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Abstract: Taxanes, including paclitaxel, docetaxel, and cab-
azitaxel, are key agents in cancer treatment, oftenused as front-
line chemotherapy drugs in combination with other agent(s)
(commonly carboplatin) and as second-line treatments alone.
Generally, taxanes are highly effective, but drug resistance
unavoidably develops following repeated treatment. Taxanes
work by binding to and stabilizing microtubules, leading to
mitotic arrest, mitotic catastrophe, and micronucleation. The
long-recognized mechanisms of drug resistance generally can
be classified into three categories: drug efflux, microtubule
polymerization, and apoptotic pathway. A recent new addition
to this list is a mechanism related to the nuclear envelope, as
cancer cells undergo micronucleation and nuclear membrane
rupture when treated with taxanes. All these mechanismsmay
operate simultaneously as taxane resistance is multi-factorial.
Here, we review the cell biology understanding of nuclear
envelope breaking in production of micronucleation, and
nuclear membrane rupture and repair, and propose that these
processes are involved in taxane resistance.
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General introduction of taxane
resistance mechanisms

Paclitaxel, the first taxane, was a fortuitous finding during
screening of natural compounds in a USDA (United States
Department of Agriculture)-sponsored project in 1960s [1, 2].
Since then, taxanes (paclitaxel, docetaxel, and cabazitaxel)
have become a cornerstone in the management of many
major solid tumors, including ovarian cancer, metastatic
breast cancer, lung cancer, and castration resistant and
metastatic prostate cancer [1, 3–7].

The mechanism of action of taxanes, which involves the
stabilization of cellular microtubules, seems to be a sur-
prisingly successful strategy in purging malignant cells of
these various cancer types. Mitotic inhibition and mitotic
catastrophe, which are what microtubule stabilization is
thought to result in, has been assumed to be the key factor in
the anti-cancer activity of taxanes [8–14], but increasingly
non-mitotic mechanisms are also thought to account for the
success of taxanes [15–20].

Today, taxanes such as paclitaxel, docetaxel, and cab-
azitaxel, are widely used as frontline drugs for chemotherapy
and as secondary agents for recurrent cancer [1, 3–7, 21].
Moreover, formulations such as albumin-bound paclitaxel
(Abraxane, Nab-paclitaxel) and liposome-paclitaxel, etc., are
used to enhance delivery [22, 23]. New taxanes andnon-taxane
molecules are being developed based on the mechanism of
microtubule stabilization to optimize efficacy and overcome
drug resistance [24, 25]. These newdevelopmentswill enhance
the utilization of the microtubule stabilizing drugs in terms of
delivery, as reducing allergic reaction, shortening infusion
time, oral delivery, etc., leading to increased efficacy and
reduced toxicities. It appears that taxanes and other micro-
tubule stabilizing agents will remain important in the fore-
seeable future of oncology.

Despite the success of taxanes in cancer treatment, the
eventual development of drug resistance and side effects like
myelosuppression, peripheral neuropathy, and alopecia pre-
sent debilitating problems [1, 6, 26–28]. Myelosuppression and
peripheral neuropathy can be dose-limiting factors that
require treatment to be paused and the drug dose to be
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reduced [5, 29, 30]. In addition, although about 90% of taxane-
induced alopecia ceases following the completion of treat-
ment, severe hair loss is often considered themost concerning
issue for many patients [31]. In ovarian cancer as an example,
the initial response rate to paclitaxel and carboplatin (or
cisplatin) is around 60%, ranging from 40% to 86% in
various reports (Figure 1) [5, 6, 21, 32]. Thus, around 40% of
ovarian cancer is intrinsically resistant to both paclitaxel and
carboplatin, which is defined as tumor progression within
6 months post-chemotherapy [5, 6, 21, 32, 33]. In recurrent
cancer that is commonly platinum resistant, treatment with
dose dense (weekly) paclitaxel has a 30% response rate
(Figure 1). Eventually all cancer cases will become resistant to
taxanes following repeated treatment [1, 7, 26–28].

