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Abstract
Neural oscillations, or brain rhythms, fluctuate in a manner reflecting ongo-
ing behavior. Whether these fluctuations are instrumental or epiphenomenal 
to the behavior remains elusive. Attempts to experimentally manipulate neural 
oscillations exogenously using noninvasive brain stimulation have shown some 
promise, but difficulty with tailoring stimulation parameters to individuals has 
hindered progress in this field. We demonstrate here using electroencephalogra-
phy (EEG) neurofeedback in a brain-computer interface that human participants 
(n = 44) learned over multiple sessions across a 6-day period to self-regulate their 
Beta rhythm (13–20 Hz), either up or down, over the right inferior frontal cortex. 
Training to downregulate Beta was more effective than training to upregulate 
Beta. The modulation was evident only during neurofeedback task performance 
but did not lead to offline alteration of Beta rhythm characteristics at rest, nor to 
changes in subsequent cognitive behavior. Likewise, a control group (n = 38) who 
underwent training to up or downregulate the Alpha rhythm (8–12 Hz) did not 
exhibit behavioral changes. Although the right frontal Beta rhythm has been re-
peatedly implicated as a key component of the brain's inhibitory control system, 
the present data suggest that its manipulation offline prior to cognitive task per-
formance does not result in behavioral change in healthy individuals. Whether 
this form of neurofeedback training could serve as a useful therapeutic target 
for disorders with dysfunctional inhibitory control as their basis remains to be 
tested in a context where performance is abnormally poor and neural dynamics 
are different.
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1   |   INTRODUCTION

The synchronous firing of large populations of neurons 
across distributed brain networks produces rhythmic elec-
tric field fluctuations large enough to be detected at the 
scalp. The role––either causal or epiphenomenal––of the 
observed neural oscillations (“brain rhythms”) for human 
behavior has been a topic of intense debate for decades. 
Traditionally, researchers have recorded neural oscilla-
tions from the scalp while participants perform cognitive 
tasks, thus investigating the correlation between brain sig-
nals and behavior. However, experimental manipulation 
is necessary in order to specify a causal role for neural os-
cillations (Herrmann et al., 2016; Vosskuhl et al., 2018).

Exogenous modulation of neural oscillations has pre-
viously been achieved using noninvasive brain stimula-
tion techniques (for reviews, see Dayan et al., 2013; Thut 
et al.,  2011) like transcranial alternating current stimu-
lation (tACS, see Vosskuhl et al.,  2018 for a review), os-
cillatory transcranial direct current stimulation (o-tDCS; 
e.g., Marshall et al.,  2006), and repetitive transcranial 
magnetic stimulation (rTMS, e.g., Chung et al.,  2015; 
Thut & Miniussi,  2009). These methods have generated 
mixed results with regards to effectiveness of neural mod-
ulation (for reviews, see Demirtas-Tatlidede et al.,  2013; 
Enriquez-Geppert et al.,  2013; Polanía et al.,  2018; 
Thut et al.,  2011) and impact upon cognitive behavior 
(Bestmann et al., 2015) with a key issue being heteroge-
neous responses to the same stimulation across individu-
als (Adeyemo et al., 2012; Bergmann & Hartwigsen, 2020; 
Kasten et al.,  2019). Individuals exhibit subtle idiosyn-
cratic features of brain rhythms even within the com-
monly described bandwidths (Benwell et al.,  2019; 
Haegens et al., 2014), however, methods like rTMS, tACS, 
or o-tDCS typically target-specific frequencies.

In addition to neuromodulation methods, brain-
computer interface (BCI)-based neurofeedback can be 
used to endogenously train volitional modulation of 
brain signals. This approach enables participants to self-
regulate brain rhythms which are intrinsic to the indi-
vidual brain (Ros et al.,  2010). Neurofeedback has been 
frequently tested and used as a therapeutic tool and stud-
ies have shown behavioral improvements in disorders 
such as attention-deficit/hyperactivity disorder (ADHD; 
Jean Arthur Micoulaud-Franchi et al.,  2014; Sonuga-
Barke et al., 2013). However, to date there has been wide 
heterogeneity in research designs for neurofeedback train-
ing protocols and it is difficult to draw conclusions regard-
ing the effectiveness of neurofeedback training to modify 
behavior (Omejc et al., 2019; Simon et al., 2021; Sitaram 
et al., 2017). As well as targeting individually tailored neu-
ral oscillation frequencies, it is important to target brain 
regions that are directly instrumental to the behavior 

under investigation. For example, electroencephalogra-
phy (EEG)-neurofeedback training from brain signals re-
corded over sensorimotor areas has shown some evidence 
of motor-skill improvement in healthy participants as 
well as clinical motor symptoms in ADHD or stroke pa-
tients (Jeunet et al., 2019). In addition, Hsueh et al. (2016) 
showed that neurofeedback training of the fronto-parietal 
Alpha rhythm improved working memory. Neurofeedback 
training of the Beta (13–20 Hz) rhythm in the past has 
predominantly targeted sensorimotor areas (e.g., Boulay 
et al., 2011; Vernon et al., 2003; Witte et al., 2013).

Inhibitory control is a core component of healthy ex-
ecutive function, and deficiencies with this aspect of 
cognition manifest in disorders such as ADHD (e.g., 
Lijffijt et al., 2005) or addiction (e.g., Luijten et al., 2011). 
Inhibitory control is believed to rely on fast and flexible 
command of the brain's Beta rhythm (Enz et al.,  2021; 
Jana et al., 2020; Schaum et al., 2021; Swann et al., 2009; 
Wagner et al., 2017; Wessel, 2020), primarily in a pathway 
connecting right inferior frontal cortex (rIFC) and basal 
ganglia (Aron et al., 2014; Wessel & Aron, 2017). The stop 
signal task (SST) measures this cognitive process (Logan 
& Cowan,  1984) by requiring the participant to cancel 
an already initiated motor response following an infre-
quent Stop cue. This task allows researchers to measure 
the time taken to cancel the response by calculation of the 
stop signal reaction time (SSRT) which is an estimation 
of the covert latency of the action cancellation process 
(Verbruggen et al., 2019).

