution (pH 7) the macromolecules are
positively charged.

Hyaluronan (HA), a biopolymer, is composed of repeating disaccharide units of
GlcpNAc and D-glucuronic acid, linked exclusively by β-linkages. HA is a member of
the glycosaminoglycan family [42,43]. Commercially used HAs have a wide interval of
mean molar masses reaching up to several megadaltons (MDa). Due to the presence of
free D-glucuronic acid groups, HAs in aqueous solutions behave like polyanions: the
overall pKa values of HA carboxyl groups are approximately in the range 3–4 [10,44]. HA
is a major component of epidermis and dermis of the skin. HA is broadly used as an
excellent moisturizer in cosmetics and skin-care products. The negative charge of HA
macromolecules and the acidic pH of the skin surface are the main factors for their good
mutual compatibility.

1.4. Chitosan-Hyaluronan Associates

While chitosan itself forms a perfect film after drying of its slightly acidic solutions
(usually in 2% aqueous acetic acid), HA lacks such film forming propensities. Thus, when
combining the two solutions in appropriate ratios, one may obtain a viscous solution (see
Figure 1), which after drying easily forms a thin film with much higher tear resistance than a
film formed only from the chitosan solution. After the addition of another component such
as an “active principle” to the pre-formulated viscous solution of those two polymers, we
prepare a composite membrane, which is ready-to-use for treatment of, e.g., difficult-to-heal
chronic skin wounds.
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mass hyaluronan (purple) and a polycationic chitosan (green) yield a complex coacervate/polyionic
complex hydrogel. Bottom panel: The co-application of an active principle (blue dots) in the formation
of a three-component viscous solution, i.e., the material used to construct a composite membrane.

The coacervate/polyionic complex hydrogel represents a polar/aqueous milieu, how-
ever, when the active principles are poorly water soluble, they are dissolved in, e.g.,
dimethylformamide or dimethylsulfoxide. Another, more progressive approach, includes
the incorporation of a liposoluble drug into either a liposome or into the cavity of a cy-
clodextrin derivative; thereby, we obtain a readily water soluble drug form [45]. Further
additives during preparation of the polyionic hydrogel can be bacteria- and/or fungistatics
(e.g., water soluble NaN3, hydrophobic thymol, or colloidal nanosilver).

A minor drawback, however, exists when the membrane is prepared by mixing the
two polymer solutions. While HA is readily water soluble, chitosan needs to be dissolved
in a diluted acid (most often 2% aqueous acetic acid). To eliminate the traces of CH3COOH,
an additional step such as adding of the membrane to an alkaline solution (usually in
aqueous NaOH solution) is recommended. To solve this limitation, another investigation
of the scientists has been focused on preparing water-soluble chitosan derivatives [46–50].

Physicochemical crosslinking of the positively charged chitosan chains with biopoly-
meric negatively charged HA networks can result in preparation of novel advantage mate-
rials applicable in medicine. Such composites can serve as artificial skin-wound dressings,
which often carry some therapeutics, and/or some other bioactive components [51].

Yet, some comments are necessary to add: chitosan itself and its water-soluble deriva-
tives form easily an elastic foil, which can be used as wound dressings and TDDSs [52].
Depending on the foil thickness, an additional benefit might be a good transparency of
plastic sheets. Generally, wound-covering foils/sheets prepared this way have some ad-
vantageous biological properties, e.g., antimicrobial [53]. To increase the chitosan-derived-
foil resistance to ruptures, several low and high-molar-mass cross-linkers including HA
were employed [54,55]. Some people, however, might demonstrate an allergic response
to products derived from either crustaceans and mollusks or a HA cross-linker. Thus,
chitosan-derived-foils are not suitable for patients with a previously diagnosed allergy to
those materials. In such a situation, an anaphylactic shock can happen, where epinephrine
injection is the first-line treatment.

One of the most promising alternatives is the preparation of composite membranes,
which the drug/an active principle is smartly released from. The drug/the active principle
should penetrate into the skin, and be absorbed to the bloodstream; thereby, the drug is
distributed to the site of its action.