Therefore, considerable efforts have been devoted to
understanding and overcoming drug resistance [1]. Generally,
taxane resistance can be classified into four categories [20, 26]:
(1) resistance related to an increased expression of trans-
membrane transporters for drug efflux; (2) resistance related
to microtubule stability in which the microtubules are less
inclined to bind to paclitaxel, caused bymicrotubulemutation
and expression of isoforms, changes of microtubule binding
proteins, and other tubulin regulatory proteins; (3) resistance
caused by the genes related to apoptotic pathways that set the
threshold for cell death activation; and (4) resistance related to
the properties of the nuclear envelope [20]. This fourth cate-
gory stems from new understandings of the taxane mecha-
nism that suggest the importance of the nuclear envelope in
taxane resistance. There are two factors that may be consid-
ered here: first, the mechanical sturdiness of the nuclear en-
velope, which may determine the propensity of the nuclear
envelope to deform and undergo micronucleation; and sec-
ond, the tendency of themicronuclei formed to rupture. These
four key mechanisms of taxane resistance may operate
simultaneously with differing levels of importance in the
development of resistance by cancer cells.

Increased expression of ABC drug efflux transporters is
a well-recognized multi-drug resistant mechanism [34, 35].
This mechanism accounts for a portion of drug resistant

activity [20, 26]. Some taxanes such as cabazitaxel are poor
substrates for the glycoprotein cell surface transporters, and
thus these drugs may be used even when other taxanes
become less effective due to the overexpression of ABC
transporters [35–37].

There were a number of studies looking at altered
expression or mutation of apoptotic genes [38, 39]. Bcl-2
expression and phosphorylation have been studied and re-
ported [40]. Cancer commonly has loss or mutation of Tp53,
which is a key regulator of the apoptotic cell death program,
rendering cancer cells more resistant to cytotoxic stress and
chemotherapy agents [39].

Since taxanes work by stabilizing microtubules, factors
affecting microtubules stabilization are reasonable or likely
contributors to taxane resistance [41, 42]. However, tubulin
mutations affecting affinity to taxane binding were found in
laboratory but not in clinical samples [43, 44]. Therefore,
tubulin mutations are not a commonmechanism for clinical
drug resistance.

Most cell types normally express tubulin beta1, but some
cancer cells were found to also express tubulin beta3, which is
normally restricted to neuronal cells [45]. The change of
expression to another tubulin type is known as isoform
switching [46–48]. The expression of tubulin beta3 in cancer
cells was suggested to be a mechanism contributing to taxane
resistance since it was reasoned that tubulin beta3may be less
sensitive to taxanes [46–50]. However, additional follow-up
studies found that the expression of tubulin beta3didnot seem
to predict the sensitivity of microtubules made of tubulin
beta3 and host cells to taxanes [51]. Changes in microtubule
binding proteins [52, 53], regulatory kinases [54–57], etc., that
are related tomicrotubule stabilization, are suggested to affect
taxane resistance. It is likely that numerous factors influ-
encingmicrotubule biology, to varying extents, will determine
cellular sensitivity and resistance to the cytotoxic effects of
taxanes.

The new understanding of the taxane mechanism
related to nuclear envelope sturdiness [20] provides addi-
tional possibilities that determine sensitivity and resistance

Figure 1: Chemotherapy responsiveness in ovarian carcinomas. Primary ovarian carcinomas are first treated with paclitaxel and carboplatin
combination (PTX+Pla). The response rate is about 60 % (reported from 40 to 85 %). In the recurrent cancer, only about 30 % of the cases are responsive
to dose dense paclitaxel (weekly rather than 3weeks). Eventually, all cases are resistant to taxanes after repeated treatments. The illustrationwas created
using software from Biorender.com.
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of cancer cells to taxanes, as discussed below. All these
mechanisms are not mutually exclusive and may coalesce to
reach the observed clinical resistance to taxanes.

New understanding of taxane
action: micronucleation

The phenomenon of taxane-induced micronucleation has been
observed previously [58–60], and further explored in more de-
tails recently [19, 61]. The finding of paclitaxel-induced micro-
nucleation opens up a new area of taxane resistance [20, 61].
Upon addition of paclitaxel, it was observed that nearly all
cancer cells in culture becamemicronucleated, often presented
as multiple micronuclei associated with a larger primary nu-
cleus, or a collection of lobulated micronuclei [61]. In prolifer-
ative cancer cells in culture, the formation of multiple
micronuclei is largely a result of multipolar division or mitotic
catastrophe [2, 13, 60, 62]. It also results from a non-mitotic
mechanism, through the pulling of the nuclear envelope by
attached paclitaxel-induced rigid microtubule bundles [19, 61].