In order to test whether selective self-regulation of 
specific brain rhythms could modulate specific cognitive 
processes, we designed a protocol whereby 82 participants 
learned over a 6-day period to either upregulate or down-
regulate the amplitude of their Beta or Alpha rhythm 
using direct neurofeedback training in a BCI. We mea-
sured two distinct aspects of cognitive function; speed of 
proactive response inhibition (conditional SST [cSST]), 
and working memory (2-Back Task). In a double-blinded 
mixed design with between-subject (neurofeedback types) 
and repeated measures (pre-post neurofeedback training 
cognitive measures) factors, we tested the theory that 
causal manipulation of brain rhythms following neuro-
feedback training would have an observable impact upon 
behavior. We chose Alpha neurofeedback for the control 
group as it shares many characteristics with Beta. For 
example, both are associated with functional inhibition 
(Jensen & Mazaheri, 2010), and both tend to desynchro-
nize when the cortical region is engaged in active task-
based processing (Barone & Rossiter,  2021). However, 
Alpha is not believed to be a key instrumental driver of 
response inhibition, so our design allows us to isolate and 
probe this aspect of neural function. Alpha neurofeedback 
from fronto-parietal regions has been associated with 
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improvements in working memory (Hsueh et al.,  2016), 
but here we chose to train participants to regulate it over 
rIFC (a region not typically associated with working mem-
ory) in order to provide a strong control condition to test 
our hypotheses relating to the role of right frontal Beta 
for inhibitory control. Specifically, we hypothesized that 
learning to modulate the Beta rhythm over rIFC would 
impact positively upon speed of response inhibition, but 
not upon working memory. By contrast, we predicted that 
the control group undertaking Alpha neurofeedback from 
rIFC would demonstrate no improvement in response in-
hibition or working memory.

2   |   METHOD

2.1  |  Participants

Eighty-two healthy adult human volunteers (age: 
24.27 ± 7.74 years [M  ±  SD]; 44 female; 69 right handed 
[self-reported]) participated in the study. Participants were 
reimbursed with both €5/h and a completion bonus of €60 
or with ECTS points. Inclusion criteria were: aged over 
18, no history of traumatic brain injury, and not currently 
experiencing any psychiatric disorder (self-reported). All 
participants provided written informed consent prior 
to participation. The experimental procedures were ap-
proved by the School of Psychology ethics committee of 
Trinity College Dublin and conducted in accordance with 
the Declaration of Helsinki.

2.2  |  Study design

Participants were allocated at random into four groups: 
two experimental groups “Beta UP” (n  =  26) and “Beta 
DOWN” (n  =  18), and two control groups “Alpha UP” 
(n  =  23) and “Alpha DOWN” (n  =  15). Characteristics 
per group are reported in Table  S1. “Beta” groups were 
trained to either increase (“UP”) or decrease (“DOWN”) 
their Beta (13–20 Hz) rhythm over the rIFC whereas 
“Alpha” groups were trained to either increase (“UP”) or 
decrease (“DOWN”) their Alpha (8–12 Hz) rhythm over 
the same region. Each participant was trained over six ses-
sions (“S1-6”). Where possible, sessions were scheduled 
for a similar time of the day.

The study design is illustrated in Figure 1. Each session 
consisted of one calibration (“Cal S1-6”) and four neuro-
feedback training blocks (“B1-6.1–4”), and each block 
lasted 3 min. Following pilot testing it was revealed that 
neurofeedback training blocks of 3 min, repeated four 
times in a session, was optimal to avoid participant fatigue 
while retaining enough data per block to perform effective 

offline artifact rejection. Resting EEG was recorded in 
each session before (“Rest S1-6 Pre”) and after (“Rest S1-6 
Post”) the four neurofeedback training blocks. During S1 
and S6, participants additionally performed two behav-
ioral tasks, the cSST (experimental task) and the 2-Back 
Task (control task). The cSST was performed twice in S1, 
once before (“cSST S1 Pre”) and once after (“cSST S1 Post”) 
neurofeedback training whereas the 2-Back Task was only 
performed once (“2-Back S1 Pre”). In S6, both tasks were 
performed once after neurofeedback training (“cSST S6 
Post”, “2-Back S6 Post”). In S1 and S6, the behavioral tasks 
(cSST S1 Post and cSST S6 Post) were performed approxi-
mately 5 min after the last neurofeedback training block. 
The 2-Back S6 Post in S6 was performed approximately 
18 min after the last neurofeedback training block. For all 
sessions and tasks, the participants were seated comfort-
ably in a chair in front of a computer screen in a sound-
proof, darkened room. All tasks and the neurofeedback 
training were displayed on a cathode ray tube computer 
monitor with a screen resolution of 1024 × 768 pixels at a 
refresh rate of 75 Hz. The distance from the position of the 
chair to the monitor (screen size 32 × 24 cm) was standard-
ized (screen to back of chair = 108 cm).

2.2.1  |  EEG recording

During S1 and S6, 128-channel EEG data in the 10–5 sys-
tem format were recorded using a 128-channel BioSemi 
headcap connected to an ActiveTwo Biosemi system. 
During S2-S5, EEG was recorded from four active Ag/AgCl 
electrodes over the individual rIFC locus (see “Functional 
rIFC localization”) with the same hardware. A reference 
electrode recorded data from Cz. For all sessions, three ad-
ditional electrodes recorded the electrooculogram (right 
outer canthi for horizontal eye movements and ~2  cm 
below the left eye for vertical eye movements) as well as 
the right masseter muscle to detect facial movements.

2.2.2  |  Resting EEG

To record resting EEG, participants were instructed to fix-
ate upon a black cross for 3 minutes with their eyes open. 
Participants were asked to sit in a relaxed and stable body 
position while fixating on the cross.

2.2.3  |  Conditional stop signal task

The conditional stop signal task (cSST) was performed 
using Presentation® (Version 18.0, Neurobehavioral 
Systems, Inc., Berkeley, CA, www.neuro​bs.com) and 

http://www.neurobs.com
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EEG was recorded during the task. Each trial lasted 
1000 ms and was preceded by a fixation cross (1000 ms 
duration). During Go trials, participants were presented 
with black arrows pointing either to the right or left (Go 
signal; 750 ms duration) and they were instructed to re-
spond with their right or left index finger, respectively, as 
fast as possible via an Xbox 360 game controller. In one 
of four Go trials, the Go signal was followed by a black 
arrow pointing upwards (Stop signal; 250 ms duration) 
after a varying stop signal delay (SSD). The participants 
were instructed to inhibit their button press on these Stop 
trials, but only if the Go signal was pointing in the criti-
cal direction. If a Stop signal appeared after a Go signal 
pointing in the noncritical direction, the participants were 
instructed to ignore the Stop signal and respond with a 
button press. The task was divided into four blocks; for the 
first two blocks the critical direction was right and for the 
last two blocks the critical direction was left. Each block 
consisted of 24 trials (18 Go trials and six Stop trials). The 
number of right and left pointing Go signals was equal 
in each block and presented in a randomized manner. 
The SSD was adjusted by a tracking algorithm, aiming to 
achieve a task difficulty resulting in 50% successful and 