In this communication, we summarize the achievements underwent in our laboratory
and simultaneously in some laboratories worldwide.

Some drugs/medical principles incorporated to membranes of chitosan and HA are
summarized in Table 2.
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Table 2. Active/medical principle or a drug incorporated into composite membranes of chitosan and hyaluronan.

Group Active/Medical
Principle, Drug

Formal
Charge

Water
Solubility References Note

Mitochondrially
targeted antioxidants

MitoQ +
√

[56] Scavenger of O2
•− anion radicals [57,58].

SkQ a +
√

Scavenger of O2
•− anion radicals [59].

Antioxidants Edaravone
√

[60,61] Efficient free-radical scavenging
properties [14].

Glutathione +
√

[62,63] Endogenous antioxidant, H atom and
electron donor [21].

Phosphatidylcholine
dihydroquercetin + (

√
) [64] Electron donor.

Resveratrol (
√

) [65] Endogenous antioxidant, H atom and
electron donor.

Varia

- [66–72] Wound dressing preparations.
Captopril

√
[73] H atom donor.

Thiocolchicoside
√

[74] Muscle relaxant with antiinflammatory
and analgesic effects.

Tiopronin
√

[73] H atom donor.
a SkQ, analogously as MitoQ, is a proper mitochondrially targeted antioxidant for transdermal application.

1.5. Treatment of Difficult-to-Healing Skin Wounds

The body’s response to tissue injury in a healthy individual is a sequential physiologic
process that results in re-epithelialization, resolution of drainage, and recovery of function
of the affected tissue. Chronic wounds, however, do not follow this sequence of events.
For example, tissues of leg and decubitus ulcers or burns of higher degree are chronically
inflamed [3,16]. Besides necrotic cells, such tissues contain other cells, in which oxygen
uptake is insufficient due to a damage of extracellular glycocalyx (state of hypoxia). It is
well known that mitochondria in cells enhance the production of reactive oxygen species
(ROS) during hypoxia. ROS such as O2

•−, H2O2, and of those forming •OH radicals are
the compounds that can cause destruction of the tissue. It is generally recognized that ROS
originate in the elevated amounts from the stressed cells. One way to effectively reduce an
adverse flow of ROS from mitochondria is to use the so-called mitochondrially-targeted
antioxidants (MTAs). MTAs can selectively enter mitochondria in cells. MTAs with a posi-
tively charged carrier of the “Skulatchev ions” type are already used commercially. MTAs
have to be applied on the site of an inflamed tissue at a relatively low concentration during
a prolonged period of time. The authors of this paper suggest that MTA incorporated into
membranes formed by two biopolymers: high molar mass hyaluronan (HMM HA) and
chitosan could reduce or scavenge the flux of ROS damaging skin tissues. An appropriate
combination of HA and chitosan allows the formation of very stable biofilms with a certain
excess of the negative charge. Incorporation of MTA into such a biofilm results in formation
of biomembranes [75], whereas MTA is released gradually during an extended period.
One of the especially important advantages of the aforementioned combination is that
MTA in an oxidized form can be preserved for an illimitable long period, because MTA
is not oxidized spontaneously. MTA is activated, i.e., reduced after entering the cell. It is
possible to maintain membranes in a mildly humid milieu in an appropriate bag (pocket)
and to apply them on a wound at any time when needed. Since after a certain time MTA
penetrates from the membrane and is incorporated into the wound tissue, the membrane
can be readily removed and substituted by a new one. Incorporation of the cytoprotectant
into such a membrane results in the formation of composite membranes, whereas the
cytoprotectant is smart-released during an extended period [76]. Figure 2 displays wound
healing of ulcers on a man’s leg. The achieved progress during the periodical application
(once in three days) of a properly designed composite membrane led to patenting the
novelty and originality of the approach applied [75,76].
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Figure 2. Left panel: Severe ulcers of the man’s leg, middle panel: Schematic application of a
composite membrane consisting of a scaffold impregnated with self-associated macromolecules of
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healing active medical principle (blue, a proper MTA), right panel: Result of a few-day treatment of
the patient’s ulcers. Adapted with permission from ref. [75].