There are several proposals on the consequences of
taxane-induced micronucleation. One proposition is that the
persisting micronuclei may be able to recover and reform a
single nucleus, as amechanism of resistance to taxanes [58, 59].
Another notion is that the micronuclei may stimulate the
cGAS-Sting cellular DNA sensing pathway, and induce inflam-
matory reaction in neighboring cells, as part of taxane anti-
cancer mechanism [63]. Additionally, an intriguing theory as-
serts that the paclitaxel-induced multiple nucleated cells can
further develop into thepolyploid giant cancer cells (PGCC) [64].
These PGCCs are at a dedifferentiated embryonic cell-like state
and may serve as cancer stem cells [65], and these PGCCs
contribute to drug resistance in chemotherapy [66]. Lastly, a
new idea suggests thatmicronucleation produced through both
mitotic and non-mitotic mechanisms is the key mechanism for
taxane-induced cell death [19, 61]. It is proposed that the for-
mation of multiple micronuclei stretches the nuclear lamina
and membrane to the points of irreversible rupture, leading to
cell death [19, 67].

Nuclear rupture during interphases is observed to be
more frequent in cancer cells [68]. Micronuclei are also
observed to undergo catastrophic rupture [69, 70], leading to
chromosome fragmentation and massive genomic changes
known as chromotripsy [71, 72].

In sum, the taxane-induced formation of multiple
nuclei, or micronucleation, is proposed to be a key mecha-
nism of cancer cell killing by taxanes [19, 20, 61]. Subse-
quently, the micronuclei will then rupture irreversibly,
leading to cancer cell death [67, 69, 70].

Regulation of nuclear lamin and
nuclear envelope sturdiness: lamin
phosphorylation and acetylation

In the new model of paclitaxel-induced cell death by
micronucleation and nuclear membrane rupture, there are
two steps that may be considered: (1) the mechanical stur-
diness of the nuclear envelope, which may determine the
propensity of the nuclear envelope to deform and undergo
micronucleation; and (2) the propensity for the rupture of
the nuclear membrane:

While non-neoplastic cells normally have strong nu-
clear lamina and are resistant to nuclear envelope distor-
tion, the more malleable nuclear envelope of cancer cells is
readily pulled apart to form multiple nuclei in gap phases,
and the nuclear lamina is also weakened by cyclin kinases in
mitotic cells [73–77]. A gene knockout study indicates that
components of nuclear lamina such as Lamin A/C and
emerin determine nuclear envelope sturdiness [78]. Loss
and reduction of Lamin A/C proteins are suggested to be a
major cause of aneuploidy in cancer cells [79–83].

Cancer cells often have a malleable nuclear envelope and
are characterized by their nuclear morphological deformation
and a high nuclear grade [84]. Particularly, these high-nuclear-
grade cancers are sensitive to taxanes [85]. LaminA/C content is
a key determinant of nuclear envelope sturdiness [61], and
Lamin A/C levels are variable in cancer cells [79, 80]. It appears
that Lamin A/C in cancer cells is regulated on protein rather
thanmRNA levels [79, 80]. Thus, factors that control Lamin A/C
protein levels are also important in determining nuclear en-
velope sturdiness and mechanical properties.

The regulation of gene expression and post-translational
processing of Lamin A/C, the major nuclear cytoskeleton
proteins, have been well investigated [76, 86]. The cellular
functions of Lamin A/C have been highlighted by a larger
number of heterogenous human diseases in various tissues
caused by a wide range of mutations of the LMNA gene
(encoding Lamin A/C proteins), collectively known as lam-
inopathies [86, 87]. These abnormal phenotypes can be
attributed to the cellular function of Lamin A/C in nuclear
envelope structure, nuclear and cell mechanical property,
roles in chromatin organization and subsequently regulation
of gene expression [76, 86, 87].

