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Abstract

A key challenge in the field of cognitive neuroscience is to identify discriminable cognitive

functions, and then map these functions to brain activity. In the current study, we set out to

explore the relationships between performance arising from different cognitive tasks thought

to tap different domains of cognition, and then to test whether these distinct latent cognitive

abilities also are subserved by corresponding “latent” brain substrates. To this end, we

tested a large sample of adults under the age of 40 on twelve cognitive tasks as they under-

went fMRI scanning. Exploratory factor analysis revealed 4-factor model, dissociating tasks

into processes corresponding to episodic memory retrieval, reasoning, speed of processing

and vocabulary. An analysis of the topographic covariance patterns of the BOLD-response

acquired during each task similarity also converged on four neural networks that corre-

sponded to the 4 latent factors. These results suggest that distinct ontologies of cognition

are subserved by corresponding distinct neural networks.

Introduction

Two longstanding challenges in the field of cognitive neuroscience are to (1) isolate cognitive

functions, and (2) map brain activity to these cognitive functions [1]. Since the advent of

functional brain imaging, tens of thousands of fMRI studies have been conducted, attempting

to investigate the neural pathways that lead to specific behavioral outcomes. To synthesis

and aggregate the results from individual studies, different forms of “informatics-driven”

approaches have been developed [1–4]. One of the most commonly used approach is the

meta-analysis, in which data from many studies that each use different tasks to probe a particu-

lar cognitive function—working memory training [5] or social rejection [6], for example—are

pooled to look for common behavioral patterns of results or neural substrates. While meta

analyses provide important topographic neural localization of cognitive abilities, the approach

is inherently top-down: it is assumed that tasks that purportedly tap the cognitive process of
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interest really do tap that process, and therefore that brain areas that are commonly activated

across these different tasks inferentially index that process.

Recently, several groups have used different data-driven approaches to uncover the neural

networks underlying different cognitive abilities. Yeo and colleagues [7], for example, leveraged

data from the BrainMap database [8], which includes over 10,000 imaging experiments, to cre-

ate a “latent cognitive structure and its topography” ([7], p. 3665–6). They explored functional

specialization and flexibility across 83 different cognitive tasks and reported meaningful func-

tional specialization across tasks (e.g., tasks which in the extant literature are commonly thought

to tap inhibitory processes, including the Simon, Posner, Stroop, Flanker, N-Back and Task

Switching, all recruited a common neural network), but also reported that individual networks

can demonstrate remarkable flexibility (e.g., specific cortical regions participated in multiple

cognitive components and divergent cognitive tasks). Bertolero and colleagues [9–11] extended

this work in several important ways using graph theory network based approaches, first show-

ing with resting state functional MRI data that distinct modules perform distinct cognitive func-

tions, but that, as the number of cognitive functions within a given experimental task increases,

so too does activity in connector nodes that link modules [9]. Bertolero and colleagues further

showed that hub connectivity accurately predicts performance across 4 different cognitive tasks,

and found that those individual who had hubs with higher participation coefficients (e.g., hubs

with greater diversity in modular connections) as opposed to higher hub strength (hubs with

stronger modular connection) showed better cognitive performance [10,11]. Our group has

also published several reports that attempt to flesh out the neural networks associated with per-

formance in a data driven manner that is free from assumptions about cognitive categories. For

example, we empirically tested whether four purported domains of cognition—based on the

results of studies of several thousand adults across the adult lifespan who were administered

extensive batteries of cognitive tasks to both separate into different categories of cognition, and

account for performance differences on numerous other cognitive tasks [60, 61, 62]—would

show unique spatial covariance patterns of brain activity [16]. Linear indicator regression was

used to derive covariance patterns from data collected while older and younger participants

completed 12 different cognitive tasks thought to index episodic memory retrieval, reasoning,

speed of processing and vocabulary. In this analysis, while the derivation of covariances patterns

for each of the four cognitive domains was “forced” to be optimal across age groups, the pattern

expressions were found to predict the appropriate cognitive domain of each task out of sample.

Habeck and colleagues [12] recently extended this covariance approach to also include behav-

ioral performance, reporting covarying brain areas that not only predicted the appropriate cog-

nitive domain with high probability, but also strongly correlated with behavioral performance.

Here, we were interested in exploring whether, from a bottom up perspective, the data,

without extensive supervision or covariance pattern analysis, reveal unique patterns of brain

activations that correspond to each cognitive domain. To this end, we used exploratory factor

analysis (EFA)—a type of multivariate and data-driven structural equation modelling [13] that

can statistically determine the underlying major sources of variance and thus the structure of a

set of variables [14]—to test for behavioral ontologies of cognitive function, and the neural net-

works that are related to these ontologies [15].