By varying the ratio of the polymers chitosan and HA it is easy to adjust the proper
resulting charge of the storage space/reservoir of the drug—the active medical principle,
which is partially cationic or anionic.

Since the molar mass of disaccharide unit of completely deacetylated chitosan equals
to the approximate molar mass of HA disaccharide, the ratio 1:1 w/w should result in nil
reservoir charge. To obtain identical zero charge when using 50% deacetylated chitosan,
it is necessary to blend two parts of chitosan with one part of HA. Thus, e.g., due to a
little surplus of positive reservoir polarity, the negatively charged drug can be gradually
released in accord to concentration gradient between the membrane surface and the site of
drug action and on mutual electric attraction between the membrane and the active medical
principle. In the opposite situation, when polarity of the reservoir is negative and the drug
has a positive charge, the drug gradually releases based on the above-specified conditions.
Yet, it should be pointed out that when the drug is water soluble, it is appropriate to
harmonize the charges of both the reservoir and the drug to identical ones, either positive
or negative. Although, the treatment with a loosely trapped drug is the primary aim, it is
necessary to mention that the membrane fabricated from chitosan and HA is frequently
applied as artificial skin, which promotes the treatment of superficial chronic tissues
damages and/or difficult-to-heal wounds [67–70,76,77].

1.6. Drug Release from Chitosan-HA Membrane

Some additional surmountable obstacles should be mentioned here. When one
would like to prepare a composite membrane composed of chitosan and HA with a
charged/hydrophilic compound of low-molar-mass, it is necessary to keep in mind that
the release of a hydrophilic low-molar-mass compound from a hydrophobic depot runs
well; however, the electrically neutral hydrophilic compound does not release from the
hydrophilic reservoir (cf. Scheme 2). On the other hand, the charge on the drug molecule,
especially that of plus in chitosan-HA membranes, characterized by positive charge origi-
nated from chitosan, resulted in a real incompatibility between the reservoir and the drug.
In such a case, the drug is released from the mass of the reservoir to its surface.
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Scheme 2. Left panel schematically illustrates release of a hydrophobic low-molar-mass compound from a lipophilic depot.
Right panel demonstrates the situation when the hydrophilic compound is released from the hydrophilic reservoir. s. c.
stratum corneum = thickness 10–15 µm e. epidermis = 150 µm d. dermis = 1–2 mm h. hypodermis/subcutis.

The positively charged drug, present in excess on the surface of the positively charged
composite membrane, is immediately disposable for either entering the cells of the skin
or for elimination from epidermis or dermis to systemic blood circulation. Thus, cationic
active/medical principles or drugs “fired” from positively charged reservoirs are practically
not tightly trapped by its carrier.

1.7. Chitosan-HA-MTA Composite Membranes

As already reported in the paragraph “Treatment of difficult-to-healing skin wound”,
numerous mitochondrially-targeted molecules have been already prepared [78]. Of those
two, representatives such as MitoQ and SkQ should be mentioned here (cf. Table 2).
Any positively charged MTA must first be transported across the cell membrane, which
electrical potential (∆ψ) ranges from −30 to −60 mV. After penetrating into the cell, the
MTA molecule is transported across the charged bilayer barrier (∆ψ = −150 to −180 mV)
surrounding the mitochondrion. The primary function of the MTA molecules reaching the
internal space of mitochondria is to convert the undesirable surplus of O2

•− anion radicals
to molecules of dioxygen (O2). Due to the oxidative reaction (2O2