Lamin A/C is phosphorylated by cyclin kinases [73–75].
This is a step in the nuclear envelope disassembly of the
mitotic phase, enabling the separation of chromosomes to two
daughter cells [76, 77]. However, Lamin A/C can also be
phosphorylated in the gap phase, leading to partial lamina
disassembly and increased lamin degradation [88]. Additional
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kinases such as AKT are shown to phosphorylate Lamin A/C
and regulate its stability [89, 90], and ATR also phosphorylates
Lamin A/C leading to nuclear envelope rupture [91]. Thus,
elevated lamin kinase levels reduce Lamin A/C function and
stability, and render the cells more sensitive to taxanes, while
a reduction of lamin kinases would increase resistance to
taxanes.

At the completion of mitosis, phosphatases de-
phosphorylate Lamin A/C, leading to the reassembly of the
nuclear lamina layer [92–95]. It is reasoned that altered
expression of lamin-phosphatases associated with the nu-
clear envelope will also modulate lamin properties [96], and
thus influence sensitivity and resistance of the cells to tax-
anes (Figure 2).

A recent interesting study suggests that acetylation of
Lamin A/C also provides function and stability of the lamina
formed, and blocking of Lamin A/C acetylation leads to a
weakened lamina and increased nuclear envelope mallea-
bility, promoting micronucleation [97–99]. In the study [97],
Lamin A/C was identified as a key substrate for the lysine
acetyltransferase MOF (KAT8), and acetylation of Lamin A/C
affords its function and polymerization into nuclear lamina.
In contrast, deletion of MOF leads to augmented and
extensive formation of micronuclei. The role of Lamin
acetylation was also demonstrated by histone deacetylase
(HDAC) inhibition or rescuing using acetylation-mimicking
Lamin Amutations [97]. These interesting findings will need
further confirmation and replication to verify the impor-
tance of Lamin A/C acetylation in its function, and potential
alterations leading to excessive formation of micronuclei
and genome instability in diseases [98, 99]. Accordingly,
increased MOF and decreased HDAC would elevate Lamin
A/C function and contribute to taxane resistance (Figure 2).

Thus, these are the factors involved in nuclear lamina
modifications that determine nuclear envelope sturdiness
and thus the ability of taxane-induced rigid microtubule
bundles to distort and break the nuclear envelope into mul-
tiple micronuclei. Accordingly, lamin kinases and phospha-
tases, and lamin acetyltransferase and deacetylase may be
related to taxane resistance.

Nuclear envelope transient rupture
and repair

In recent years, significant advances have been made
regarding the understanding of nuclear membrane rupture
and repair [100]. Nuclearmembrane rupture canbe causedby
a number of factors, including apoptosis, infection or external
force, and, most importantly for this paper, irregularities in
lamin expression in the nucleus [101]. In cancer cells, a higher
frequency of nuclear envelope rupture during interphase has
beenobserved [68]. This is perhaps due to aweakenednuclear
envelope, caused by the loss of lamina proteins like LaminA/C
and emerin [79, 80]. Furthermore, suppression of Lamin A/C
leads to increasedmitotic failure and thus aneuploidy in cells,
a common feature of cancer [81–83].

Micronucleation is a result of chromosomal lagging
during mitosis, in which a part of or a whole chromosome is
separated from the rest of the DNA material [69]. Micro-
nucleation can also be caused by nuclear budding, in which
DNA leaks out of the nucleus through gaps in the lamina due
to a deformed or malleable nuclear envelope [79, 80, 101].
Though ruptures in the primary nucleus are usually
repaired within minutes and at a relatively high success

Figure 2: Expression and modification of Lamin A/C by nuclear lamina kinases and phosphatases determines Taxol/paclitaxel sensitivity and resistance.
Cancer cells often lose or have reduced Lamin A/C due to phosphorylation and/or other posttranslational modifications (de-acetylation by HDAC), which
makes the nuclear envelope malleable (depicted as red dots). Phosphorylated and de-acetylated Lamin A/C disassembles. The malleable nucleus of
malignant cells is more sensitive to breakage from the physical forces of paclitaxel bound rigidmicrotubule filaments. Hence, paclitaxel induces breakage
of cancer nuclei, and causes subsequent cell death. A fraction of cells undergoing selection in the presence of paclitaxel likely regain Lamin A/C expression
and become resistant to paclitaxel-induced nuclear breakage and death. The strong dashed brown color nuclear outline illustrates increased Lamin A/C
and sturdiness but abnormal nuclear envelope of the paclitaxel-resistant cells.
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rate [69], ruptures in micronuclei formed during interphase
are almost always irreversible, which is the so-called cata-
strophic rupture [69].