50% failed Stop trials. After a successful critical Stop trial 
(ignoring noncritical Stop trials), the SSD was increased, 
making the task harder and after a failed critical Stop trial 
(ignoring noncritical Stop trials), the SSD was decreased, 
making the task easier. The initial SSD was 250 ms and 
was subsequently adjusted using a double-limit algorithm 
(see Richards et al., 1999). The SSD could vary between 
50 ms and 450 ms. Following a Stop trial, the subsequent 
SSD value was chosen randomly between the current 
SSD and a pair of limits (higher or lower, as appropriate). 
These limits were designed to converge on the SSD that 
produced a 50% success rate and to be robust to fluctua-
tions on individual trials. If a participant responded to the 
Go signal before Stop signal presentation, then the SSD 
was decreased for subsequent trials. All participants com-
pleted one block of 15 practice trials where they received 
feedback before the real task.

2.2.4  |  2-Back Task

The 2-Back Task was programmed in Presentation® and 
no EEG was recorded. Participants were serially presented 

F I G U R E  1   Study design. Behavioral tasks, baseline EEG measurements, and neurofeedback training blocks are shown in sequential 
order for each of the six sessions. Each session was performed on a separate day. The EEG measurements were identical for all six sessions: 
starting with resting EEG (Rest S1-6 Pre), followed by the calibration block (Cal S1-6), followed by four neurofeedback training blocks (B1-
6.1–4), concluding with another resting EEG block (Rest S1-6 Post). Sessions 2–5 were identical and did not contain any behavioral tasks. 
Session 1 included two behavioral tasks, one run each of cSST pre- (cSST S1 Pre) and post- (cSST S1 Post) neurofeedback training as well as 
one run of 2-Back Task pre-neurofeedback training (2-Back S1 Pre). Session 6 included the same two behavioral tasks that were run post-
neurofeedback training, one run of cSST (cSST S6 Post) and one run of 2-Back Task (2-Back S6 Post). cSST, conditional stop signal task.
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with randomized letters (500 ms duration each) with an 
interstimulus interval of 1000 ms. Participants were in-
structed to press the keyboard button number 1 if the cur-
rent letter matched the letter presented 2 letters ago. Each 
block contained 10 targets (i.e., matches) with the target 
frequency balanced across the block. The task consisted of 
two blocks and each block contained 50 letters.

2.2.5  |  Functional rIFC localization

After completion of the cSST S1 Pre, the raw EEG data 
recorded during the task was subjected to an immediate 
analysis in order to localize the rIFC region on the par-
ticipant's topography. While scalp EEG cannot identify 
the source generator, studies using electrocorticography 
(Swann et al.,  2009, 2012), magnetoencephalography/
functional magnetic resonance imaging (fMRI; Schaum 
et al., 2021), and fMRI-guided repetitive transcranial mag-
netic stimulation (Sundby et al.,  2021) have empirically 
demonstrated the link between right frontal scalp activ-
ity and rIFC. EEG data from the cSST were epoched into 
2500 ms epochs with respect to the Go/Stop signal for Go 
trials and Stop trials, respectively. A short version of the 
Fully Automated Statistical Thresholding for EEG artifact 
Rejection plug-in (FASTER; Nolan et al.,  2010; https://
sourc​eforge.net/proje​cts/faste​r/) was used to identify the 
most significant artifacts (e.g., eyeblinks and idiosyncratic 
muscle movements). EEG data were bandpass-filtered at 
13–20 Hz (Beta rhythm) and the amplitude was squared to 
obtain power estimates. Preprocessed EEG data were ep-
oched into 100 to 300 ms after the Stop signal for success-
ful and failed Stop trials. Additionally, a baseline (resting 
EEG data) was extracted from 1800 to 2000 ms after the 
Stop signal. These data were averaged over all trials for 
each channel and illustrated using topoplots. Four topop-
lots were shown; successful Stop trials, failed Stop trials, 
successful minus failed Stop trials, and successful Stop 
trials minus baseline. The topoplots were then visually 
inspected and four right frontal electrodes showing the 
largest right frontal power increase in the Beta range were 
identified as the individual participant's rIFC region. This 
four-electrode cluster was used subsequently to provide 
signals for the neurofeedback training.

2.2.6  |  Calibration and neurofeedback 
training blocks (B1-4)

The OpenViBE Acquisition Server (OpenViBE, Renard 
et al.,  2010, www.openv​ibe.inria.fr) received the EEG 
stream, and data were processed in real time using a 
custom OpenViBE Designer script. Data were processed 

using a 100-ms sliding window. First, the four individual 
rIFC channels as well as the reference channel (Cz) were 
selected. The selected data were then spatially (averaged 
over four rIFC channels) and temporally (13–20 Hz for 
“Beta” groups, 8–12 Hz for “Alpha” groups) filtered. The 
data were then epoched into 100 ms windows and a power 
estimate of each 100 ms epoch was calculated by squar-
ing the amplitude. Using LabStreamingLayer (https://
github.com/sccn/labst​reami​nglayer), the resulting power 
estimates were then exported to MATLAB (R2017b, 
Mathworks, USA). Using a custom MATLAB script, the 
power estimates were visualized using the Psychophysics 
Toolbox (PsychToolbox; Brainard,  1997; http://psych​
toolb​ox.org).

2.2.6.1  |  Calibration
During the calibration block, the participants were in-
structed to first rest and fixate upon a red cross for 2 min 
and when the fixation cross turned green after 2  min, 
they were instructed to open and close their left hand 
for another 2 min. EEG was measured during the whole 
duration of the calibration block. This calibration proce-
dure was performed in order to measure the participant's 
full power range of the respective frequency band (Beta 
or Alpha). The median power of the entire block was 
calculated.