We used GLM analyses to capture task-related activation for as participant performed 12

cognitive tasks, and measured performance on each of the tasks. We first determined the

best fitting model characterizing the latent structure of the behavioral performance arising

from these 12 different tasks. We then tested the best fitting model that characterized the

“latent” structure of task related BOLD-activation. To this end, we used an approach similar

to that used with the behavioral data, except we tested whether the correlations between the

magnitude of neural activation within brain areas that topographically overlapped across
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each combination of task pairs showed a similar latent structure: a set of areas that showed

the same inter-correlated task-related activations within a given cognitive domain, along

with a covariance pattern that was not expressed (or minimally expressed) during the

performance of tasks associated with the other cognitive domains. For both the behavioral

and neuroimaging data, this approach allowed us to not only test for convergent validity—

whether specific sets of tasks indeed relate to each other or share common variance, but also

to test for discriminant validity: whether tasks that are related to each other are also simulta-

neously less related to the tasks outside of their category. Finally, we assessed brain-behavior

relationships across these two latent constructs. This approach, unlike the ones we have pre-

viously used, avoids issues of over-fitting since task-design is not used in any manner to

derive unique patterns of activation. Further, the analysis is done at the voxel level, facilitat-

ing the localization of function similar to that used in standard atlases of the voxel activation

associated with particular tasks.

Methods

Participants

Analyses included data from one hundred and fourteen healthy volunteers (72 female and 37

male) ranging in age from 19–40 (average age = 30.08 (SD = 5.35), average years of educa-

tion = 15.94 (SD = 2.37; range = 9–24 years) who had participated in a large, ongoing study in

the Department of Neurology at Columbia University, the Reference Ability Neural Network

study [16]. All participants were required to be native English speakers, right-handed, and

have at least a fourth-grade reading level. Participants were recruited via random-market-mail-

ing, and screened for MRI contraindications and hearing or visual impairment that would

impede testing. The Columbia University Medical Center Human Subjects IRB specifically

approved this study under Protocol AAAI2752. Written Informed Consent for all participants

was obtained prior to testing, and participants received compensation for participation in the

study.

Procedure

Imaging data were acquired on 3.0 Tesla Philips Achieva Magnet. Each participant underwent

fMRI scanning while performing 12 computerized tasks, described in detail below. Tasks were

administered over the course of two 2-hour scanning sessions on different days, with six tasks

administered in each scanning-session. One session presented three tasks thought to index

episodic memory retrieval and three tasks thought to index reasoning, also interspersed in a

fixed order: logical memory, paper folding, word order recognition, matrix reasoning, paired

associates, and letter sets. The other session presented three tasks thought to index vocabulary

and three tasks thought to index speed, interspersed in a fixed order: synonyms, digit-symbol,

antonyms, letter comparison, picture naming, and pattern comparison. Seventy-nine percent

of participants completed both sessions (72 participants completed all 12 tasks, 10 participants

completed 11 tasks, 4 participants completed 10 tasks, 3 participants completed 8 tasks, and 1

participant completed 5 tasks). Nine participants completed the memory/reasoning session

and the first task from the vocabulary/speed session, while 1 completed all tasks from the

vocabulary/speed session and only the first task from the memory/reasoning session. Three

additional participants only completed the memory/reasoning session, while 8 only completed

the vocabulary/speed session. One participant completed the first 3 memory/reasoning tasks,

and 1 vocabulary task, one participant completed all vocabulary/speed tasks expect the picture

naming task, and 2 participants only completed the picture naming task.

Behavioral and neural ontologies of cognition
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The order of tasks within session was not varied, but the order of the two sessions was coun-

terbalanced across participants. Prior to each scan session, computerized training was admin-

istered for the six tasks to be administered during that session. At the completion of training

for each task, participants had the option of repeating the training. During training, responses

were on the computer keyboard. During scans, they were made on the LUMItouch response

system (Photon Control Company). For all tasks except for picture naming, task responses are

made on a LUMItouch response system and behavioral response data were recorded on the

task computer. The picture naming test utilized a verbal response recorded from an in-scanner

microphone, from which behavioral performance was determined after the scan.

Task administration and data collection were controlled by a computer running EPrime

software, and electronically synchronized with the MR scanner. Task stimuli were back-pro-

jected onto a screen located at the foot of the MRI bed using an LCD projector. Participants

viewed the screen via a mirror system located in the head coil, and, if needed, had vision cor-

rected to normal using MR compatible glasses (manufactured by SafeVision, LLC. Webster

Groves, MO). Task onset was electronically synchronized with the MRI acquisition

computer.

Cognitive tasks. The following 12 cognitive tasks were administered to participants in the

scanner.

Synonyms [17]. Participants completed 15 trials in which a capitalized probe word was

presented at the top of the screen, with four numbered choices below. Participants were

instructed to match the probe word to its synonym or to the word most similar in meaning as

quickly and accurately as possible. The total task was 6 min and 26 s long, with 3 items in each

of 5 blocks for a total of 15 items. Each block lasted 42 s, with each item presented for 13.5 s

and a 500 ms interstimulus interval (ISI) between items. A 36 s fixation cross was presented at

the start of the task, and a 28 s fixation cross was interspersed between blocks.

Antonyms [17]. This task was identical to the Synonyms task, except participants were

instructed to match the probe word to its antonym, or to the word most different in meaning.

Picture naming. In this task, participants were presented with 40 colored bitmap images,

adapted from the picture naming task of the WJ-R Psycho-Educational battery [18, 19]. Partic-

ipants were instructed to verbally name the pictures. Audio recordings of responses were fil-

tered using a custom adaptive noise filtering procedure, and then transcribed and scored. The

entire scan was 6 min and 16 s long, consisting of five 40 s blocks, with 8 stimuli in each block.