The irreparable nature of micronuclei rupture is sug-
gested to be key in the treatment of cancer cells using
paclitaxel, as paclitaxel induces multimicronucleation in
cancer cells, but not normal cells, and is therefore tumor-
icidal [20, 61], but the success of the drug may be limited by
repair mechanisms to avoid irreversible nuclear membrane
rupture.

The nuclear envelope can be repaired through anumber
of suggested mechanisms, such as endoplasmic reticulum
(ER) sheets attaching to exposed chromatin, the existing
outer nuclear membrane spreading out over the rupture, or
the resealing of the rupture via protein complexes [101]
(Figure 3A). BAF, which is a double stranded DNA binding
protein, is thought to be a first responder in nuclear enve-
lope repair [102]. Unphosphorylated BAF travels from the
cytoplasm to the rupture site, binds to exposed DNA, lamin,
and LEM-domain proteins on the INM, perhaps preventing
DNA leakage in the process by clotting the hole [101]. BAF can
then recruit CHMP7 which recruits ESCRT-III which works
alongside VPS4 to seal the nuclear envelope and sever mi-
crotubules that have traversed through the rupture and
attached themselves to chromatin discs [102–104]. Cyto-
plasmic cyclic GMP-AMP synthase (cGAS), which detects
nuclear DNA at rupture sites early on, is also present in the
repair process, and is suggested to work concertedly with
BAF and Lamin A/C to accumulate at the site and repair the
ruptured membranes [105] (Figure 3A). Particularly, the
ESCRT-III complexes are crucial for nuclear envelope repair
in sealing the membranes [102–104] (Figure 3A).

The capacity to repair nuclear envelope rupture
generally is robust and efficient [103, 106]. However, taxane-
induced micronucleation likely stretches the nuclear mem-
brane extensively, and the size and extent of the rupture
overwhelm the repair capacity, resulting in irreversible
nuclear membrane rupture and cell death (Figure 3B).

Roles of nuclear envelope biology in
taxane resistance

With the recognition of mechanisms of cell death by taxanes
treatment throughmicronucleation and subsequent nuclear
membrane rupture, the possibilities of mechanisms and
genes/proteins involved in taxane resistance are expanded.
The propensity of the cells to undergo taxane-induced
micronucleation and the ability of these micronucleated
cells to recover are potential factors for taxane resistance
(Figure 4(1)). These factors include the malleability of the
nuclear envelope, which is determined by the expression of
nuclear lamins and their modification (Table 1). As such,
Lamin A/C levels determine the sensitivity of cells to pacli-
taxel [20, 61], and cancer cells are more sensitive to taxane
because malignant cells often have reduced Lamin A/C
levels [85]. Thus, an increased Lamin A/C proteins would
render cells more resistant to taxanes.

Phosphorylation of Lamin A/C leads to reduced poly-
merization to form lamina and protein stability, thus,
reduction of lamin kinases would increase Lamin A/C and
resistance to taxane (Table 1). In contrast, increases in
phosphor-lamin phosphatases would enhance Lamin A/C
function and stability and boost taxane resistance.

Figure 3: Nuclear envelop rupture and repair: hypothesis of paclitaxel-induced irreversible nuclear rupture. (A) The nuclear envelope consists of a double
membrane and lamina layer imbedded with nuclear pore complexes (NPC). Transient rupture of nuclear envelope is repaired following recruitment of
Lamin C, cGAS, and Baf to the rupture site, and sealed by ESCRT-III complex. (B) It is observed and proposed that paclitaxel-induced nuclear envelope
rupture is extensive and irreversible, often beyond the capacity of the repair machinery.
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A report proposes that acetylation of Lamin A/C also
provides function and stability of the assembled lamina, and
blocking of Lamin A/C acetylation leads to nuclear envelope
malleability and promotes micronucleation [97–99].
Accordingly, the genes/proteins that mediate Lamin A/C

acetylation and de-acetylation may also determine taxane
sensitivity and resistance (Table 1).