2.2.6.2  |  Neurofeedback training (B1-4)
During the four neurofeedback training blocks, an avatar 
(bird for UP groups, fish for DOWN groups) was visual-
ized on the screen and represented the participant's real 
time power estimate output from OpenViBE. The avatar 
moved horizontally from left to right of the screen and 
either upwards or downwards depending on whether the 
power estimates increased or decreased, respectively. The 
screen was separated horizontally by the median power 
from the calibration block into sky (above median) and 
sea (below median) (Figure S1). The top of the screen was 
equal to the maximum power of the calibration block and 
the bottom of the screen was equal to the minimum power 
of the calibration block. The UP groups were instructed to 
keep the bird in the sky (i.e., increase the power estimates) 
whereas the DOWN groups were instructed to keep the 
fish in the sea (i.e., decrease the power estimates). If the 
avatar deviated into the wrong environment (i.e., sky or 
sea), the environment turned red to give negative feed-
back and immediately turned back to normal when they 
returned into the desired zone. The avatars for UP and 
DOWN (bird and fish) were size matched, and the back-
ground environment was identical for the two conditions. 
The choice of avatars for each condition was motivated 
by a desire to achieve effective gamification of the task, 
using a visually pleasing and motivating game context, 

https://sourceforge.net/projects/faster/
https://sourceforge.net/projects/faster/
http://www.openvibe.inria.fr
https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
http://psychtoolbox.org
http://psychtoolbox.org
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and instructions that were intuitive per avatar type. When 
participants were frequently reaching the top (UP groups) 
or bottom (DOWN groups) of the screen, the minimum 
and maximum limits were expanded by the X * standard 
deviation of the power estimates of the calibration block. 
The game thus had four difficulty levels (X = 0–4) and the 
level was increased if the participant was able to stay in 
the correct area (sky or sea) for more than 95% in a block. 
The participants were instructed to develop a mental 
strategy that does not involve movements, clenching teeth 
or tensing muscles. They were informed that muscle activ-
ity would be monitored using electromyography (EMG) 
from a selection of muscles throughout the body during 
future sessions, to discourage the development of muscle 
tensing strategies. On the final session, EMG electrodes 
were placed on both left and right forearm and lower leg 
muscles to allow the experimenter to visually monitor and 
verify that the participant can execute their mental strate-
gies in the absence of muscle tension. Participants were 
instructed to not close their eyes and to fixate upon the 
screen at all times.

2.3  |  Data offline processing

2.3.1  |  EEG offline preprocessing

EEG data were digitized with a sampling rate of 512 Hz. 
EEG data preprocessing was carried out using the 
EEGLAB toolbox (Delorme & Makeig, 2004; http://sccn.
ucsd.edu/eeglab) in conjunction with FASTER. The data 
were initially bandpass filtered between 1 and 95 Hz, 
notch filtered at 50 Hz and average referenced across 
all scalp electrodes. Resting data and data from the cali-
bration and neurofeedback training blocks were subse-
quently epoched into windows of 1000 ms. Data from the 
cSST were epoched from 500 ms prior to Go/Stop signal 
onset to 2000 ms after Go/Stop signal onset for Go tri-
als and Stop trials, respectively. FASTER identified and 
removed artifactual (i.e., non-neural) independent com-
ponents, removed epochs containing large artifacts (e.g., 
muscle twitches), and interpolated channels with poor 
signal quality. The remaining EEG data were then visu-
ally inspected by trained raters to ensure good quality and 
that any remaining noisy data were removed. Specifically, 
trained raters identified any remaining artifacts in inde-
pendent components (e.g., eyeblinks) and epochs contain-
ing idiosyncratic muscle/movement or transient electrode 
artifacts, and interpolated any channels that were noisy 
throughout all epochs of a participant. After preprocess-
ing, EEG data were transformed using the current source 
density method (CSD; https://psych​ophys​iology.cpmc.
colum​bia.edu/softw​are/CSDto​olbox/​index.html; Kayser 

& Tenke, 2006) which is a reference-free montage to at-
tenuate the effect of volume conduction in scalp EEG.

2.3.2  |  Time-frequency transformation

For all epochs, two-dimensional representations of each 
electrode's time-frequency were estimated using a com-
plex Morlet wavelet (range of logarithmically spaced 
4–10  cycles for 39 linearly spaced frequencies across 
1–40 Hz). The squared magnitude of the convolved data 
was calculated to obtain power estimates. The power 
estimates were subsequently transformed to relative 
power. Power values of each given band from 1 to 28 Hz 
(Delta = 1–4 Hz, Theta = 5–7 Hz, Alpha = 8–12 Hz, and 
Beta = 13–28 Hz) were expressed as a percentage of the 
total power within the spectrum (per channel and per 
given epoch). Beta bursts were extracted from nonrelative 
time-frequency power estimates.

2.3.3  |  Beta burst detection

Beta burst detection was performed according to the 
method described in Enz et al.  (2021). For each time-
frequency power matrix, local maxima were detected 
using the MATLAB function imregionalmax. Beta bursts 
were then defined as local maxima that exceeded a defined 
threshold of 2× median power of the entire time-frequency 
matrix (across all trials per participant). Time-frequency 
matrices were then divided into ~25.39 ms time bins (also 
for analysis of relative power). The first and last time 
bins were removed from all trials due to an edge artifact 
that can occur when applying the MATLAB function im-
regionalmax (it detects artifactual local maxima on the 
edges of the time-frequency matrix). Beta burst rate (the 
sum of the number of supra-threshold bursts) and Beta 
burst volume (the area under the curve of supra-threshold 
datapoints; see Enz et al., 2021) were then extracted per 
time bin. We also extracted the timing of the first Beta 
burst after the Stop/Go signal in the cSST EEG data.

2.3.4  |  Selection of brain regions

For the statistical analysis, EEG data were averaged over 
clusters of four electrodes from different regions of the 
brain. To interrogate EEG data from the rIFC, data were 
averaged over the four individually selected electrodes 
over the right frontal scalp area that were used during the 
neurofeedback training. Further, we also averaged clus-
ters of four electrodes over the left motor cortex (D19/
C3, D20, D12, and D11), the right motor cortex (B22/C4, 

http://sccn.ucsd.edu/eeglab
http://sccn.ucsd.edu/eeglab
https://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html
https://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html
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B23, B31, and B30), and the occipital cortex (A23/Oz, A24, 
A28, and A27) to test the specificity or generalization of 
effects beyond the trained region.

2.4  |  Statistical analysis

2.4.1  |  Behavioral analysis

Means and standard deviations were extracted for each 
participant for the following behavioral cSST measures: 
SSRT, intraindividual coefficient of variation (ICV), Go 
trial reaction time (RT), failed Stop trial RT, SSD, number 
of successful Stop trials, number of failed Stop trials, prob-
ability of successful stopping, probability of Go omissions, 
and probability of choice errors. The SSRT was calculated 
using the integration method with replacement of Go 
omissions by the maximum RT (Verbruggen et al., 2019). 
All Go trials were included in the Go RT distribution, in-
cluding Go trials with choice errors. Premature responses 
on failed Stop trials were included when calculating the 
probability of responding on a Stop trial and mean SSD. 
Participants with SSRT < 75 ms were excluded from 
all analyses. The ICV was calculated by dividing Go RT 
standard deviation by the mean Go RT.