Each stimulus was presented for 4.5 s with a 500 ms ISI. A 36 s fixation cross was presented at

the start of the task, and a 28 s fixation cross was interspersed between blocks.

Digit symbol. A code table was presented on the top of the screen, consisting of the

numbers 1–9, each paired with an associated symbol. Below the code table an individual

number/symbol pair probe was presented. Participants were instructed to indicate whether

each of 90 individual pairs was the same as that in the code table using a differential button

press. Participants were instructed to respond as quickly and accurately as possible. The entire

scan was 7 min and 4 s long, consisting of 5 blocks, with 18 items in each block. Each item was

presented for 2.5 s with an ISI of 250 ms. A 36 s fixation cross was presented at the start of the

task, then a 28 s fixation was interspersed between blocks.

Letter comparison [20]. Participants were instructed to indicate whether two 3–5 letter

strings, presented alongside one another, were the same or different. There were 60 total trials.

The task, which contained five 42 s blocks, lasted a total of 6 min and 26 s. Each block con-

sisted of 12 items, each presented for 3 s with an ISI of 500 ms. A 36 s fixation cross was pre-

sented at the start of the task, then a 28 s fixation was interspersed between blocks.

Pattern comparison [20]. This task was identical to the Letter Comparison task, except

participants were instructed to indicate whether two figures, consisting of varying numbers of

Behavioral and neural ontologies of cognition
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lines connecting at different angles, presented alongside one another, were the same or

different.

Paper folding [21]. Participants were shown a pictorial representation a piece of paper

being folded, in which a hole was punched through in the last image of the folded paper in the

sequence. Participants had to decide which of 5 options represented the pattern of holes if the

paper was unfolded. The task was 14 min and 26 s long and began with a 24 s fixation-cross,

followed by the first stimulus, which stayed on screen for between 11 and 85 s. If a response

was made in the first 11 s, the stimulus terminated. If a response was made after 11 s, the stim-

ulus was terminated immediately after the response. If no response was made, the stimulus ter-

minated at 85 s. The minimum number of trials presented was 7 and the maximum was 18,

depending on each participant’s response times. The ISI was 35 s.

Matrix reasoning [22]. Participants were given a matrix of abstract figures, divided into

nine cells, in which the figure in the bottom right cell was missing. Below the matrix, they were

given eight figure choices, and were instructed to choose which of the figures would best com-

plete the missing cell. The task timing was identical to that of the Paper Folding task.

Letter sets [21]. Participants were presented with five sets of letters, where four out of the

five sets had a common rule (e.g. no vowels), with one of the sets not following this rule. Partic-

ipants were instructed to select the unique set. The task timing was identical to that of the

Paper Folding task.

Logical memory. This task required participants to remember specific details from stories

presented on the computer screen. The participant was asked to answer detailed multiple-

choice questions about the story, with four possible answer choices. The task was 7 min long,

and consisted of 2 stories, with ten questions per story. Each story was divided into three 1 to 2

sentence sections, with each section displayed for 10 s. Ten seconds after completion of the

story, the questions were presented for 10 s with a 2.5 s ISI between questions. Thirty-second

fixation-crosses were presented before and between the stories.

Word order recognition. Participants were instructed to remember the order of twelve

words, each presented one at a time on the screen for 4 s. A variable ISI, between 700 ms and

11.4 s, occurred between each word. Participants were then given a probe word at the top of

the screen, and four additional word choices below. Each probe was presented for 6 s followed

by a 2 s ISI. Participants were instructed to select the word that had immediately followed the

probe word in the list. The task had two word lists, with ten questions following each list. The

total task duration was 7 min 2 s with 30 s fixation at the beginning of task and between the

two word lists.

Paired associates. In this task, six pairs of words were presented on the screen, one pair at

a time, for 2 s with a variable ISI of 200 ms to 5.6 s. Participants were instructed to remember

the pairs. Following the pairs, they were given a probe word at the top of the screen and four

additional word choices below. The probe and choices are presented for 5 s with an ISI of 2 s.

Participants were asked to choose the word that was originally paired with the probe word.

The task contained two lists of pairs, with six probe questions in each list. The task contains

two lists of pairs, with six probe questions for each list. The task lasted a total of 3 min and 24

s, with 30 s fixation at the beginning of the task and 10s fixation between the two lists.

Behavioral factor structure analysis

Exploratory factor analysis (EFA) with Geomin (oblique) rotation was performed on the

behavioral data using MPlus software [23]. The indicators consisted of each participant’s

behavioral performance data for each task, described above. For all tasks except digit symbol,

letter comparison and pattern comparison, the proportion of correct responses, excluding

Behavioral and neural ontologies of cognition
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trials where the participant did not respond (i.e. timed out), were used. For digit symbol, letter

comparison and pattern comparison, the reaction time (RT) on correct trials was used. Factor

loadings were assessed according to guidelines set by [24] who suggested that loadings below

0.32 should be considered poor, 0.45 fair, 0.55 good, 0.63 very good and loadings above 0.71

excellent. To compare the structure and statistical fit parameters we interrogated the Compar-

ative Fit Index (CFI; [25]), Tucker-Lewis Index (TLI; [26]); the Standardized Root Mean

Square Residual (SRMR); the Root Mean Square Error of Approximation (RMSEA) [27]; and

the Chi-Square test for the three, four and five factor models.

