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Simple Summary: Patients diagnosed with prostate cancer are usually offered a standard treatment
plan based on their Gleason score, stage, and prostate-specific antigen (PSA) level. However, studies
on other cancers have shown the importance of using biomarkers in addition to clinical and pathologic
parameters to personalize therapeutic decisions. Given the important heterogeneity in the natural
history of localized prostate cancer, novel prognostic biomarkers would aid in patient stratification
and decision making. Here, our study shows that members of the ERBB family are markers that have
high prognostic value for predicting biochemical relapse, metastasis development, and even prostate
cancer-related mortality. The integration of these markers into clinical practice may eventually lead to
more appropriate therapeutic decisions in newly diagnosed patients and potentially reduce prostate
cancer morbidity and mortality.

Abstract: Background: EGFR, ERBB2, ERBB3, and ERBB4 are growth receptors of the ERBB family
implicated in the development of epithelial cancers. Studies have suggested a role for EGFR and
ERBB3 in the development of prostate cancer (PC), while the involvement of ERBB2 and ERBB4
remains unclear. In this study, we evaluated the expression of all members of the ERBB family in PC
tissue from a large cohort and determined their contribution, alone or in combination, as prognostic
markers. Methods: Using immunofluorescence coupled with digital image analyses, we quantified
the expression of EGFR, ERBB2, ERBB3, and ERBB4 on radical prostatectomy specimens (n = 285)
arrayed on six tissue microarrays. By combining EGFR, ERBB2, and ERBB3 protein expression in
a decision tree model, we identified an association with biochemical recurrence (log rank = 25.295,
p < 0.001), development of bone metastases (log rank = 23.228, p < 0.001), and cancer-specific
mortality (log rank = 24.586, p < 0.001). Conclusions: Our study revealed that specific protein
expression patterns of ERBB family members are associated with an increased risk of PC progression
and mortality.

Keywords: prostate cancer; predictive biomarkers; biochemical recurrence; development of bone
metastases; cancer-specific mortality; immunofluorescence; tumor glands

1. Introduction

Prostate cancer (PC) is one of the most commonly diagnosed and lethal cancers
in men worldwide. PC is a heterogeneous disease encompassing low- (slow and non-
aggressive progression) and high-risk (rapid progression) diseases. Approximately a
quarter of patients will develop the latter, characterized by the development of metastasis
and subsequent death [1]. Currently, clinicians use prostate-specific antigen (PSA) levels,
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Gleason score, and clinical stage in an attempt to predict patient prognosis and guide
treatment options [2,3]. However, these clinical parameters are insufficient to reliably
distinguish between low- and high-risk diseases. In this context, the discovery of prognostic
biomarkers to implement new indicators is needed [4].

In our laboratory, we identified several biomarkers associated with an increased risk
of biochemical recurrence (BCR), such as p65 nuclear frequency [5,6], PTEN [7], CD73 [8],
and PUMA-NOXA [9]. Additional biomarkers were also identified with an increased
risk of development of bone metastases, e.g., nuclear p65 expression [10] and CCN3 [11],
and the ability to predict PC specific mortality, such as nuclear p65 expression [10] and
neutral endopeptidase CD10 [12]. Research related to biomarkers is growing in number
and several seem very promising; however, to date, no tissue biomarker is routinely used
in the clinical setting.

The epidermal growth factor family of protein include EGFR, ERBB2, ERBB3, and
ERBB4. Their structure is composed of an extracellular binding domain, a transmembrane
domain, and an intracellular domain with tyrosine kinase activity [13]. The homology
of these proteins vary between 40% and 50%, with the highest homologies located in the
intracellular and the lower homologies associated with the extracellular domain, which
provides specificity and affinity to their specific ligands [14]. These transmembrane gly-
coproteins play an important role in multiple cellular pathways, including migration,
proliferation, metabolism, differentiation, and survival [15–17]. The mechanism of action of
these receptors begins with the binding of a ligand to the extracellular domain, leading to a
homo- or heterodimerization with another ERBB receptor, resulting in the subsequent auto-
or trans-phosphorylation of the intracellular domain. The wide variety of downstream
cellular responses is mainly due to the multiple dimerization possibilities and phosphory-
lation sites. Although there is no known ligand of ERBB2 and the kinase activity of ERBB3
is minimal, signal transduction of the heterodimer ERBB2–ERBB3 does occur [18].

Due to their important cellular functions, mutations or dysregulation of ERBB expres-
sion could have dramatic effects. Several studies have highlighted their involvement in
the development and progression of several human cancers [15,19], including PC [20–22].
Indeed, high expression of EGFR is associated with poor PC patient prognosis [22–24]. Con-
troversial results have been obtained for other members of the family [22,25–29]. Moreover,
many studies have sought to target individual members of the ERBB family to develop
anti-cancer therapies [15,30].

In this study, we quantified, for the first time, the protein expression of all four
members of the ERBB family on a single tissue microarray-based cohort of radical prosta-
tectomy specimens to determine their usefulness as prognostic markers in PC alone or
in combination.