For the 2-Back Task, the absolute number of target hits 
were calculated across both blocks (i.e., the maximum ab-
solute number of target hits was 20).

2.4.2  |  Neurofeedback training 
statistical analysis

For resting EEG and for the calibration and neurofeedback 
training blocks, data were averaged over 37 × 25.39 ms 
time bins. For the cSST, 3 × 25.39 ms time bins were av-
eraged to create ~75 ms time bins (6 time bins from −75 
to 375 ms with respect to the Stop/Go signal). R (R Core 
Team, 2020) was used for all statistical analyses.

We first tested whether the neurofeedback training 
was effective. For this, we fit a linear mixed-effects model 
(LMM) using restricted maximum likelihood with relative 
Beta power over the rIFC as the outcome variable, with 
fixed effects of Direction (UP or DOWN) and Timepoint 
(Pre to Post neurofeedback training) and their two-way 
interaction, and with a random effect of Participant. We 
also calculated Cohen's d for each effect. The models were 
fit for the Beta and Alpha groups separately. We then also 
conducted the same analysis with relative Alpha power 
as outcome variable. We also looked at the same outcome 
variables from the other three brain regions (left motor cor-
tex, right motor cortex, and occipital cortex). This analysis 
was repeated with Beta burst rate and Beta burst volume 

as outcome variables. We ran a post hoc test for significant 
interactions using the emmeans function in R. All post hoc 
tests are Bonferroni corrected at 0.05/2 = 0.025, correcting 
for the two directions (UP and DOWN).

Next, we looked at the effects of neurofeedback train-
ing on inhibitory control behavior. We again fit a LMM 
using restricted maximum likelihood with SSRT as the 
outcome variable, with fixed effects of Direction (UP or 
DOWN), Timepoint (Pre to Post neurofeedback training), 
Rhythm (Beta or Alpha), and their two- and three-way in-
teractions, and with a random effect of Participants. We 
also calculated Cohen's d for each effect.

We then interrogated the relationship between the mag-
nitude of the Pre-Post change in SSRT and the extent to 
which relative Beta power was modulated during neuro-
feedback training. For this we fit a linear model by robust 
regression using an M-estimator, with change in SSRT being 
the dependent variable, and change in relative Beta power 
being the independent variable. We repeated this analysis 
with N-Back score, Go RT, and ICV as outcome variables.

Next, we looked at the effects of neurofeedback training 
on resting EEG data. We compared resting EEG data which 
was collected before neurofeedback training, acutely after 
one session of neurofeedback training, and also after six ses-
sions of neurofeedback training. We fit the same three-way 
LMM with relative Beta power, Beta burst rate, and Beta 
burst volume over the rIFC as outcome variables.

Last, we looked at the effect of neurofeedback train-
ing on the brain activity while engaging inhibitory con-
trol behavior. Again, the same three-way LMM was fit for 
the time bins around the average SSRT with relative Beta 
power, Beta burst rate, Beta burst volume, and timing of 
first Beta burst over the rIFC as outcome variables.

2.5  |  Code and data accessibility

Custom written scripts and data summary files can be 
downloaded on the Open Science Framework at 10.17605/
OSF.IO/3RNQ4

3   |   RESULTS

3.1  |  Spectral power in the Beta 
band over rIFC was modulated by Beta 
neurofeedback training

We first tested whether Beta and Alpha band spectral 
power was successfully modulated over rIFC by 6 days of 
neurofeedback training in the trained directions (UP or 
DOWN), when quantified offline using optimal artifact 
rejection procedures. Linear mixed-effects models were 
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performed on EEG data recorded during BCI performance 
comparing spectral power at resting baseline on the first 
day (Rest S1 Pre) to that at the end of the final (6th) Day 
(Block 6.4), within the two Beta subgroups.

Beta power was significantly modulated from resting 
baseline on Day 1 to the final block of neurofeedback 
training on Day 6, in a manner that differed depending 
on trained direction (Figure  2a). This was revealed by 
a Direction*Timepoint interaction (F[1,40.04]  =  5.98, 
p =  .019, d  =  0.77, n  =  44). Please note, all following 
post hoc tests are Bonferroni corrected at 0.05/2 = 0.025 
and all means are shown as estimated marginal means 
(EMM) ± SE. Beta power modestly increased for the UP 
group (Pre 62.0 ± 3.03%, Post 64.2 ± 3.03%; post hoc test: 
t[39.1] = 0.80, p = .43) and significantly decreased for the 
DOWN group (Pre 59.5  ± 3.65%, Post 50.5  ± 3.89%; post 
hoc test: t[41.5] = −2.47, p = .018).

The same pattern was evident when comparing data 
averaged within the calibration block performed imme-
diately before training on Day 1 (Cal S1) to performance 
in the final block on Day 6 (F[1,38.18] = 13.99, p =  .001, 
d = 1.21, n = 41; Figure 2b). Beta power modestly increased 
for the UP group (Pre 62.0 ± 2.70%, Post 64.2 ± 2.67%; post 
hoc test: t[38.5] = 0.99, p = .33) and significantly decreased 
for the DOWN group (Pre 64.1 ± 3.51%, Post 52.3 ± 3.51%; 
post hoc test: t[38.0] = −3.96, p = .0003).

Figure 2a,b show the time course of Beta power for S1 
and S6 compared to resting baseline (Figure 2a) and cali-
bration baseline (Figure 2b). See Supporting Information 
Results 1 for acute within session modulation for Day 1 
and Day 6.

3.2  |  Right frontal Alpha neurofeedback 
training did not modulate spectral power 
in the Alpha band nor in the Beta band

Spectral power in the Beta band over rIFC was not sig-
nificantly modulated from resting baseline during 
Alpha BCI training (Direction*Timepoint interaction: 
F[1,31.94]  =  1.42, p =  .24, d  =  0.42, n  =  37; Figure  3c). 
When comparing end of training (B6.4) to the calibration 
block on Day 1, the Direction*Timepoint interaction was 
significant (F[1,33.10] = 4.38, p = .044, d = 0.73, n = 36) 
but post hoc tests revealed that neither the UP nor DOWN 

groups showed significant modulation of the Beta rhythm 
from the calibration baseline (all p > .13; Figure 3d).

Power in the Alpha band was similarly not mod-
ulated during Alpha neurofeedback training (all 
Direction*Timepoint interactions p >  .42; Figure  3a,b), 
suggesting that training Alpha over rIFC was not achieved 
using this protocol.