Image analysis procedures

Image acquisition. At each session, a scout, T1-weighted image was acquired to deter-

mine participant position. Participants underwent a T1-weighted MPRAGE scan to determine

brain structure, with a TE/TR of 3/6.5 ms and Flip Angle of 8 degrees, in-plane matrix size of

256 x 256, field of view of 256 mm x 256 mm, and 180 slices in the axial direction with a slice-

thickness/gap of 1/0 mm. For the EPI acquisition, the parameters were: TE/TR (ms) 20/2000;

Flip Angle 72˚; In-plane matrix size = 112x112; Field of view = 224 mm x 224 mm; Slice thick-

ness/gap (mm) = 3/0; Slices = 41. In addition, MPRAGE, FLAIR, DTI, ASL, and a 7-minute

resting BOLD scan were acquired. A neuroradiologist reviewed each participant’s scans.

Pre-processing. FMRIB Software Library v5.0 (FSL) and custom-written Python code

was used to preprocess the imaging data. Each participant’s 12 task-activation fMRI scans

were pre-processed in FSL [28] using the following steps: (1) within-subject histogram compu-

tation for each participant volume to identify noise (FEAT); (2) realignment of the fMRI

scans was performed by rigid-body spatial registration of all the volumes to the middle volume

(MCFLIRT); (3) slice-timing correction was performed by shifting the time-series for each

slice to the instance when the middle slice was acquired; (4) brain-mask creation from first vol-

ume in subject’s fMRI data; (5) high-pass filtering (T = 128 sec) was performed with a non-lin-

ear Gaussian kernel with cut-off frequency of 0.01 Hz; (6) pre-whitening; (7) General-Linear-

Model (GLM) estimation with equally temporally filtered regressors and double-gamma

hemodynamic response functions; and (8) non-linear registration of functional and structural

images with subsequent normalization into MNI space (FNIRT).

Subject-level time-series modeling. General linear models for each participant consisted

of block-based time-series for the speed and vocabulary tasks, and event-related models for the

reasoning and memory tasks. For the memory tasks, while both the encoding, retention and

retrieval phases were imaged, only the retrieval phase was analyzed. A single regressor was

used to compare task performance to an intrinsic baseline, defined one of two ways depending

on the analysis. For block design task models, a boxcar model for each task block was used.

The regressor was obtained by convolving this box car train with the canonical hemodynamic

response function (HRF). The intrinsic baseline consisted of the interval between task blocks

during which there no stimuli were present on the screen. For event related task models, the

intrinsic baseline was modelled as the combination of all non-task periods. Each stimulus pre-

sentation was modeled from the onset of the stimulus to the response, using correct trials only,

with the regressor obtained by convolving the stimulus presentation with the canonical HRF.

For each participant’s 12 tasks, a standard GLM was run on each scan using the appropriate

regressor to generate a parameter estimate (beta) map.

Group-level modeling. Group-level activation maps were created for each task by passing

all standard-space subject-level beta values and variance into a standard FSL higher level analy-

sis [29]. Cluster-wise analysis was carried out using FSL’s Gaussian random field theory based

cluster analysis, identifying contiguous clusters with a z threshold of 2.3 clusters,

Behavioral and neural ontologies of cognition
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corresponding to a probability p<0.05 after cluster-wise multiple comparisons correction. To

assess the spatial similarity of activated regions between tasks, we calculated the spatial correla-

tions of group-level z-statistics for every combination of task-pair. The spatial correlation of

two z-statistic maps indexes the similarity of activation patterns within a region, across the

task-pairs. To compare two tasks, we calculated the spatial correlation of the group level z-sta-

tistics from each task. Doing this for every combination of all 12 tasks resulting in a correlation

matrix consisting of all 78 correlation values, which shows us the similarity of how two tasks

activate the same region. We limited this calculation to areas with significant positive activa-

tions in both tasks (e.g., the intersection of positive activation masks from both tasks). The

results from an analysis of the negative BOLD-response are the focus of a related manuscript

that is currently in preparation.

Neuroimaging data factor structure analysis. In order to assess the factor structure of

the neural data, EFA was performed on the correlation matrix the 78 z-statistics that resulted

from the comparison of all 12 tasks’ significantly overlapping positive activations calculated in

the Group level analysis. As with the behavioral factor analysis, model structure, loadings and

statistical fit parameters we interrogated the CFI, TLI, SRMR, RMSEA and the Chi-Square test

for the three, four and five factor models.

Results

Behavioral factor structure

The full correlation matrix of the behavioral data is shown in Fig 1. As can be seen in Table 1

(top), in all 3 models, the pattern comparison, letter comparison and digit symbol tasks fac-

tored onto a single latent variable (speed), and the synonyms, antonyms and picture naming

tasks loaded onto a vocabulary factor. The three-factor model combined the memory retrieval

and reasoning factors into one single factor, whereas the five factor model split the reasoning

factor into two factors: spatial reasoning (consisting of the paper folding task) and non-spatial

reasoning (consisting of the letter set and matrix reasoning tasks).

As can be seen in Table 2 (top), the fit statistics were better for the 4- factor models com-

pared to the 3-factor model. While the 5-factor model had marginally better RMSEA and

SRMSR values compared to the 4-factor model [30,31], the four-factor model both converges

with previous findings [12,16,20,32–34] and is a more parsimonious model.