2. Materials and Methods
2.1. Cell Lines and Tissue Culture Conditions

Jurkat T lymphoma cells were kindly provided by Dr. Lapointe Réjean (CRCHUM),
while MCF-7, SKOV3, and all PC cell lines (22Rv1, LNCaP, DU145, and PC3) were obtained
from the American Type Culture Collection (ATCC, Manassas, VA, USA). Jurkat T lym-
phoma cell and PC cells were maintained in RPMI 1640 medium (Wisent Inc., St-Bruno, QC,
Canada), MCF-7 was grown in DMEM medium (Wisent Inc.), and SKOV3 in OSE medium
(Wisent Inc.). All culture media were supplemented with 10% fetal bovine serum (FBS)
(Gibco®, Thermo Fisher Scientific, Waltham, MA, USA), 0.454 µg/mL of amphotericin B
(Wisent Inc.), and 90 µg/mL gentamycin sulfate (Wisent Inc.).

2.2. Creation of Cell Line Pellets

Cell line pellets were used as a control on tissue microarray (TMA) and prepared as
previously described [31]. This method was developed to fix and embed cell suspensions
in paraffin using HistoGel™ (Thermo Fisher Scientific) to ensure high cell density per core
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when arrayed on a TMA. The embedded cell suspensions in paraffin made it possible to
reproduce the same conditions with which the patient samples were tested.

2.3. Western Blot Analysis

Whole-cell protein extracts were prepared using lysis buffer (1% Triton, 10% glycerol,
50 mM Tris, 2 mM EDTA, and 150 mM NaCl) supplemented with fresh protease inhibitors
(PIA32961, Thermo Fisher Scientific) and incubated 1 h at room temperature, followed
by centrifugation. Proteins were dosed using a Bradford assay (Bio-Rad, Hercules, CA,
USA). A total of 30 µg of whole-cell lysate was loaded on 6% sodium dodecyl-sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE, Bio-Rad) and transferred to nitrocellulose
membrane using the Trans-Blot Turbo Transfer System (Bio-Rad). The membrane was
immunoblotted with either rabbit monoclonal anti-EGFR (1:10,000, EP38Y, ab52894, Abcam
Inc. Cambridge, UK), mouse monoclonal anti-ERBB2 (1:750, 3B5, OP15L, Calbiochem, San
Diego, CA, USA), rabbit monoclonal anti-ERBB3 (1:200, D22C5, #12708, Cell Signaling
Technology, Danvers, MA, USA), or mouse monoclonal anti-ERBB4 (1:500, C-7, sc8050,
Santa Cruz Biotechnology, Dallas, TX, USA) antibodies. Each primary antibody was diluted
in Tris-buffered saline tween 20 (TBS-T) containing 5% fat-free milk powder. α-tubulin
was used as a loading control (DM1A, sc-32293, Santa Cruz Biotechnology). Immunore-
active bands were detected by enhanced chemiluminescence (ECL, GE Healthcare, Little
Chalfont, UK).

2.4. Patient Cohort

The TF123 cohort included 300 primary PC patients who underwent radical prosta-
tectomy at the Centre hospitalier de l’Université de Montréal (CHUM, Montréal, QC,
Canada) between 1993 and 2006. Each patient signed an informed consent form for their
participation in the Centre de recherche du Centre hospitalier de l’Université de Montréal
(CRCHUM) PC biobank. The CRCHUM ethics review committee approved the study. A
total of 15 patients were excluded due to preoperative hormone therapy. The time to BCR
was defined as the time interval between the date of surgery and an increase in PSA levels
above 0.2 ng/mL and rising, or when a decision to institute additional therapy was made.

2.5. Construction of TMA

A specialized genitourinary CHUM pathologist identified and traced out regions of
cancer (Tumor: T), as well as adjacent non-cancerous areas (adjacent benign: BA) on fresh
hematoxylin and eosin-stained slides obtained from formalin-fixed paraffin-embedded
(FFPE) specimens. Two or three cores (0.6 mm) of BA and T were arrayed on two separate
recipient blocks using a TMA array (Pathology Devices, Inc., Westminster, MD, USA). This
TMA series (TF123) was composed of a total of six TMA blocks.

2.6. Immunofluorescence

For each biomarker, a TMA section of 4 µm was subjected to semi-automatic im-
munofluorescence (IF) multiplex staining protocol using the Benchmark XT auto-stainer
(Ventana Medical Systems, Tucson, AZ, USA). These protocols include standard steps of
deparaffinization, hydration/dehydration, and washes. The antigen retrieval was per-
formed in Cell Conditioning #1 solution (#950-124, Ventana Medical Systems). Primary
antibodies diluted in phosphate-buffered saline (PBS) (EGFR 1:50, ERBB2 1:650, or ERBB4
1:50) or in signal stain antibody diluent (#8112, Cell Signaling Technology, Danvers, MA,
USA) (ERBB3 1:10) and were incubated at 37 ◦C for 60 min. Slides were blocked with a
protein block serum-free solution (DAKO, Agilent, Santa Clara, CA, USA) during 20 min.
Following this step, sections were removed from the auto-stainer away from light. Sec-
ondary fluorescent antibodies (1:250, Cy5™ goat anti-rabbit IgG or Cy5™ goat anti-mouse
IgG from Thermo Fisher Scientific) diluted in PBS containing 1% bovine serum albumin
(BSA, Sigma-Aldrich, St. Louis, MO, USA) were incubated at room temperature for 45 min.
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To avoid cross-reactivity, slides were blocked overnight with a mouse-on-mouse blocking
reagent (MKB-2213, Vector Laboratories Inc., Burlingame, CA, USA) diluted 1:5 in PBS.