3.3  |  Cross frequency effects

We first investigated whether power in the Alpha band 
was modulated during neurofeedback training target-
ing the Beta rhythm (Figure  2c,d). When comparing 
calibration baseline Alpha power on Day 1 to Alpha 
power during neurofeedback training attempting to 
regulate Beta, significant modulation was detected at 
the end of Day 6 (F[1,38.33] = 4.78, p =  .035, d = −0.71, 
n  =  41). Alpha power modestly decreased for the UP 
group (Pre 16.1 ± 1.26%, Post 15.8 ± 1.24%; post hoc test: 
t[38.5] = −0.21, p = .83) and significantly increased for the 
DOWN group (Pre 17.0 ± 1.64%, Post 20.5 ± 1.64%; post 
hoc test: t[38.0] = 2.60, p = .013). It is notable however that 
although this demonstrates that Alpha was modulated 
during training based upon neurofeedback training of the 
Beta rhythm, the direction of change was opposite (Alpha 
decreased in the Beta UP training and vice versa). Also, 
the absolute effect sizes for Alpha modulation during Beta 
training range from 0.23–0.71, whereas Beta modulation 
absolute effect sizes were substantially larger (0.61–1.21).

On the final day of training, Alpha power was not mod-
ulated acutely (i.e., within session) during Beta training 
when comparing power during the final neurofeedback 
training block to the resting baseline on the same day 
(F[1,38.75] = 3.16, p = .08, d = −0.57, n = 41), nor to the 
calibration block (F[1,37.06]  =  1.35, p =  .25, d  = −0.38, 
n = 41). Thus, the effects of Beta training were largely se-
lective to the Beta rhythm.

3.4  |  Modulation of neural oscillations 
beyond rIFC

To investigate effects spanning beyond the trained clus-
ter of electrodes over rIFC, we tested whether Beta Power 

F I G U R E  2   Neurofeedback training performance of Beta groups. Performance of first and last session blocks is shown for Beta UP and 
Beta DOWN groups separately. Time course of relative power is corrected to the respective baseline. The boxplots show the medians and 
quartiles of the data, the whiskers extend to the rest of the distribution, except for points that are determined to be outliers. The swarm 
plots show individual datapoints and the line plots connect the means of each block. (a) Relative Beta power is shown relative to the resting 
baseline before the first training block on Day 1. (b) Relative Beta power is shown relative to the calibration baseline before the first training 
block on Day 1. (c) Relative Alpha power is shown relative to the resting baseline before the first training block on Day 1. (d) Relative Alpha 
power is shown relative to the calibration baseline before the first training block on Day 1.
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at three other scalp sites was modulated during neuro-
feedback training of Beta signals recorded from rIFC. We 
chose clusters of four electrodes over right and left motor 

cortex and occipital cortex for comparison and performed 
mixed effects models testing for Direction*Timepoint in-
teractions, as before. No significant interactions in any of 
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the three regions were detected when comparing resting 
baseline Beta power to Beta power during the final neuro-
feedback training block on Day 6 (all p > .12).

However, when comparing Beta power from the initial 
calibration block on Day 1 to power during the final block 
on Day 6, significant Direction*Timepoint interactions 
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were revealed for both right (F[1,38.45] = 8.46, p =  .006, 
d  =  0.94, n  =  41) and left (F[1,38.36]  =  6.58, p =  .014, 
d = 0.83, n = 41) motor regions, but no modulation was 
evident in the occipital region (F[1,35.03] = 0.29, p = .59, 
d = −0.18, n = 41). For the right motor region, Beta power 
modestly increased for the UP group (Pre 56.9 ± 2.34%, Post 
58.9 ± 2.31%; post hoc test: t[38.5] = 0.92, p = .36) and signifi-
cantly decreased for the DOWN group (Pre 59.4 ± 3.04%, 
Post 51.3 ± 3.04%; post hoc test: t[38.0] = −2.96, p = .005). 
For the left motor region, Beta power modestly increased 
for the UP group (Pre 57.6 ± 2.29%, Post 59.5 ± 2.27%; post 
hoc test: t[38.4] = 1.13, p = .26) and significantly decreased 
for the DOWN group (Pre 57.4 ± 2.99%, Post 52.3 ± 2.99%; 
post hoc test: t[38.0] = −2.37, p = .023). Topoplots for post 
training minus pre-training are shown for each training 
group for both Beta power (Figure  4) and Alpha power 
(Figure S2).

3.5  |  Inhibitory control behavior was not 
modulated by neurofeedback training

Behavioral data of the cSST are displayed in Table  S2. 
To assess whether neurofeedback training had any ef-
fect upon inhibitory control behavior in the cSST (i.e., 
upon SSRT, the speed of inhibitory control), we per-
formed a mixed effects model with three fixed effects; 
Rhythm (Alpha or Beta), Direction (UP or DOWN), 
and Timepoint (pre or post training). There was no 
three-way Rhythm*Direction*Timepoint interaction 
(F[1,54.88] = 2.32, p =  .13, d = 0.41, n = 71). There was 
a fixed effect of Timepoint (F[1,54.88]  =  4.35, p =  .042, 
d = 0.28, n = 71), revealing that SSRTs generally improved 
over time regardless of BCI training type (EMMs averaged 
over levels of Rhythm and Direction: Pre 166 ± 7.86 ms, 
Post 147 ± 8.54 ms). Figure 5 shows the mean pre and post 
SSRTs for each group.

To investigate whether each individual's pre-post 
change in SSRT could be predicted by the extent to which 
their Beta rhythm was modulated, we performed Robust 
Regression analyses with change in SSRT as outcome vari-
able and change in Beta rhythm (resting baseline from 
Day 1 to final block on Day 6) as predictor. The extent of 
change in the Beta rhythm as a result of training did not 

significantly predict improvement in SSRT from Pre-Post 
(slope = 0.81, df = 25, F = 2.06, p = .16, n = 22; Figure 6a). 
The same was evident when tested at the right motor 
electrode cluster (slope = 1.15, df = 25, F = 2.76, p = .11, 
n = 22; Figure 6b), left motor cluster (slope = 1.22, df = 25, 
F = 2.38, p = .14, n = 22; Figure 6c), and occipital cluster 
(slope = 0.46, df = 25, F = 0.41, p = .53, n = 22; Figure 6d). 
Training-related change in Alpha power for those training 
Alpha rhythms was not predictive of behavioral change in 
SSRT (all p > .26; Figure 6e–h).