•−→2O2 + 2 electrons),
the two electrons are trapped by the molecule of MitoQ (mitoquinone) or SkQ yielding the
molecule of mitoquinol or SkQ1 (cf. Scheme 3 [79,80]).
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The rarely claimed observation concerning the application of, e.g., MitoQ is its very
narrow therapeutic window. It means that when the dose of this mitochondrially-targeted
antioxidant exceeds an optimal level, it could be counterproductive [81–84]. Yet, when the
appropriate dose of MitoQ is incorporated into the composite membranes skin wounds
healed effectively [61]. Because of the necessity to control the SkQ dose due to its very
narrow therapeutic window, the Russian investigators applicated this MTA exclusively
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within, e.g., Visomitin SkQ1—eye drops treating cataract [85]. One drop per eye three
times/day means for a patient to administer approximately 14 ng of SkQ1. SkQ1 is a
prodrug, which when entered the mitochondria is converted to its active form and, thus,
can scavenge noxious superoxide anion radicals. Analogously, as we observed [61], the
MTAs incorporated into chitosan-HA membranes could have appropriate applications,
even like a TDDS tool.

1.8. Chitosan-HA-Antioxidant Composite Membranes

One of the functionally essential components of skin is HA. HMM HA, which has
viscous properties, is located around the skin cells and forms the so-called extracellular
matrix. HMM HA in skin is sensitive to the attack by free radicals. The four steps of
perpetual radical HA degradation are: initiation, propagation, transfer, and termination
(see Scheme 4).

Molecules 2021, 26, x  10 of 18 
 

 

 

Scheme 4. Reaction of initiation: (a) an intact HA macromolecule reacts with •OH radical; (b) for-

mation of an intermediate, i.e., a C-centered HA macroradical. Reactions of propagation and of 

transfer of the free-radical center; (c) formation of a peroxy-type macroradical; (d,e) generation of a 

HA hydroperoxide and a highly unstable alkoxy-type macroradical. Reaction yielding fragments: 

(f) an alkoxy-type macroradical and a HA-like macromolecule bearing a terminal C=O group. Both 

fragments have reduced molar mass. 

According to the cascade of reactions showed in Scheme 4 it is obvious, that to inter-

rupt the perpetual free-radical HA degradation [cf. reaction “intermediate free-radical 

products” in Scheme b, c, e, f we must apply an antioxidant, which acts as H atom donor. 

Such a property can be attributed to L-(+)-ergothioneine and resveratrol (cf. Table 2). 

1.9. Chitosan-HA-Resveratrol Composite Membrane 

Trans-3,5,4′-trihydroxystilbene (C14H12O3) exists as two isomers, namely, cis-(Z)- and 

trans-(E)-resveratrol, which belong to phytoalexins—the compounds of several plants 

produced as a response to injury or when the plant is attacked by pathogens. Currently, 

trans-resveratrol is spread among the human population as a dietary supplement, how-

ever, there is no significant evidence that this substance improves lifespan or has a sub-

stantial effect on any human disease [86]. The solubility of resveratrol in water equals 

Scheme 4. Reaction of initiation: (a) an intact HA macromolecule reacts with •OH radical; (b)
formation of an intermediate, i.e., a C-centered HA macroradical. Reactions of propagation and of
transfer of the free-radical center; (c) formation of a peroxy-type macroradical; (d,e) generation of a
HA hydroperoxide and a highly unstable alkoxy-type macroradical. Reaction yielding fragments:
(f) an alkoxy-type macroradical and a HA-like macromolecule bearing a terminal C=O group. Both
fragments have reduced molar mass.
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According to the cascade of reactions showed in Scheme 4 it is obvious, that to
interrupt the perpetual free-radical HA degradation [cf. reaction “intermediate free-radical
products” in Scheme b, c, e, f we must apply an antioxidant, which acts as H atom donor.
Such a property can be attributed to L-(+)-ergothioneine and resveratrol (cf. Table 2).