Neural factor structure. An exploratory factor analysis with goemin (oblique) rotation

including a 3-, 4- and 5-factor model of the correlations between z-statistics of task-pairs calcu-

lated from the group-level maps (thresholded at z = 2.3) was then conducted. As can be seen in

Table 1 (bottom), the 3-factor model produced a memory retrieval latent variable, a reasoning

variable and a variable combining the parameter estimates for both the speed and vocabulary

tasks. The 4-factor model produced a memory retrieval network, a speed network, a reasoning

network and a vocabulary network. Factor loadings for each task except the picture naming

task in the vocabulary latent network were high (>.778), with most >.9 [24]. The 5-factor

model was the same as the 4-factor model, with the 5th factor being picture naming alone.

As in the analogous behavioral data analysis, we compared the structure, loadings and sta-

tistical fit parameters CFI, TLI, SRMR, RMSEA, and the Chi-Square test for the three different

models. As can be seen in Table 2 (bottom), while all 3 models demonstrated good fit, the 4-

and 5-factor models had better CFI and TLI than the 3-factor model, and the 4-factor model

was on par with the 5-factor model across the other fit statistics but is a more parsimonious

model. The full correlation matrix of the group level z-statistics for 12 tasks is shown in Fig 2.

The patterns of activation within each cognitive domain are shown in Fig 3. Only the

Vocabulary pattern showed three distinct clusters ranging in size from 16,7000 voxels to 148

Behavioral and neural ontologies of cognition
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voxels; each other domain showed only one super-threshold cluster containing, in each case,

more than 20,000 voxels. To better distinguish the brain regions within these large clusters, we

used FSL’s autoaq tool to find percentages of the overlap in brain regions using Talairach Dae-

mon Atlas. While the patterns all show strong activations in the cerebellum and posterior

visual regions (BA17-19), they are more distinct in the frontal, parietal, and temporal lobes.

The episodic memory retrieval pattern was dominated by bilateral activations in the middle

frontal gyrus, the precuneus, the precentral gyrus, the inferior frontal gyrus, and the inferior

parietal lobule. While the middle frontal gyrus also occupied the second largest proportion of

the cluster in the reasoning pattern, larger overlaps were observed in the inferior parietal lob-

ule and the superior frontal gyrus than for the other domains. For the speed pattern, with the

cerebellum and the middle frontal gyrus also showing the top two largest overlaps, the third

largest overlap was observed in the precentral gyrus. Vocabulary showed the most pronounced

left lateralized prefrontal activation especially in the left middle and inferior frontal gyri. Clus-

ter 2 in the vocabulary pattern resided in the right prefrontal areas and cluster 3 was in the left

superior and middle temporal gyri. Table 3 lists the 10 brain regions that overlapped the most

with significantly activated voxels from the group level clusters. S1–S5 Figs show.

Voxels that are significantly more active during one domain as compared to the other 3

domains, for all four domains, as well voxels that were significantly active across all 4 domains.

Fig 1. Color-coded correlation matrix obtained from behavioral data from the 12 cognitive tasks completed in the scanner.

Warm colors indicate positive correlations. Cool colors indicate negative correlations.

https://doi.org/10.1371/journal.pone.0228167.g001

Behavioral and neural ontologies of cognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0228167 February 10, 2020 8 / 18

https://doi.org/10.1371/journal.pone.0228167.g001
https://doi.org/10.1371/journal.pone.0228167


Brain-behavior relationship

As the imaging data did not regress performance in the GLM, any relationship between brain

activity within each cognitive domain and average behavioral performance in the correspond-

ing cognitive tasks was not predetermined. To explore whether the magnitude of brain activity

within each cognitive domain was associated with behavioral performance within that domain,

the beta values across the three tasks found to constitute each cognitive domain were extracted

Table 1. Factor loadings from an exploratory factor analysis for a 3-, 4- and 5-factor model of (Top) the behavioral performance measures from the 12 cognitive

tasks; and (bottom) the correlations between z-statistics of positively activated areas that topographically overlapped across task-pairs calculated from the group-

level maps. Bolded values indicate factor-membership. Color shaded areas indicate cognitive domain membership by task based on previous literature: memory retrieval,

reasoning speed and vocabulary.

Data # Factors Factor Word

Order

Pair

Assoc

Mem Mat Reas Letter Set Paper

Fold

Patt

Comp

Letter

Comp

Digit

Symb

Syn Anton Pic Name

Behavior 3 1 0.564 0.695 0.376 0.855 0.824 0.643 -0.025 -0.208 -0.283 0.387 0.495 0.38

2 -0.578 -0.619 -0.533 -0.468 -0.341 -0.415 0.821 0.78 0.782 -0.384 -0.465 -0.405