To detect the epithelium, a cocktail of antibodies against cytokeratins 8 (1:100, TS1,
MA5-14428, Thermo Fisher Scientific) and 18 (1:100, DC-10, sc-6259, Santa Cruz Biothechn-
ogy, Dallas, TX, USA) (used for EGFR and ERBB3) or a ready-to-use mix of cytokeratins 8
and 18 (1:2, Flex, clone EP17/30, DAKO, Agilent) (used for ERBB2 and ERBB4) were used.
These antibodies were diluted in phosphate-buffered saline (PBS) and incubated at room
temperature for 60 min. This step was followed by incubation with a secondary fluorescent
antibody (1:250, Alexa Fluor® 546 donkey anti-mouse IgG or Alexa Fluor®546 donkey
anti-rabbit IgG, Thermo Fisher Scientific).

To properly identify basal cells, a cocktail containing antibodies against p63 (1:650,
4A4, Ab-1, Neomarkers, Fremont, CA, USA) and high molecular weight cytokeratin (1:50,
34bE12, CLSG36689-05, Cedarlane, Fremont, CA, USA) was applied for 45 min to the
section, and this was followed by the secondary fluorescent antibody Alexa Fluor® 488 goat
anti-mouse IgG (1:250, Thermo Fisher Scientific). Following a DAPI staining, to identify
nuclei, each slide was incubated for 15 min at room temperature with a 0.1% solution
of Sudan Black B (Research Organics, Cleveland, OH, USA) in 70% ethanol to quench
tissue autofluorescence.

Finally, slides were mounted using Fluoromount™ Aqueous Mounting Medium
(F4680, Millipore Sigma, Burlington, MA, USA). A negative control slide was performed in
parallel (one for each biomarker) and incubated with PBS instead of the primary antibodies,
then processed with the appropriate secondary antibodies.

2.7. Digital Image Analyses and Pre-Processing of Scoring Data

All slides were scanned within 24 h with a 20× Olympus Optical microscope BX61VSF
(Olympus, Shinjuku, Tokyo, Japan) and visualized with OlyVIA software (Olympus).
Scanned images were imported to VisiomorphDP software (Visiopharm, Hoersholm, Den-
mark). This software allows the development of semi-automated analysis protocol pack-
ages (APPs) to determine the expression levels of each biomarker by the mean fluorescence
intensity (MFI) in each compartment (i.e., stroma and epithelium cytoplasm) [6].

We performed quality control of the tissue cores to exclude those that were dam-
aged during the processing or cores containing less than 5% of epithelial cells. Duplicate
cores presenting with significant differences were identified with scatter plots and Mann–
Whitney test using GraphPad Prism software V6 (GraphPad, La Jolla, CA, USA). We then
reviewed the images to determine if the difference observed was due to a technical issue.
In such cases, the core was excluded from the analysis. However, data were kept if no
unspecific staining anomaly was noted. To properly compare all TMAs together, the mean
fluorescence intensity values of each core were normalized according to a calculated ratio.
This ratio results from the mean fluorescence intensity across all TMA sections for a given
biomarker divided by the mean fluorescence intensity (biomarker) for a given slide.

2.8. Statistical Analysis

Statistical analyses were performed with SPSS Statistics 25.0 software package (SPSS
Inc., Chicago, IL, USA). To compare biomarker expression between tissue compartments
(epithelial versus stroma), a Mann–Whitney test was used. To identify the appropriate
threshold for survival analyses, data were displayed as quartiles to explore data trends and
identified the percentile providing the best dichotomization for each biomarker. Survival
analyses were performed using the Kaplan–Meier method coupled with a log-rank test.
Univariate and multivariate Cox regression analyses were used to estimate the hazard ratios
(HR) for each biomarker. A two-sided p-value < 0.05 was considered statistically significant.
The construction of the decision tree model was done using R software version 3.4.3 with
RPART package (R Core Team, R Foundation for Statistical Computing, Vienna, Austria).
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3. Results
3.1. Antibody Validation in PC Cell Lines

Although all antibodies have already been reported in the literature, we validated their
specificity in a Western blot assay. We observed that all antibodies showed specific bands
(Figures S1A and S2). We noted that the EGFR protein levels were higher in DU145, 22Rv1,
and PC3 cells when compared to the LNCaP cell line. PC cell lines only weakly express
ERBB2 with greater expression in LNCaP and 22Rv1 cells. No ERBB3 expression was
detected in LNCaP or PC3 cells, while 22Rv1 and DU145 cells presented high expression.
Finally, only the 22Rv1 cell line expressed ERBB4. Jurkat T lymphoma cells were used as
control (negative) for ERBB receptors along with the well characterized MCF-7 (EGFR-,
ERBB2-, ERBB3+, and ERBB4+) and SKOV3 (EGFR+, ERBB2+, ERBB3 weak, and ERBB4+)
cell lines (Figures S1A and S2). Since in this study, we used these antibodies in formalin-
fixed paraffin-embedded tissue, we created, fixed, and embedded cell pellets from these
cell lines and performed an immunofluorescence (IF) assay. We noted that the expression of
the ERBB family members was similar to those observed in the Western blot (Figure S1B).

3.2. Patient Characteristics and Clinical Parameters

The analyzed TF123 TMA series was composed of 285 PC patients who did not receive
neoadjuvant androgen deprivation therapy before radical prostatectomy. This was a mature
cohort with a median follow-up of 129 months. Their demographic, histopathological,
and clinical parameters are detailed in Table 1. The incidence of BCR at five years was
33% (94 patients), the incidence of bone metastasis at 10 years and death specific mortality
were 6.3% (18 patients).

Table 1. Clinical and pathological characteristic of the TF123 tissue microarray (TMA) series.