We additionally tested whether neurofeedback training 
impacted other aspects of cognitive function. Participants 
performed the 2-Back Task at two timepoints (Start of Day 
1 and end of Day 6) to test neurofeedback-related changes 
in working memory. Analysis of the number of target hits 
revealed no significant three-way interaction between 
Rhythm*Direction*Timepoint (p  = .41) suggesting that 
working memory was not affected by the training.

Further, we analyzed response speed using Go trial 
reaction times (Go RT) in the cSST, and performance 
variability using the intraindividual coefficient of vari-
ation (ICV) in the cSST. No three-way interactions 
emerged between Rhythm*Direction*Timepoint (Go 
RT: p = .76; ICV: p = .86). There was a significant two-
way Rhythm*Timepoint interaction (F[1,75.34] = 4.82, 
p  = .031, d  =  0.47, n  =  82) for Go RT. Post hoc tests 
indicated a significant improvement in speed (i.e., de-
crease in Go RT) in the Beta group (Pre 484 ± 7.07 ms, 
Post 463 ± 7.31 ms; post hoc test: t[5.40] = 3.44, p = .001) 
but it did not significantly change for the Alpha group 
(Pre 480 ± 7.65 ms, Post 478 ± 7.79 ms; post hoc test: 
t[74.4] = 0.24, p = .82).

3.6  |  Resting spectral Beta power was not 
altered by neurofeedback training

Comparing resting EEG data from before training (Rest 
S1 Pre), after Day 1 of training (Rest S1 Post) and Post 
training on Day 6 (Rest S6 Post), mixed effects models re-
vealed no significant Direction*Timepoint interactions for 
the Beta group (F[2,79.42] = 0.34, p =  .71, n = 44). This 
suggests that training-related modulations of Beta power 
were only evident when engaged in the task but did not 

F I G U R E  3   Neurofeedback training performance of Alpha groups. Performance of first and last session blocks is shown for Alpha UP 
and Alpha DOWN groups separately. Time course of relative power is corrected to the respective baseline. The boxplots show the medians 
and quartiles of the data, the whiskers extend to the rest of the distribution, except for points that are determined to be outliers. The swarm 
plots show individual datapoints and the line plots connect the means of each block. (a) Relative Alpha power is shown relative to the 
resting baseline before the first training block on Day 1. (b) Relative Alpha power is shown relative to the calibration baseline before the first 
training block on Day 1. (c) Relative Beta power is shown relative to the resting baseline before the first training block on Day 1. (d) Relative 
Beta power is shown relative to the calibration baseline before the first training block on Day 1.
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lead to a lasting change in the background (resting) tonic 
Beta level.

3.7  |  Modulation of Beta burst 
characteristics by training the tonic 
Beta rhythm

We investigated whether training to modulate tonic 
Beta Power over rIFC has consequences for Beta burst 

characteristics. Beta burst rate was not altered during or 
after training at any of the timepoints tested (all p > .277). 
Burst volume was significantly modulated at the end of 
the first day of training when comparing burst volume in 
the last block of Day 1 to that detected in the calibration 
block on the same day (Direction*Timepoint interaction: 
F[1,37.48] = 6.14, p = .02, d = 0.81, n = 40). Burst volume 
significantly increased for the UP group (Pre 5962 ± 1744 
arbitrary unit [a.u.], Post 9769 ± 1771 a.u.; post hoc test: 
t[36.6]  =  2.20, p =  .03) and modestly decreased for the 
DOWN group (Pre 8560 ± 2311 a.u., Post 5336 ± 2251 a.u.; 
post hoc test: t[37.0] = −1.43, p = .16).

3.8  |  Brain activity while performing the 
cSST was not modified following training

We examined whether neurofeedback training of tonic 
Beta power modified brain activity while performing the 
cSST, that is, during inhibitory control behavior. There 
were no significant differences in neural activity (Beta 
power, burst rate, burst volume, and timing of first burst) 
recorded during cSST performance at the start of the first 
day of training compared to the end of Day 6 of training 
(all p > .40).

4   |   DISCUSSION

We have demonstrated here that using neurofeedback 
in a BCI it is possible to train human participants to 
self-regulate their Beta rhythm over the rIFC, but that 
this has no observable consequences upon subsequent 

F I G U R E  4   Change in Beta power pre- to post-neurofeedback training. Topoplots show relative Beta power for the last block of 
neurofeedback training (Post B6.4) minus resting EEG before first block of neurofeedback training (Pre Rest) as well as for the last block of 
neurofeedback training (Post B6.4) minus calibration block (Pre Calibration). Topoplots are shown separately for each group (Beta UP, Beta 
DOWN, Alpha UP, and Alpha DOWN).

F I G U R E  5   SSRTs of each training group. The SSRTs are 
shown for each training group for pre- (Day 1) and post- (Day 
6) neurofeedback training. The boxplots show the median and 
quartiles of the data, the whiskers extend to the rest of the 
distribution, except for points that are determined to be outliers.
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F I G U R E  6   Association between change in SSRT and change in relative power. Each plot shows the linear regression fit line of the data 
in dark gray as well as the confidence interval in light gray. Please note the difference in scale across all plots. The associations are shown 
for an average of four electrodes in four different brain regions (rIFC, right motor, left motor, occipital). (a–d) Show the association between 
change in SSRT and change in relative Beta power in the Beta groups (UP and DOWN). (e–h) Show the association between change in SSRT 
and change in relative Alpha power in the Alpha groups (UP and DOWN). rIFC, right inferior frontal cortex; SSRT, stop signal reaction time.
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inhibitory control behavior. Participants trained over a 6-
day period to upregulate or downregulate the amplitude 
of their Beta rhythm over rIFC, resulting in the predicted 
directional changes to Beta power. Concomitant changes 
at other (untrained) scalp regions and other frequency 
bands were of lower magnitude, indicating good speci-
ficity of the neurofeedback training protocol for modu-
lating the trained rhythm, direction, and region. The 
extent to which each individual's SSRT changed pre-post 
training was however, not predicted by the magnitude 
of their training-related change in Beta over rIFC. This 
was also not the case for the control group undergoing 
Alpha training. Although the right frontal Beta rhythm 
has been repeatedly implicated as a key component of 
the brain's inhibitory control system, the present data 
suggest that improving the ability to self-regulate the 
rhythm does not result in behavioral change in an inhibi-
tory control task.