1.9. Chitosan-HA-Resveratrol Composite Membrane

Trans-3,5,4′-trihydroxystilbene (C14H12O3) exists as two isomers, namely, cis-(Z)- and
trans-(E)-resveratrol, which belong to phytoalexins—the compounds of several plants
produced as a response to injury or when the plant is attacked by pathogens. Currently,
trans-resveratrol is spread among the human population as a dietary supplement, however,
there is no significant evidence that this substance improves lifespan or has a substantial
effect on any human disease [86]. The solubility of resveratrol in water equals approxi-
mately 0.05 mg/mL and this compound belongs to antioxidants. Resveratrol is extensively
extruded from any hydrophilic, e.g., chitosan-HA membrane. Resveratrol, owing to its
lipophilic nature, penetrates easily into skin where its molecule with two diols in meta po-
sition might first undergo isomerization, which yields an intermediate compound bearing
two diols in the ortho-position. The intermediate during the next oxidation-reaction-step
converts to an ortho quinine type product (cf. the upper panel in Scheme 5). The reaction
yield (2 electrons plus 2 H+) is sometimes classified as a transfer of two H atoms [87]. Thus,
to date trans-resveratrol is designated as an efficient scavenger of hydroxyl and hydroper-
oxyl (•OOH) radicals [88]. As reported by Shang et al. [87], the compounds within the
top panel could, however, dimerize by the Diels–Alder condensation reaction. Potentially,
another reaction flow chart could be proposed as shown in Scheme 5, the bottom panel. By
such an electron transfer conjugation reaction another quinine compound could be formed.
Both reaction products represented in Scheme 5 (cf. upper and lower panels) are, however,
highly reactive counter partners to, e.g., condensation with endogenous aliphatic amines
via a Schiff-base reaction. That is why a great caution has been claimed with uncontrolled
use of polyphenols.
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1.10. Chitosan-HA-Ergothioneine Composite Membrane

L-(+)-Ergothioneine (see Scheme 6) is a sulfur-containing derivative of the amino acid
histidine. L-(+)-Ergothioneine, synonymum (S)-α-carboxy-N,N,N-trimethyl-2-mercapto-
1H-imidazole-4-ethanaminium, C9H15N3O2S, molar mass 229.3 g/mol is a non-toxic bioac-
tive molecule. L-(+)-Ergothioneine is tautomeric and in neutral aqueous solutions exists
predominantly in the thione form, which may account for L-(+)-ergothioneine’s resistance
to autoxidation. L-(+)-Ergothioneine’s sulfhydryl group in its thiol form highlights its
antioxidant properties such as two H atoms donoring property.
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Scheme 6. Thione (left) and thiol (right) forms of L-(+)-ergothioneine.

Analogously to trans-resveratrol, L-(+)-ergothioneine is consumed by human be-
ings as a dietary supplement. Contrary to slight solubility of resveratrol in water, L-(+)-
ergothioneine forms aqueous solutions easily and is scarcely extruded from a hydrophilic
reservoir. Thus, the amount of the polycationic chitosan should be properly set, which
results in forming a membrane, whose charge supports the flux of L-(+)-ergothioneine from
the reservoir composed of chitosan and HA. The positive charge of L-(+)-ergothioneine
molecules allows their penetration into the skin and after reaching the epidermis also the
drug absorption into the blood stream. The presence of an endogenous protein such as
a high affinity transporter OCTN1 of L-(+)-ergothioneine allows the substance efficient
distribution in the body. One can easily anticipate that L-(+)-ergothioneine molecules in
thiol forms are appropriate donors of H atom and should scavenge not only –CO• and
–COO• type radicals (cf. Scheme 4c,e,f) of the perpetual free-radical degradation of HA
within the inflamed skin, but also further ROS generated in the injured body tissues distant
from the site of application of the composite membrane.