Number of patients 285

Median age at RP, years (IQR) 63 (59–67)

Median PSA at diagnosis, ng/mL (IQR) 7.0 (5.0–10.8)

Pathological TNM
2 201
3 75
4 9

Gleason score at RP
≤3 + 3 140
3 + 4 93
4 + 3 19
≥4 + 4 29
Unknown 4

Positive margin 95

Median follow-up, months (IQR) 129 (76–174)

Biochemical recurrence at 5 years
Number 94
Median time to BCR, months (IQR) 11 (3–26)

Bone Metastasis at 10 years
Number 18
Median time to bone metastasis, months (IQR) 42 (20–83)
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Table 1. Cont.

Overall survival
Alive 236
Death from other cause 31
Death from PC 18
Median time to death specific PC mortality, months (IQR) 68 (49–150)

Abbreviations: TMA, tissue microarray; RP, radical prostatectomy; PSA, prostate-specific antigen; IQR, interquar-
tile range; TNM, tumor, lymph nodes, metastasis; RP, radical prostatectomy; BCR, biochemical recurrence; PC,
prostate cancer.

3.3. ERBB Family Member’s Expression in Human PC Specimens

To assess the usefulness of the ERBB family members as PC prognostic markers, we
performed a multiplex IF assay incorporating one receptor (red: EGFR, ERBB2, ERBB3,
or ERBB4) with specific masks to define the epithelium (yellow: CK8/18), the basal cells
(green: p63/CKHMW, present in benign/normal prostate glands), and the nucleus (blue:
DAPI) on the TF123 TMA series.

As expected, EGFR, ERBB2, ERBB3, and ERBB4 presented a membrane and cyto-
plasmic localization in the epithelium of both T (Figure 1A) and BA tissue cores. EGFR
expression was significantly higher in BA compared to T tissue (p < 0.0001, MFI = 705 vs. 654,
Figure 1B) as opposed to ERBB2 (p = 0.0230, MFI = 112 vs. 115, Figure 1C) and ERBB3
(p < 0.0001, MFI = 1126 vs. 1163, Figure 1D). Since we observed a low level of expression
of ERBB4 in the PC cell lines and their derivates, and to avoid any waste of material, we
decided to stain only one TMA slide with ERBB4. Despite the specificity of the antibody
used, ERBB4 did not show a clear signal compare to background staining and had an MFI
similar to the negative control (Figure 1E). Therefore, we did not include the analyses with
ERBB4. We also noted that the expression of all receptors was significantly weaker in the
stroma when compared to the epithelium (Figure 1B–E).
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Figure 1. Expression for all ERBB family members in the TF123 TMA series. (A) Representative staining of the 25th and 75th
percentiles for each protein in epithelial cells of tumor cores. Distribution of (B) EGFR, (C) ERBB2, (D) ERBB3, and (E) ERBB4
* expression in the whole PC patient cohort. DAPI (blue) and protein of interest (red). The scale bar at 100 µm is for the
whole image and the scale bar at 50 µm for enlarged view. * For ERBB4, only one TMA slide was stained and analyzed.

3.4. EGFR, ERBB2, and ERBB3 Expression Is Associated with an Increased Risk of BCR at 5 Years

To quantitate the expression of each biomarker, we performed digital image analysis of
each core using an algorithm that detected only the epithelial compartment. This algorithm
targets the region of epithelial cells stained by the cytokeratins (CKs) cocktail used for
the detection of epithelial cells then measures the fluorescence intensity in the channel
corresponding to the marker of interest.

To assess the prognostic capacity of the ERBB, we first evaluated if they were associated
with BCR (less than five years). To determine the appropriate threshold for each biomarker
to dichotomize their expression levels, we used the quartiles methods. Using Kaplan–Meier
curves coupled with a log-rank test, we observed an increased risk of BCR with the high
expression of EGFR (75th percentile defined as EGFRhigh; log rank = 5.861, p = 0.015)
(Figure 2A), while ERBB2 did not show such significance (under 50th percentile defined
ERBB2low; log rank = 2.441, p = 0.118) (Figure 2B). Finally, the low expression of ERBB3 was
also an indicator of BCR (25th percentile defined as ERBB3low; log rank = 3.768, p = 0.052)
(Figure 2C).
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Figure 2. Association of proteins expression in epithelial cells of tumor cores with biochemical recurrence evaluated at five
years. Kaplan–Meier curves for (A) EGFR with a cutoff at the 75th percentile, (B) ERBB2 with a cutoff using the median,
and (C) ERBB3 with a cutoff at the 25th percentile. (D) Survival tree, including EGFR, ERBB2, ERBB3, and BCR in an RPART
model. (E) Kaplan–Meier plot combines EGFR, ERBB2, and ERBB3 expression. (F) Summary table of log rank between
each of the conditions of expression of ERBB members. Significance is indicated by log-rank test. p < 0.05 was considered
significant; NS, not significant; S, significant.

Univariate Cox regression analyses also demonstrated that EGFRhigh in continuous
(HR = 1.006, CI = 1.003–1.009, p = 0.001) or dichotomized (HR = 1.703, CI = 1.0097–2.644,
p = 0.018) values, as well as dichotomized ERBB3low values (HR = 0.650, CI = 0.418–1.011,
p = 0.056), showed an association with an increased risk of BCR (less than five years)
(Table 2). Continuous ERBB2 and ERBB3 or dichotomized ERBB2 expression values failed
to show significance. However, the ERBB family members were not independent of known
prognostic clinical parameters (Table 2).
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Table 2. Univariate and multivariate Cox regression analyses of single receptors using the BCR at five years as an endpoint.