Training-related modulation of the Beta rhythm was 
only manifest during the neurofeedback training task and 
did not alter EEG signals measured subsequently at rest 
or during cSST task performance. The current experimen-
tal design did not permit us to investigate whether online 
(i.e., during cSST task performance) self-regulation of 
the Beta rhythm would impact upon behavior, although 
this may be an interesting future extension of the work. 
Additionally, in the BCI task, neurofeedback was provided 
on the amplitude of the tonic (background) Beta rhythm. 
Further analyses revealed that this style of regulation of 
tonic Beta power had no impact on the rate or volume 
of transient burst-like high amplitude events in the Beta 
frequency range. This adds weight to the emerging view 
that so called “Beta bursts” are a phenomena distinct 
from the ongoing background or “tonic” oscillation at the 
same frequency (Bonaiuto et al., 2021; Little et al., 2019). 
Timing and magnitude of Beta bursts critically impact 
upon subsequent motor performance (Little et al., 2019) 
and whether attempts to inhibit a response are success-
ful or not (Enz et al., 2021; Wessel, 2020). Although par-
ticipants learned to modulate the amplitude of their Beta 
rhythm over rIFC, this gradual, tonic background change 
in Beta during the distinct 3-min neurofeedback training 
blocks had no impact upon subsequent inhibitory control 
behavior. In order to modify Beta bursts using the BCI, it 
may be necessary to provide feedback specifically tailored 
to detect and influence bursting in real time (online), 
rather than simply of generalized (and offline) regulation 
of tonic Beta (e.g., He, 2020).

In the protocol used in the current study, neurofeed-
back targeting downregulation of Beta oscillations was 
more impactful than upregulation. It is likely that down-
regulation is simply easier for participants to perform, 
as it is known that engaging a brain region in a mental 

process (such as motor imagery), tends to lead Beta (and 
Alpha) to desynchronize in the region (Barone & 
Rossiter, 2021; Jensen & Mazaheri, 2010). Over the 6-day 
training period, participants learned to tailor their men-
tal imagery strategies to optimally engage rIFC in order 
to achieve tangible real time control over the movement 
of the avatar on screen. Our results leave open the pos-
sibility that it may be the ability to flexibly engage (and 
remove) Beta oscillations in the form of precisely timed 
bursts that predicts behavioral performance, rather than 
the tonic level per se.

While the neurofeedback training we employed was 
effective for regulating the Beta rhythm over rIFC, Alpha 
modulation at this scalp location was not achieved. The 
lack of Alpha modulation over rIFC may be due to the 
fact that Beta is the predominant resonating frequency 
in this location, and has been repeatedly implicated 
in the functioning of this region (Schaum et al.,  2021; 
Sundby et al.,  2021; Swann et al.,  2009, 2012; Wagner 
et al.,  2017). Further, for all participants (even those 
in the Alpha group) we performed the same functional 
localizer to detect the precise cluster of electrodes cor-
responding to the right frontal scalp location showing 
most substantial Beta synchronization during the cSST. 
This cluster of electrodes, selected for exhibiting strong 
Beta activity during inhibitory control, was used to tailor 
the BCI neurofeedback for both Alpha and Beta groups. 
Optimizing the BCI for Beta using this method may fur-
ther explain why Alpha modulation was not achieved at 
the rIFC site.

Previous studies using implanted electrodes have re-
ported that positive effects upon motor behavior could be 
achieved in macaques (Khanna & Carmena, 2017) and 
humans with Parkinson's disease (Bichsel et al.,  2021) 
using BCI to train self-regulation of the brain's Beta 
rhythm. Here, we build upon and extend these initial 
findings by making the advance to noninvasive scalp 
recorded EEG signals in humans, demonstrating that 
volitional modulation of Beta oscillations was achieved 
within 6 days of training. The BCI neurofeedback train-
ing protocol demonstrated good spatial and temporal 
specificity, modulating primarily the targeted region, 
rhythm, and direction. The lack of behavioral conse-
quences further adds weight to the emerging picture 
in recent research showing that the right frontal Beta 
signature associated with stopping may not exert a di-
rect functional influence upon the behavior. Indeed, 
Errington et al.  (2020) demonstrated using depth elec-
trodes in macaques that while Beta bursts were associ-
ated with inhibitory control, successful stopping could 
occur even on trials where no bursts were detected. 
They also highlighted that the occurrence of Beta bursts 
during Stop trials was generally very low (~15% of 
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trials), and as such may only represent one component 
of a more complex neural mechanism underlying inhib-
itory control.

Using noninvasive BCI technology, volitional and 
causal self-regulation was achieved without the need for 
exogenous stimulation, paving the way for easier real-
world application of neuromodulation to alter brain 
rhythms experimentally. In this sample of young healthy 
adults, no consequent behavioral change was observed, 
raising questions regarding the potential utility for this 
approach using offline neurofeedback training of the 
tonic Beta rhythm for disorders with dysfunctional in-
hibitory control as their basis. However, it remains to 
be tested whether this style of volitional self-regulation 
of Beta may in fact impact behavior in a context where 
inhibitory control is impaired. Future directions for this 
work may involve conducting Beta neurofeedback with 
individuals exhibiting lower performance on tests of in-
hibitory control (such as the cSST used here), to inves-
tigate whether there may be scope for improvement in 
this context.
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SUPPORTING INFORMATION
Additional supporting information may be found in the 
online version of the article at the publisher’s website.

FIGURE S1 Visual neurofeedback. (a) Positive feedback for 
the UP groups. The participant's real-time power estimate 
output is visualized in form of a bird. If the bird is in the sky, 
the background stays normal. (b) Negative feedback for the 
UP groups. When the bird reaches the sea, the background 
turns red to give negative feedback. (c) Positive feedback 
for the DOWN groups. The participant's real-time power 
estimate output is visualized in form of a fish. (d) Negative 
feedback for the DOWN groups. When the fish reaches the 
sky, the background turns red to give negative feedback
FIGURE S2 Change in Alpha power pre- to post-
neurofeedback training. Topoplots show relative Alpha 
power for the last block of neurofeedback training 
(Post B6.4) minus resting EEG before first block of 
neurofeedback training (Pre Rest) as well as for the 
last block of neurofeedback training (Post B6.4) minus 
calibration block (Pre Calibration). Topoplots are shown 
separately for each group (Beta UP, Beta DOWN, Alpha 
UP, Alpha DOWN)
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TABLE S1 Characteristics of each experimental and 
control group. Participants were allocated at random 
into four groups (Beta UP, Beta DOWN, Alpha UP, Alpha 
DOWN). Handedness was self-reported
TABLE S2 Behavioural data of the cSST pre, acute 
and post neurofeedback training. Means and standard 
deviations are reported. cSST, conditional stop signal task; 
RT, reaction time; SSD, stop-signal delay; SSRT, stop signal 
reaction time
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