1.11. Limitations/Dangers of Not Critical Application of Antioxidants

Either MTA or any other orally ingested antioxidant along with its potentially positive
action in parallel could cause a large adverse outcome, namely that of a reductive stress.
Thus, here we claim: at present, however, a great boom in various fields of industry is to
market numerous compounds, simply denoted as antioxidants with uncritical glorification
of protective effects of these compounds prevailingly against the so-called oxidative stress.
Yet, a poorly informed consumer following the “law of mass action” (more is better)
could overload his body with compounds/antioxidants, which can result in a high redox
disbalance, thereby to reductive stress. Figure 3 illustrates such circumstances:
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To comment the above mentioned Figure 3, as anticipated by Xiao and Loscalzo [89],
one can state that under physiological conditions, cellular redox buffers in a healthy
subject have sufficient capacity (termed basal redox buffer capacity (ReBC)) to maintain
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cellular oxidants and reductants/antioxidants at physiological levels. When cells are
subjected to oxidative or reductive insults, redox buffers increase to a certain level (termed
compensatory ReBC) to counteract these redox stresses and restore redox homeostasis.
Under these circumstances, cellular oxidants and reductants are still maintained within
physiological ranges. However, when this compensatory response reaches a maximum, the
ReBC is exceeded and oxidative or reductive stress occurs. Importantly, reductive stress
diminishes cellular reactive oxygen species (ROS) levels at physiological levels and, thus,
perturbs their signaling functions. From a different viewpoint, reductive stress can also
promote ROS production (e.g., by partially reducing oxygen) and, thus, is proposed to
promote oxidative stress in essence, depending on the redox couples in which these ROS
are engaged.

2. Addendum

The informed readers of this journal probably would welcome the additional informa-
tion on the molecule of the antioxidant—ergothioneine, which follows here:

In the period of origin of animals, 2–3 billion years ago, the Earth was not protected by
an atmosphere containing oxygen. Cosmic radiation decomposed molecules of water and
the forming radicals (particularly •OH) were responsible for: (i) mutation of organisms
and (ii) their destruction/death. However, how to provide the survival of organisms
affected by “positive mutations”? In this prehistoric time, there existed such organisms,
which were capable of scavenging •OH radicals; thereby, these organisms prolonged their
existence in a non-mutated form. The compound discovered by these organisms is denoted
as L-ergothioneine [90].

In the last years, scientists have discovered that, surprisingly, some tissues in hu-
mans and animals as well contain unexplainably high levels of L-ergothioneine, and since
there is an unequal distribution of L-ergothioneine in the organism for some reason, the
research was focused on finding a selective/specific L-ergothioneine transporter. Et voilà,
a transporter was found. It is a protein—a high affinity OCTN1 vehicle [91]. Further
research showed that the synthesis of OCTN1 protein is encoded in the human DNA; yet,
L-ergothioneine is for humans recognized as a foreign compound. Thus, the challenge was:

• to solve a patentable procedure of L-ergothioneine synthesis [92];
• to persuade consumers to buy L-ergothioneine and to ingest it as a natural supplement.

In accord with Paul and Snyder [93], one could say that although L-(+)-ergothioneine
was isolated a century ago, its physiologic function has not been so far clearly estab-
lished. Because of its dietary origin, L-(+)-ergothioneine represents a vitamin, whose
physiologic roles include cytoprotection. The only organisms known to synthesize L-(+)-
ergothioneine are bacteria belonging to the genus Actinomycetales (example mycobacteria)
and non-yeast like fungi, which include members of the division Basidiomycota and
Ascomycota. These microbes synthesize L-(+)-ergothioneine from L-histidine via an inter-
mediate hercynine—a betaine of histidine. A sulfur group is added to hercynine to form
L-(+)-ergothioneine [90,94,95].

Mammals acquire L-(+)-ergothioneine solely through their diet: foods such as mush-
rooms, black beans, red meat, and oats are rich in L-(+)-ergothioneine. L-(+)-Ergothioneine
is cumulated in cells and tissues frequently exposed to oxidative stress with the highest
levels in the millimolar range occurring in blood, crystalline lenses, liver, bone marrow,
and seminal fluid. In the bovine lens, L-(+)-ergothioneine concentrations about 7 mmol/L
10-times exceed those of glutathione, generally regarded as the most abundant endogenous
antioxidant. In the bovine cornea, L-(+)-ergothioneine concentrations are 14-fold higher
than those of glutathione, suggesting that it is the principal antioxidant in this tissue.
Patients with rheumatoid arthritis accumulate L-(+)-ergothioneine in their synoviocytes.
L-(+)-Ergothioneine, when ingested, can scavenge reactive oxygen and nitrogen species
and protect cells from a variety of apoptotic insults. L-(+)-Ergothioneine inhibits tumor
necrosis factor-α induced release of the inflammatory cytokine interleukin-8 in alveolar
macrophages. The presence of a high affinity transporter OCTN1 of L-(+)-ergothioneine in
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conjunction with its non-random distribution in the body strongly implies the physiologic
role of L-(+)-ergothioneine. L-(+)-Ergothioneine scavenges hydroxyl radicals as well as
directly absorbs UV radiation. L-(+)-Ergothioneine has an absorption spectrum in the
UV range similar to DNA with a molar extinction coefficient of 1.4 × 10−4 mol−1.cm−1,
λmax = 257 nm, suggesting that L-(+)-ergothioneine can act as a physiological UV filter.
In vitro and cell culture studies have identified L-(+)-ergothioneine also as a scavenger of
superoxide anion radicals.