Univariate Multivariate with Dichotomized EGFR
Expression

Multivariate with Dichotomized
ERBB2 Expression

Multivariate with Dichotomized ERBB3
Expression

HR [95% CI] p-Value HR [95% CI] p-Value HR [95% CI] p-Value HR [95% CI] p-Value

Age at Dx 0.999 [0.963–1.035] 0.942 - - - - - - - - -

PSA at Dx 1.061 [1.033–1.089] 0.001 1.032 [0.996–1.069] 0.086 1.036 [1.000–1.073] 0.048 1.036 [1.001–1.073] 0.043

Gleason score (4 categories) 1.852 [1.549–2.214] 0.001 1.530 [1.237–1.891] 0.001 1.464 [1.179–1.819] 0.001 1.517 [1.231–1.869] 0.001

Margin 3.349 [2.216–5.062] 0.001 2.617 [1.655–4.139] 0.001 2.479 [1.560–3.939] 0.001 2.531 [1.596–4.015] 0.001

pTNM (4 categories) 2.884 [2.133–3.900] 0.001 1.555 [1.047–2.309] 0.029 1.683 [1.131–2.503] 0.010 1.578 [1.065–2.340] 0.023

EGFR_Tumor_Continuous 1.006 [1.003–1.009] 0.001 - - - - - - - - -

EGFR_Tumor_Dichotomized_75th 1.703 [1.097–2.644] 0.018 1.267 [0.781–2.057] 0.337 - - - - - -

ERBB2_Tumor_Continuous 0.987 [0.970–1.004] 0.122 - - - - - - - - -

ERBB2_Tumor_Dichotomized_50th * 0.716 [0.468–1.095] 0.123 - - - 0.787 [0.503–1.232] 0.295 - - -

ERBB3_Tumor_Continuous 0.999 [0.996–1.001] 0.196 - - - - - - - - -

ERBB3_Tumor_Dichotomized_25th 0.650 [0.418–1.011] 0.056 - - - - - - 0.856 [0.856–1.367] 0.515

Abbreviations: Dx, diagnosis; PSA, prostate-specific antigen; pTNM, pathological tumor, lymph nodes, metastasis; HR, hazard ratio; CI, confidence interval. EGFR_Tumor_Dichotomized designates high
expression (over 75%, EGFRhigh) and low (under 75%, EGFRlow) MFI. * ERBB2_Tumor_Dichotomized designates high expression (over 50% of the median, ERBB2high) and low (under 50% of the median,
ERBB2low) MFI. ERBB3_Tumor_Dichotomized designates high expression (over 25%, ERBB3high) and low (under 25%, ERBB3low) MFI. p < 0.05 is shown in bold, while a p-value between ≥0.05 and <0.10 is
presented in italics. The symbol ‘-’ indicates that the parameter was not included in the model.
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3.5. Combining the Expression Levels of EGFR, ERBB2, and ERBB3 Predicts BCR at 5 Years

Since all ERBB family members can dimerize with one another, we evaluated how
combinations could be informative of BCR. Therefore, we developed a decision tree model,
including dichotomized EGFR, ERBB2, and ERBB3 expression values. Four ERBB status
groups were defined (Figure 2D). The decision tree indicated, within a receptor status
group, the number of patients with a BCR event. Thereby, we obtained a percentage
reflecting the probability to experience the event within the receptor status group. To better
represent differences among these newly identified receptor status groups we performed
a Kaplan–Meier analysis and observed a significant overall difference (log rank = 25.295,
p < 0.001) (Figure 2E). Despite significant overall results, some groups are only distinct from
one another when compared two-by-two and not from all of the other groups (Figure 2F).

We performed univariate Cox regression analysis using the four ERBB groups and
we noted a significant risk of BCR (HR = 1.609, CI = 1.276–2.027, p < 0.001) (Table 3).
More importantly, patients with PC tissue expressing EGFRhigh, ERBB3high, and ERBB2low

present a higher 2.189-fold risk of experiencing a BCR that increased to a 5.455-fold higher
risk when high ERGF and low ERBB3 expressions were present. In the univariate analyses,
the hazard ratio was greater than all clinical parameters. However, in the multivariate
analyses, these status groups were not shown to be independent of the clinical parameters
(HR = 1.204, CI = 0.930–1.559, p = 0.158) (Table 3).

Table 3. Univariate and multivariate Cox regression analyses of the ERBB status groups using the BCR at five years as an
endpoint.