3 0.39 0.415 0.413 0.431 0.489 0.368 -0.242 -0.318 -0.258 0.952 0.661 0.754

4 1 0.884 0.628 0.416 0.558 0.45 0.524 -0.434 -0.344 -0.408 0.356 0.566 0.27

2 0.521 0.701 0.389 0.844 0.852 0.617 -0.068 -0.27 -0.346 0.398 0.471 0.396

3 -0.48 -0.551 -0.505 -0.386 -0.274 -0.335 0.826 0.815 0.805 -0.333 -0.382 -0.38

4 0.362 0.395 0.419 0.427 0.48 0.379 -0.248 -0.332 -0.257 0.903 0.677 0.798

5 1 0.854 0.67 0.43 0.626 0.512 0.593 -0.409 -0.342 -0.412 0.373 0.595 0.297

2 -0.476 -0.544 -0.5 -0.369 -0.265 -0.325 0.83 0.815 0.805 -0.332 -0.372 -0.369

3 0.464 0.662 0.344 0.788 0.904 0.534 -0.012 -0.228 -0.307 0.387 0.419 0.346

4 0.326 0.349 0.395 0.358 0.42 0.32 -0.257 -0.322 -0.242 0.929 0.648 0.794

5 0.074 0.233 0.161 0.414 0.315 0.668 0.028 -0.177 -0.161 0.129 0.213 0.404

Imaging 3 1 0.933 0.896 0.794 0.476 0.507 0.377 0.58 0.548 0.625 0.707 0.737 0.433

2 0.376 0.335 0.33 0.888 0.871 0.939 0.292 0.352 0.438 0.353 0.317 0.102

3 0.649 0.6 0.529 0.555 0.442 0.36 0.869 0.816 0.912 0.713 0.701 0.637

4 1 0.913 0.936 0.779 0.448 0.462 0.354 0.568 0.491 0.591 0.621 0.659 0.435

2 0.399 0.355 0.347 0.888 0.88 0.936 0.288 0.351 0.437 0.361 0.325 0.101

3 0.584 0.554 0.466 0.53 0.375 0.331 0.899 0.778 0.892 0.588 0.57 0.661

4 0.661 0.575 0.586 0.424 0.488 0.313 0.538 0.658 0.633 0.939 0.966 0.368

5 1 0.916 0.934 0.789 0.46 0.475 0.367 0.585 0.515 0.61 0.646 0.681 0.437

2 0.413 0.371 0.353 0.901 0.877 0.934 0.313 0.359 0.461 0.363 0.326 0.13

3 0.613 0.571 0.503 0.511 0.386 0.313 0.895 0.829 0.89 0.676 0.667 0.659

4 0.667 0.583 0.588 0.409 0.476 0.295 0.531 0.649 0.621 0.931 0.975 0.368

5 0.174 0.195 0.006 -0.004 -0.141 -0.183 0.217 -0.095 0.21 -0.03 -0.009 0.593

https://doi.org/10.1371/journal.pone.0228167.t001

Table 2. Structural equation model fit statistics for a 3-, 4- and 5-factor model of (Top) the behavioral performance measures from the 12 cognitive tasks; and (bot-

tom) the correlations between z-statistics of areas that topographically overlapped across task-pairs calculated from the group-level maps (bottom).

Data # Factors # Parameters Chi-square CFI TLI RMSEA SRMR Neg. Residual Variences

X2 DF P value

Behavior 3 57 38.452 33 0.2363 0.99 0.98 0.038 0.03 no

4 66 20.878 24 0.6459 1 1.016 0 0.021 no

5 74 10.163 16 0.858 1 1.044 0 0.014 no

Imaging 3 45 14390 33 0.00 0.871 0.742 0.209 0.046 no

4 54 2150 24 0.00 0.981 0.947 0.094 0.014 no

5 62 1169 16 0.00 0.990 .0957 0.085 0.007 no

https://doi.org/10.1371/journal.pone.0228167.t002
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from the group level mask for each participant, and these parameter estimates were correlated

with each participant’s averaged domain-level behavioral performance. We found a significant

association between brain activity and behavior in the episodic memory retrieval domain (r =

.310, p = .002), such that participants who activated the memory network to a greater extent

also performed better (had higher accuracy). The removal of one outlier who exhibited an

average beta value that was almost 5 standard deviations above the mean value strengthened,

rather than mitigated, this relationship (r = .396, p< .001), which is shown in Fig 4. For the

other domains, no such relationship between brain activity and performance was found (rea-

soning (r = .055, p = 585); speed of processing (r = .04, p = .219); vocabulary (r = .118, p =

.210). This result mirrors that found by [12], in which Principal Component Analysis was used

to derive spatial covariance patterns of brain activity in the same sample. There, while all four

cognitive domains were “forced” to find an optimal pattern that predicted behavior, the mem-

ory pattern exhibited both the highest out of sample replication probability with 100%

Fig 2. Color-coded correlation matrix of group level z-statistics. Warm colors indicate larger positive correlations. Cool colors indicate

smaller positive correlations.

https://doi.org/10.1371/journal.pone.0228167.g002
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significant correlations, which “speaks to the success of achieving a unifying neural account of

both domain specificity and behavioral performance” (p. 13).

Discussion

In the current study, we took a bottom-up approach to uncover the latent behavioral and

brain-based networks of particular behavioral cognitive operations. To this end, we tested a

large sample of younger adults on 12 cognitive tasks while they underwent fMRI scanning. We

first used EFA to determine the best latent structure of the behavioral performance. We then

applied a similar approach to extract the best-fitting latent pattern of neural activations, based

on pairwise correlations of z-statistics in overlapping topographic regions derived from a

GLM analysis of each task’s activations. The resulting correlation matrix was subjected to a

structural equation model in which 3, 4, and 5 factor models were tested for fit.