L-(+)-Ergothioneine may provide more stable mode of cytoprotection and since it
is not metabolized to any notable extent in mammalian tissues, the half-life of dietary
L-(+)-ergothioneine is approximately one month. These properties suggest a role for L-(+)-
ergothioneine as a bulwark, an ultimate defense for cells against oxidative damage. Thus,
L-(+)-ergothioneine appears to be an important physiologic cytoprotectant, which probably
merits its designation as a vitamin.

Next, the reason to use membrane compositions based on the two self-associating
biopolymers chitosan and HMM HA could be advocated as follows: the incorporation
of the molecules of the cytoprotectant L-(+)-ergothioneine into a two-component viscous
solution composed of self-associating chitosan and HA results after drying in a formation
of composite membranes ready-to-use to heal chronic wounds. In order to provide a
desired shape and to strengthen the membrane, it is advantageous to impregnate a sparsely
woven fabric/gauze or even the whole bandage with the three-component viscous solution.
The cytoprotectant L-(+)-ergothioneine can be gradually released from such membranes
during the extended period of time. Since after a certain time, L-(+)-ergothioneine from the
membrane penetrates and is incorporated into the wound tissue, the used membrane can be
readily removed and substituted by a new one. One of the especially important advantages
of the suggested formulation is that the composite membrane containing the cytoprotectant
L-(+)-ergothioneine can be preserved for unlimited time, because L-(+)-ergothioneine is
not oxidized spontaneously. It is, therefore, possible to store sterilized membranes in a
mildly wet state in an appropriate container and to apply them to a wound at any required
time. To summarize, why and how to exploit L-(+)-ergothioneine as a smart-released
cytoprotectant for treatment of difficult-to-heal chronic wounds of skin/tissues, we should
state that L-(+)-ergothioneine: 1. bears in its molecule a positive charge, i.e., is a cation, 2. its
molecules (at least their thiol fraction) are chemically reactive, 3. is transported directly into
the site of inflammation or to a vicinity of stressed cells by the high affinity OCTN1 vehicle.

Low molar mass of L-(+)-ergothioneine, i.e., less than 230 g/mol, which is substantially
lower than molar masses of any MTA, perfectly fulfils a request for a limit of molar mass
of drugs circulating in the organism, i.e., up to 400 g/mol. The requirement 1, i.e., a
molecule as a cation is fulfilled by the presence of the atom N+ in L-(+)-ergothioneine
(see Scheme 6). Concerning the requirement 2, as evident from Scheme 6, the molecule of
L-(+)-ergothioneine is a tautomer between thione and thiol forms. While thione is a stable
unoxidizable (reserve) fraction, “thiol” is an active principle, which due to the functional
group –SH is an effective donor of H• radical, and just H• radical is a unique sufficiently
reactive radical, which is able to scavenge the most reactive ROS, namely the •OH radical.
Very interesting is requirement 3, i.e., targeting the stressed cells. To fulfill this requirement,
it is necessary to have a priori an endogenous vehicle in the organism, which could anchor
and transport the molecule into the site of inflammation or in the vicinity of stressed cells.
Moreover, exclusively for L-(+)-ergothioneine molecules, the existence of such a vehicle
was affirmed: it is OCTN1 [91]. Moreover, L-(+)-ergothioneine administered as a drug is
transferred by OCTN1 to stressed cells [92].
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