Univariate Multivariate

HR [95% CI] p-Value HR [95% CI] p-Value

Age at Dx 0.999 [0.963–1.035] 0.942 - - -

PSA at Dx 1.061 [1.033–1.089] 0.001 1.029 [0.993–1.067] 0.113

Gleason score 1.852 [1.549–2.214] 0.001 1.495 [1.205–1.856] 0.001

Margin 3.349 [2.216–5.062] 0.001 2.508 [1.582–3.976] 0.001

pTNM (category) 2.884 [2.133–3.900] 0.001 1.559 [1.044–2.329] 0.030

Category

Combined all ERBB members 1.609 [1.276–2.027] 0.001 1.204 [0.930–1.559] 0.158

EGFRlow 1.000 - - 1.000 - -

EGFRhigh/ERBB3high/ERBB2high 1.231 [0.675–2.244] 0.498 1.197 [0.622–2.303] 0.591

EGFRhigh/ERBB3high/ERBB2low 2.189 [1.085–4.417] 0.029 1.122 [0.514–2.449] 0.773

EGFRhigh/ERBB3low 5.455 [2.478–12.011] 0.001 2.202 [0.915–5.297] 0.078

Abbreviations: Dx, diagnosis; PSA, prostate-specific antigen; cTNM, clinical tumor, lymph nodes, metastasis; pTNM, pathological tumor,
lymph nodes, metastasis; HR, hazard ratio; CI, confidence interval. EGFR_Dichotomized designates high expression (over 75%, EGFRhigh)
and low (under 75%, EGFRlow) MFI. ERBB2_Dichotomized designates high expression (over 50% of the median, ERBB2high) and low
(under 50% of the median, ERBB2low) MFI. ERBB3_Dichotomized designates high expression (over 25%, ERBB3 high) and low (under 25%,
ERBB3low) MFI. Significant results (p <0.05) are indicated by bold numbers and results not included are indicated by -.

3.6. Expression of EGFR, ERBB2, and ERBB3 Can Predict Bone Metastasis Development at
10 Years

Another important endpoint in PC is the development of bone metastasis, which is
also recognized as a surrogate for PC mortality. We observed that both EGFRhigh (log
rank = 8.103, p = 0.004) and ERBB2low (log rank = 4.539, p = 0.033) were significantly
associated with an increased risk of developing bone metastasis (Figure 3A,B). However,
ERBB3 expression did not confer risk for bone metastasis development (log rank = 0.889,
p = 0.346) (Figure 3C).
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Figure 3. Association of the protein expression in the epithelial cells of tumor cores with the development of bone metastases
at 10 years. Kaplan–Meier curves for (A) EGFR with a cutoff at the 75th percentile, (B) ERBB2 with a cutoff using the median,
and (C) ERBB3 with a cutoff at the 25th percentile. (D) Survival tree, including EGFR, ERBB2, ERBB3, and bone metastases
in an RPART model. (E) Kaplan–Meier plot combines EGFR, ERBB2, and ERBB3 expression. (F) Summary table of log rank
between each of the conditions of expression of ERBB members. Significance is indicated by log-rank test. p < 0.05 was
considered significant; NS, not significant; S, significant.

Patients with EGFRhigh in their PC tissue (continuous or dichotomized values) showed
an increased risk of developing bone metastasis when performing Cox regression analyses
(Table 4); a risk that reached 3.462-fold (CI = 1.404–1.016, p = 0.008) when EGFR expression
was dichotomized. In contrast, ERBB2high in PC tissue was associated with a lower risk for
bone metastasis (HR = 0.312, CI = 0.101–0.969, p = 0.044) and, to a lesser extent, ERBB3high

(continuous values) with a protective effect (HR = 0.994, CI = 0.989–1.00, p = 0.037) (Table 4).
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Table 4. Univariate Cox regression analyses of ERBB using the development of bone metastasis at 10
years as an endpoint.

Univariate

HR [95% CI] p-Value

Age at Dx 0.987 [0.907–1.073] 0.757

PSA at Dx 1.059 [1.002–1.119] 0.043

Gleason score 3.704 [2.304–5.955] 0.001

Margin 3.290 [1.275–8.489] 0.014

pTNM (category) 7.490 [3.830–14.647] 0.001

EGFR_Continuous 1.012 [1.007–1.016] 0.001

EGFR_Dichotomized 3.642 [1.404–9.444] 0.008

ERBB2_Continuous 0.976 [0.939–1.016] 0.234

ERBB2_Dichotomized 0.312 [0.101–0.969] 0.044

ERBB3_Continuous 0.994 [0.989–1.000] 0.037

ERBB3_Dichotomized 0.622 [0.230–1.683] 0.350

Category

Combined all ERBB members 2.036 [1.438–2.881] 0.001

ERBB2high 1.000 - 0.001

ERBB2low/EGFRlow 1.897 [0.535–6.722] 0.321

ERBB2low/EGFRhigh/ERBB3high 9.273 [2.311–37.197] 0.002

ERBB2low/EGFRhigh/ERBB3low 14.774 [2.687–81.237] 0.002
Abbreviations: Dx, diagnosis; PSA, prostate-specific antigen; cTNM, clinical tumor, lymph nodes, metas-
tasis; pTNM, pathological tumor, lymph nodes, metastasis; HR, hazard ratio; CI, confidence interval.
EGFR_Dichotomized designates high expression (over 75%, EGFRhigh) and low (under 75%, EGFRlow) MFI.
ERBB2_Dichotomized designates high expression (over 50% of the median, ERBB2high) and low (under 50% of
the median, ERBB2low) MFI. ERBB3_Dichotomized designates high expression (over 25%, ERBB3high) and low
(under 25%, ERBB3low) MFI. Significant results (p < 0.05) are indicated by bold numbers.