While all 3 models fit the behavioral data well, the 4- and 5-factor models were better for

the imaging data. In the 3-factor behavioral model, the memory retrieval and reasoning indica-

tors combined to produce one factor, whereas in the imaging data, it was the speed and

Fig 3. Patterns of BOLD activation showing significant topographic overlap within each cognitive domain.

https://doi.org/10.1371/journal.pone.0228167.g003

Behavioral and neural ontologies of cognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0228167 February 10, 2020 11 / 18

https://doi.org/10.1371/journal.pone.0228167.g003
https://doi.org/10.1371/journal.pone.0228167


Table 3. Top 10 brain regions with the largest overlap in each domain’s pattern from FSL’s autoaq using the Talairach Daemon Atlas. All Brodmann Areas shown

are bilateral except where indicated by L/R.

Domain # voxels % overlap Brain region Brodmann Areas

Episodic 2167 8.72 Cerebellum - -

Memory Retrieval 1669 6.72 Middle Frontal Gyrus 6, 8, 9, 10, 46

1501 6.04 Precuneus 7, 18L, 19, 31, 39L

total voxels 1232 4.96 Precentral Gyrus 4, 44

24,853 978 3.94 Lingual Gyrus 17, 18, 19

966 3.89 Cuneus 7, 17, 18, 19, 23, 30

max Z = 19.0 856 3.46 Inferior Parietal Lobule 7, 39, 40

838 3.37 Middle Occipital Gyrus 18, 19, 37L

Max X, Y, Z 786 3.16 Cingulate Gyrus 23, 24, 31, 32

[0–57–36] 736 2.96 Inferior Frontal Gyrus 6R, 9, 10L, 13, 44, 45, 46L, 47

Reasoning 2504 9.52 Cerebellum - -

1898 7.21 Middle Frontal Gyrus 6, 8, 9, 10, 46

total voxels 1447 5.50 Precuneus 7, 18L, 19, 31, 39R

26,310 1365 5.19 Cuneus 7, 17, 18, 19, 23, 30

1281 4.87 Inferior Parietal Lobule 7, 39, 40

max Z = 18.9 1147 4.36 Lingual Gyrus 17, 18, 19

932 3.54 Middle Occipital Gyrus 18, 19, 37

Max X, Y, Z 879 3.34 Precentral Gyrus 4, 6, 9, 44

[–30–60–30] 809 3.07 Superior Frontal Gyrus 6, 8, 9, 10

749 2.85 Cingulate Gyrus 23, 24, 31, 32

585 2.22 Thalamus - -

Speed 2437 1.12 Cerebellum - -

1423 5.74 Middle Frontal Gyrus 6, 8, 9, 10, 11, 46, 47

total voxels 1160 4,67 Precentral Gyrus 4, 6, 9, 44

24,806 1145 4.62 Cuneus 7, 17, 18, 19, 23, 30

1083 4.37 Lingual Gyrus 17, 18, 19

max Z = 20.7 984 3.97 Precuneus 7, 18L, 19, 31

966 3.89 Middle Occipital Gyrus 18, 19, 37

Max X, Y, Z 830 3.35 Inferior Parietal Lobule 7, 39R, 40

[21–90–3] 699 2.82 Inferior Frontal Gyrus 6R, 9, 11L, 13, 44, 45, 46R, 47

601 2.42 Cingulate Gyrus 23, 24, 31R, 32

Vocabulary 2325 13.9 Cerebellum - -

Cluster 1 877 5.25 Left Middle Frontal Gyrus 6L, 8L, 9L, 10L, 11L, 46L, 47L

total voxels 852 5.1 Lingual Gyrus 17, 18, 19

16,700 779 4.66 Middle Occipital Gyrus 18, 19, 37L

758 4.54 Cuneus 7L, 17, 18, 19, 23, 30

max Z = 20 690 4.13 Left Precentral Gyrus 4L, 6L, 9L, 44L

653 3.91 Left Inferior Frontal Gyrus 9L, 10L, 11L, 13L, 44L, 45L, 46L, 47L

Max X, Y, Z 615 3.68 Precuneus 7, 18L, 19, 31

[24–87–6] 522 3.13 Fusiform Gyrus 18, 19, 20, 36L, 37

494 2.96 Superior Frontal Gyrus 6, 8, 9L, 10L

Cluster 2 647 27.3 Right Middle Frontal Gyrus 6R, 8R, 9R, 19R, 11R, 46R, 47R

total voxels 2368 479 20.22 Right Inferior Frontal Gyrus 6R, 9R, 13R, 44R, 45R, 46R, 47R

max Z = 14.1 325 13.7 Right Precentral Gyrus 4R, 6R, 9R, 44R

Max X, Y, Z 164 6.9 Right Superior Frontal Gyrus 9R, 10R

[33 24 3] 114 4.8 Right Insula 13R, 47R

(Continued)
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vocabulary indicators that combined, while the memory and reasoning indicators remained

distinct. Likewise, for the 5-factor model, the imaging data dissociated picture naming from

the other two tasks related to vocabulary. This is not surprising, as the picture naming task

was quite different methodologically from the other 11 tasks, as it required participants to ver-

bally name pictures rather than indicating their response using to touch pad. Interestingly,

although the 5-factor model showed a distinct brain network for this task, in the behavioral

models this task did not separate from the other vocabulary tasks. Despite differences in the

patterns of loadings for the 3- and 5- factor models for the behavioral and imaging data, the

4-factor model showed remarkable consistency across the two modalities, where each set of

data revealed an episodic memory retrieval, a reasoning, a vocabulary and a speed latent vari-

able with reasonable fit-indices. Finally, to explore the relationships between the behavioral

and neuroimaging latent structures, performance within each factor was correlated with the

average beta value from each factor’s pattern of topographic overlap. Interestingly, only epi-

sodic memory performance correlated with strength of activation: those individuals who

recruited this network to a greater extent also showed better performance on the tasks.