The rupture and repair of the nuclear membrane are
also factors affecting the ability of cells to recover from
taxane cytotoxicity and a heightened ability of the cells to
repair nuclear envelope ruptures may be a mechanism
contributing to taxane resistance (Figure 4(2)). If the activity
and robustness of these repair mechanism are increased,
then this may be a circumstance for cancer cells to develop
resistance to taxanes. In this situation, altered genes/pro-
teins involved in nuclear rupture and repair may contribute
to taxane resistance (Table 1).

An incomplete list of the potential factors involved in
micronucleation and the repair of nuclear envelope rupture
may contribute to the resistance of the cancer cells to tax-
anes (Table 1). These genes/proteins will provide us with
notions in future integration of data from profiling and
investigating tumor specimens in the study of drug
resistance.

Summary

A new mechanism of taxane-induced cancer cell death and
taxane resistance related to nuclear envelope sturdiness has
come to light in the past few years [19, 20, 67]. This proposal
adds another category to the decades-old list of taxane
resistance mechanisms including drug pumps, apoptosis,
and microtubules.

In this new understanding of how taxanes kill cancer
cells by inducing micronucleation and nuclear envelope
rupture, two aspects of cell biology may contribute to the
resistance of taxanes: the nuclear lamins that determine
nuclear envelope sturdiness and its propensity to break, and
the repair machinery for nuclear envelope rupture. These
concepts may provide clues for us to investigate clinical
cases and tumor specimens to determine if proteins involved
in the processes are altered in taxane resistant tumors and to
develop new strategies to overcome drug resistance.
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Figure 4: Taxane-resistance related to nuclear envelope:
micronucleation and nuclear envelop rupture and repair. (1) Paclitaxel
(PTX) and other taxanes promote the stabilization and bundling of
microtubules (mT), and the breaking of the nuclear envelope and the
formation ofmultiplemicronuclei. The propensity of the nuclear envelope
to undergo micronucleation and its ability to recover are factors in
taxanes resistance. (2) The membranes of the micronuclei of the
micronucleated cells are defective, and irreversible rupture leads to cell
death. The heightened ability to undergo repair of the envelope ruptures
may be a mechanism contributing to taxane resistance. The rupture of
nuclear membrane (red line) is depicted by the dashed line. The dashed
yellow lines represent factors of the membrane repairing machinery
(Lamin C, cGAS, and Baf recruited to the rupture site, and the ESCRT-III
complex).

Table : List of potential factors in taxane resistance related to nuclear
envelope.

Factors Genes/
proteins

References

Lamina: nuclear envelope malleability
Nuclear lamin Lamin A/C;

Lamin B/
Smith et al. (ref. [, ])

LINC Nesprin-, ;
SUN

Smith & Xu (ref. [])

Nuclear lamina modification by phosphorylation and acetylation
Lamin kinases AKT; ATR Bertacchini et al. (ref. []);

Kovacs et al. (ref. [])
Lamin kinase: CDKs CDK, CDK Nakayama et al. (ref. [])
p-Lamin phosphatases PPA; PPA Hunt (ref. [])
Lamin acetylation MOF; HDAC Karoutas & Akhtar, (ref. []);

Karoutas et al. (ref. [])
Nuclear envelope repair
Lamins Lamin C Kono et al. (ref. [])
Chromatin binding
ESCRT-III complex

BAF; cGAS Halfmann & Roux, (ref. [])

CHMPC Zhang et al. (ref. [])
Nuclear envelope reformation from multi-micronuclei
Lamins Lamin A/C Smith et al. (ref. [, ])
Chromatin binding BAF Margalit et al. (ref. [])
Lamin kinases CDKs Nakayama et al. (ref. [])
p-Lamin phosphatases PPA Hunt (ref. [])
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