3.7. Combining the Expression Levels of EGFR, ERBB2, and ERBB3 Can Predict Bone
Metastasis Development

By incorporating EGFR, ERBB2, and ERBB3 expression in a decision tree model
(Figure 3D), four ERBB receptor status groups could be developed to segregate patients
based on the risk of developing bone metastasis. Kaplan–Meier analyses performed using
these groups revealed an overall log rank of 23.228 with p < 0.001 (Figure 3E). The Kaplan–
Meier highlights two distinct patient profiles (ERBB2high/ERBB2low/EGFRlow) at risk
of the development of bone metastases compared to two groups (ERBB2low/EGFRhigh

/ERBB3high and ERBB2low/EGFRhigh /ERBB3low) (Figure 3F). Moreover, an overall Cox
regression analysis, taking into account the combination of all ERBB receptors, showed
an increased risk of developing bone metastasis (HR = 2.036, p < 0.001) (Table 4). More
specifically, our results suggest that patients with tumors expressing ERBB2low and both
EGFRhigh and ERBB3high present a risk that increased by 9.273-fold (CI = 2.311–37.197,
p = 0.002). The risk of developing bone metastasis reached 14.774 (CI = 2.387–81.237,
p = 0.002) for patients expressing ERBB2low and ERBB3low coupled with EGFRhigh and
overperformed all clinical parameters.

3.8. Expression of EGFR, ERBB2, and ERBB3 Can Predict PC-Specific Mortality

The TF123 TMA series is richly annotated and long-term follow-up allows the evalua-
tion of the ultimate PC endpoint. While EGFRhigh presented a trend but failing to reach
significance (log rank = 2.741, p = 0.098) (Figure 4A), both ERBB2low and ERBB3low were
significantly associated with PC-specific mortality (log rank = 4.549, p = 0.033 and log
rank = 4.439, p = 0.035, respectively) (Figure 4B,C). Cox regression analysis demonstrated
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that patients with EGFRhigh or those with ERBB3low (continuous values) in their PC tissue
presented a greater risk of dying from PC (HR = 1.017, CI = 1.010–1.023, p < 0.001, and
HR = 0.991, CI = 0.985–0.997, p = 0.002, respectively). This was also observed for ERBB2low

or ERBB3low (dichotomized values) (HR = 0.312, CI = 0.101–0.968, p = 0.044 and HR = 0.373,
CI = 0.373–0.969, p = 0.043, respectively) (Table 5).
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Figure 4. Association of the protein expression in the epithelial cells of tumor cores with prostate cancer-specific death.
Kaplan–Meier curves for (A) EGFR with a cutoff at the 75th percentile, (B) ERBB2 with a cutoff using the median, and
(C) ERBB3 with a cutoff at the 25th percentile. (D) Survival tree, including EGFR, ERBB2, ERBB3, and death by PC in an
RPART model. (E) Kaplan–Meier plot combines EGFR, ERBB2, and ERBB3 expression. (F) Summary table of log rank
between each of the conditions of expression of ERBB members. Significance is indicated by log-rank test. p < 0.05 was
considered significant; NS, not significant; S, significant.
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Table 5. Univariate Cox regression analyses of ERBBs using prostate cancer-specific mortality as
an endpoint.

Univariate

HR [95% CI] p-Value

Age at Dx 0.976 [0.896–1.062] 0.569

PSA at Dx 1.062 [1.009–1.117] 0.021

Gleason score 3.968 [2.395–6.573] 0.001

Margin 1.731 [0.682–4.391] 0.248

pTNM (category) 5.655 [2.928–10.923] 0.001

EGFR_Continuous 1.017 [1.010–1.023] 0.001

EGFR_Dichotomized 2.215 [0.843–5.824] 0.107

ERBB2_Continuous 0.969 [0.933–1.007] 0.107

ERBB2_Dichotomized 0.312 [0.101–0.968] 0.044

ERBB3_Continuous 0.991 [0.985–0.997] 0.002

ERBB3_Dichotomized 0.373 [0.144–0.969] 0.043

Category

Combined all ERBB members 1.865 [1.256–2.768] 0.002

ERBB3high/ERBB2high 1.000 - 0.004

ERBB3high/ERBB2low/EGFRlow 2.915 [0.487–17.465] 0.241

ERBB3high/ERBB2low/EGFRhigh 11.755 [1.958–70.566] 0.007

ERBB3low/EGFRlow 5.671 [1.143–28.129] 0.034

ERBB3low/EGFRhigh 36.732 [4.901–275.271] 0.001
Abbreviations: Dx, diagnosis; PSA, prostate-specific antigen; cTNM, clinical tumor, lymph nodes, metas-
tasis; pTNM, pathological tumor, lymph nodes, metastasis; HR, hazard ratio; CI, confidence interval.
EGFR_Dichotomized designates high expression (over 75%, EGFRhigh) and low (under 75%, EGFRlow) MFI.
ERBB2_Dichotomized designates high expression (over 50% of the median, ERBB2high) and low (under 50% of
the median, ERBB2low) MFI. ERBB3_Dichotomized designates high expression (over 25%, ERBB3high) and low
(under 25%, ERBB3low) MFI. Significant results (p < 0.05) are indicated by bold numbers.

3.9. Combining the Expression Levels of EGFR, ERBB2, and ERBB3 Can Predict PC Mortality

The decision tree model (Figure 4D) revealed five groups with differential risk of
PC-specific mortality as demonstrated by the Kaplan–Meier analyses (log rank = 24.586,
p < 0.001) (Figure 4E). More precisely, the patients presenting ERBB3high/ERBB2high are
the group at the least risk of PC-specific mortality, and this group was significantly dis-
tinct from all other groups, except those with the ERBB3high/ERBB2low/EGFRlow. The
group ERBB3low/EGFRhigh was the group with the highest risk of specific PC mortal-
ity, then this group was significantly different from all of the other groups, except one
(ERBB3high/ERBB2low/EGFRhigh) (Figure 4F). Cox regression analysis, including the five
groups, recapitulated the overall Kaplan–Meier analyses (HR = 1.865, CI = 1.256–2.768,
p = 0.002) (Table 5). With a hazard ratio greater than all clinical parameters assessed, three
groups (orange, grey, and purple) were indicators of patient prognosis. The greatest risk
of PC-specific mortality was observed for patients expressing ERBB3low coupled with
EGFRhigh (orange: HR = 36.732, CI = 4.901–275.271, p < 0.001), followed by a combination
of EGFRhigh/ERBB2low/ERBB3high (HR = 11.755, CI = 1.958–70.566, p = 0.007), and finally
by EGFRlow/ERBB3low (HR = 5.671, CI = 1.143–28.129, p = 0.034). Patients with ERBB2high

and ERBB3high were those with a better prognosis. These were not significantly different
from patients with EGFRlow/ERBB2low/ERBB3high.