While the decision to adopt one solution over the others is somewhat arbitrary when more

than one model produces adequate fit statistics, we chose to focus on the 4-factor solution

Table 3. (Continued)

Domain # voxels % overlap Brain region Brodmann Areas

Cluster 3 76 51.4 Left Middle Temporal Gyrus 21L, 22L

total voxels 148 44 29.7 Left Superior Temporal Gyrus 22L

max Z 7.4

Max X, Y, Z

[–48–42 6]

https://doi.org/10.1371/journal.pone.0228167.t003

Fig 4. Relationship between average beta-value and behavioral performance across the three episodic memory

tasks.

https://doi.org/10.1371/journal.pone.0228167.g004
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because of the consistency of the neural and behavioral data loadings, it’s parsimony, and

finally because aligns well with previous work that has attempted to explore cognitive struc-

tures utilizing different analytic techniques (see [16,35]). Each of the latent topographic neural

networks that resulted from the four-factor model exhibited large and distributed clusters of

activation. Some areas of activation, including those in the cerebellum, an area recognized to

be involved in linguistic processing [36] and mental calculations [37], and posterior visual

regions (BA17-19), appeared to be non-specific to cognitive function, as they were present

across all 4 cognitive domain (see S5 Fig). This domain-general activation may be due to com-

monalities across all 12 of the tasks, including the use of visually presented stimuli. On the

other hand, there were a number of regions that appeared to be domain specific. The episodic

memory retrieval covariance pattern consisted of prefrontal (BA 10, 45, 47) and parietal

regions (BA 39 and 40), as well as the precuneus, an area that has been shown in non-human

primate studies to be highly connected to both cortical and subcortical structures [38]. All of

these areas have consistently been associated with episodic memory retrieval [39–43]. Since

the memory tasks relied on word recall and reading paragraphs, activation in semantic pro-

cessing areas were also observed, such as the left inferior frontal gyrus (BA 44 and 45) as was

reported for a word recall task [44]. The reasoning pattern showed peak activations in the infe-

rior parietal lobule (BA 39 and 40), an area shown in early lesion studies to be associated with

the ability to perform mental calculations [45,46] and in a more recent study on parietal focal

lesions [47]. Activation in this area has also been associated with the attentional processes that

enable orientation in 3-dimensional space [48]. While the other three domain patterns showed

bilateral prefrontal activations, the vocabulary covariance pattern showed pronounced left lat-

eralized prefrontal activations involving BA 8 of the prefrontal cortex, an area associated with

numerous language-related abilities including speech motor programming [49], language

processing [50] and translation [51] and sentence generation [49], as well as Broca’s Area

(BA 44 and 45) in the inferior frontal gyrus, highly implicated in language (see [52] for a recent

review). Using four different tasks that all required semantic processing, [53] showed activa-

tions common to all four tasks in the left inferior frontal and the left middle temporal gyri,

consistent with clusters 1 and 3 in the vocabulary covariance pattern reported here. Additional

peaks were located in the insula (BA 13), associated in previous imaging studies with phono-

logical processing [54] as well as speech tasks [55,56]. Finally, the speed of processing network

exhibited distributed activation in all lobes of the brain, with cluster peaks in primary and sec-

ondary visual cortex (BA 17 and 18). A study by Marcar and colleagues [57] reported increased

BA 18 activity for simple versus complex shape discrimination, suggesting that this area may

be sensitive to features in stimuli such as edges and vertices. A study by Fokin and colleagues

[58] also showed that these areas were involved in processing of incomplete, but ordered (as

opposed to chaotic) patterns. The precentral gyrus showed the third highest percentage of

overlap in the speed pattern, consistent with its essential role in motor processes [59].

Conclusion

Our goal was to first determine whether specific cognitive functions can be isolated using an

unconstrained, bottom up data analysis approach, and then to test whether these latent cogni-

tive domains of cognition measured behaviorally also map to distinct topographic patterns of

neural activity. To this end, a large sample of participants underwent fMRI while they com-

pleted a set 12 cognitive tasks that were based upon paper and pencil tests previously used in

studies of several thousand adults across the adult lifespan who were administered extensive

batteries of cognitive tasks [60–62]. In administering this set of tasks, we attempted to avoid

the possibly idiosyncratic features of any individual tasks, and instead identify broad and
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replicable cognitive aspects common to several tasks. The results of this study show that,

indeed, different cognition tasks, thought to tap broader ontologies of cognitive function, can

be specified using analytic techniques that are data-drive and free of construct assumptions,

both behaviorally and neurally.
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