4. Discussion

In multiple cancers, including PC, a personalized therapeutic approach based on
individual tumor characteristics has become an ongoing objective for both treating physi-
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cians and patients. Since PC is a heterogeneous disease, and that clinical parameters are
insufficient to accurately predict disease outcomes, it is important to identify new tools to
aid in clinical decisions and patient management.

In this study, we showed that ERBB family members are associated with a greater
risk of BCR. These findings are in line with the literature, where a high expression of
EGFR is associated with PC progression [22,32,33], and a low ERBB3 expression, located
in the nucleus, is associated with a worse prognosis [27] and an increased risk of BCR.
Moreover, this study confirmed the absence or the very low expression of ERBB4 in PC cell
lines and primary cancer tissue [34,35]. However, ERBB2 expression in PC progression is
more controversial, with one study showing that a high level of ERBB2 is associated with
poor prognosis [36], as measured by BCR, while a previous study from our group failed
to identify any correlation with BCR [37]. However, in our current study, we identified
the importance of ERBB2 as a predictor of eventual bone metastases. These results are
in line with those reported in breast cancer studies, where patients presenting with an
ERBB2-positive tumor are more likely to metastasize to the bone when compared to the
ERBB2-negative group [38]. In addition, several biological studies in pre-clinical prostate
models have shown that ERBB2 signaling plays an essential role in the progression from a
castration-sensitive to a castration-resistant state associated with bone metastases [39,40].
For example, ERBB2 was shown to play a role in the progression of PC through an increase
in angiogenesis, thereby facilitating the dissemination of tumor cells. ERBB2 also confers
an androgen independence state, leading to cell survival and proliferation when anti-
androgen therapy is used [39]. The contradictory studies looking at ERBB2 expression and
the correlation to outcomes in patient tumor tissue could reflect differences in results both
in the composition and size of cohorts studied or by differing sources of antibodies used in
the studies.

Most studies have highlighted a link between a single member of the ERBB family with
PC progression using BCR as an endpoint [22,23,36,37]. When two markers were assessed
in the same publication, it was discussed that EGFR is a better predictor of BCR when used
alone than in combination [22]. Another study used an heterogenous set of specimens
from patients treated (n = 29) or not treated with androgen deprivation therapie (n = 29) to
perform their survival analyses in combining EGFR with ERBB2 [23]. They showed that
patients presenting EGFRhigh and ERBB2high were more likely to experience BCR. In this
present study, we combined three out of the four ERBB family members and evaluated
their prognostic value against three clinically relevant PC endpoints. We excluded ERBB4
from all analyses in reason of the low expression of this biomarker in prostate cell lines by
Western blot and the non-specificity of IF staining for ERBB4 in patient samples. We found
that the combination of ERBB3low coupled with EGFRhigh was associated with the worst
prognosis across all endpoints (BCR, development of bone metastasis, and PC-specific
survival). We also noted a major role of ERBB2 in the development of bone metastasis and
this marker was found to be the first marker used to stratify patients in the decision tree
model. The important role of ERBBs in the development of metastases has previously been
reported in the literature [40–42]. Indeed, in a pre-clinical model using cell line in vivo
assays, it was demonstrated that EGFR promotes the survival of PC-circulating tumor
cells, while ERBB2 supports cancer cell growth in bones by promoting the RANK signaling
pathway [40]. These results support our findings of the association of the ERBB members
with worse prognosis.

Since ERBB receptors are differentially expressed in radical prostatectomy specimens,
they should form different combinations of dimers (homo-/heterodimer) to activate or
inhibit diverse cellular pathways. These different dimerizations, in addition to the fact
that the trials did not measure the levels of ERBB receptors, could explain why previous
clinical trials studying ERBB family members failed to demonstrate a predictive effect on
patient outcomes [43–45]. Moreover, it would be interesting to investigate how members of
the ERBB family affect anti-androgen therapy. Our results also highlight that the different
receptor combinations in the primary tumor are associated with very different outcomes
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much later in the post treatment setting in these patients. These molecular markers may
provide early indicators of patients with worse prognosis requiring more intense follow-up
strategies and possibly earlier and more aggressive therapeutic strategies.

5. Conclusions

Our results suggest that a different combination of ERBB could be useful to stratify
patients following local therapy for PC. We demonstrated that patients presenting with
EGFRhigh coupled with ERBB3low were at a 5-fold increased risk of BCR. Patients expressing
ERBB2low had a 14-fold increased risk of developing bone metastasis, and were more than
36 times at higher risk of PC mortality. These biomarkers may become useful in the clinic if
they are further validated on larger cohorts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13071688/s1, Figure S1: Evaluation of antibody specific for all ERBB family members.
Figure S2. Whole Western blots of ERBB expression in prostate cancer (PC) cell lines.
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