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Abstract
The dynamical process of cell division that underpins homeostasis in the human body cannot be directly observed
in vivo, but instead is measurable from the pattern of somatic genetic or epigenetic mutations that accrue in tissues
over an individual’s lifetime. Because somatic mutations are heritable, they serve as natural lineage tracing markers
that delineate clonal expansions. Mathematical analysis of the distribution of somatic clone sizes gives a quantitative
readout of the rates of cell birth, death, and replacement. In this review we explore the broad range of somatic
mutation types that have been used for lineage tracing in human tissues, introduce the mathematical concepts used
to infer dynamical information from these clone size data, and discuss the insights of this lineage tracing approach
for our understanding of homeostasis and cancer development. We use the human colon as a particularly instructive
exemplar tissue. There is a rich history of human somatic cell dynamics surreptitiously written into the cell genomes
that is being uncovered by advances in sequencing and careful mathematical analysis lineage of tracing data.
© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

All the somatic cells in a human trace their ancestry back
to the zygote. It is becoming increasingly clear that
healthy normal tissue carries a high burden of somatic
DNA mutations [1–4] and epigenetic mutations [5]
(hereafter epimutations) that accrue over the course of
a person’s lifetime, causing the genomes of extant line-
ages of cells to diverge. The hierarchical nature of tissue
organisation, whereby differentiated cells are derived
from a small number of multipotent stem cells, cause tis-
sues to be a patchwork of different spatially-segregated
clones, each derived from a distinct ancestor stem
cell—in this sense, our bodies are mosaics of somatic
mutants. The pattern of somatic mutations in a tissue—
that is the distribution of sizes of clones delineated by
these somatic mutations and the spatial location of
clones—is therefore a direct consequence of the dynam-
ical process of cell birth, death, and lineage replacement
in that tissue. Analysis of the pattern of somatic muta-
tions provides a serendipitous window into human cell
dynamics in vivo.

Further, recent studies (reviewed in [6]) have found
that gene mutations commonly found in cancers that
are thought to be functional for cancer development,
termed driver mutations, are also present in a surpris-
ingly high number of morphologically normal cells.
Exploring how clonal populations evolve in ostensibly
normal human tissue is an important step to understand-
ing the earliest steps in cancer evolution, namely how
one of these ‘cancer-primed’ cells outcompetes its
neighbours, clonally expands to colonise surrounding
tissue, and eventually transforms into malignancy.
Lineage tracing, a general term for methods to detect

parent–daughter relationships between cells using clonal
markers, presents a powerful tool for probing the clonal
dynamics of tissue. In mouse models, the use of experi-
mentally induced fate markers [7] have allowed the com-
plex and variable dynamics of various tissues to be
elucidated (e.g. skin [8], colon [9,10], and breast [11]).
However, such methods are inappropriate for use in
humans and therefore researchers are forced to rely on
somatic lineage tracing markers. The basic principle is
that the (epi)genomes of recently-related cells are
expected to be more similar than those of more distantly
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related cells, and so, more generally, measurements of
the (epi)genetic differences between cells allow for the
reconstruction of their clonal relationships. To illustrate
this principle, consider two cells taken from distant loca-
tions within an individual’s body—say, brain and
bowel—whose most recent common ancestor arose
early during embryogenesis. Every time a cell divides
it accrues �1–10 point mutations [12–14] across the
�3 billion base pairs within its genome. Given this very
low probability that any specific base will be mutated,
the probability that two randomly selected cells
have independently developed the same mutation is
extremely low. Consequently, the vast majority of
somatic mutations will not be shared between these dis-
tantly related cells. In contrast, as discussed later, con-
sider the genomes of two cells selected from the same
colonic crypt. Because of the rapid turnover of cells in
the colon fuelled by a small number of stem cells in
intense competition to retain a place in the niche, the
two cells will share the vast majority of their somatic
mutations, reflecting the short time since their recent
common ancestor.
Importantly, lineage tracing provides a powerful lens

to study the dynamics of adult stem cell divisions,
despite stem cells typically being rare in tissues. This is
because of the rapid turnover of many tissue types
[15]: this indicates that approximately every week in
the intestine, a few divisions separate (short-lived) dif-
ferentiated cells from their stem cell parent [16,17],
and so the majority of somatic mutations in a differenti-
ated cell are those that were acquired by its stem cell
ancestor. This effect is even more pronounced when
considering that measurements of (epi)genetic alter-
ations have relatively low sensitivity. Sequencing
methods are biased to detect near-clonal (high fre-
quency) alterations, which were present in the stem cell
and ‘amplified’ in the population via the production of
multiple differentiated cell progeny, whereas newly-
acquired mutations in a single or a small number of dif-
ferentiated cells will be at low frequency and are
unlikely to be detected. In this way, the measurement
of all the cells in a single clonal unit (e.g. a colon crypt)
is informative of the behaviour of the stem cell popula-
tion that underpins that unit.
In the following sections, we review the long history

of lineage tracing methodologies applied to human
tissues and offer an introduction to the mathematical
principles used to interpret these data. As sensitivity to
detect somatic mutations has improved, so has the
resolution (both over time and space) of our derived
understanding of somatic cell dynamics.

Early lineage tracing studies relied on germline
mutations or clonal mosaicism

Early lineage tracing techniques in the context of human
biology relied on the observation of whether a single

clonal marker was shared by a given population of cells
but was absent in distant cells.

The very first lineage tracing techniques applied in
human exploited X-inactivation (also termed Lyoniza-
tion) of sex-linked genes. In females, one copy of
the X-chromosome inactivates during embryogenesis
by DNA methylation that silences gene expression,
meaning that there is not a gene dosage asymmetry
between males and females. The selection of which
X-chromosome is silenced is random; hence, the cells
of females with a heterozygous polymorphism located
on the X-chromosome will have an approximately equal
probability of expressing either phenotype (Figure 1A).
In 1965, Linder and Gartler [19] exploited germline het-
erozygous mutations in the glucose-6-phosphate dehy-
drogenase (G6PD) gene that abrogate expression to
show that, whilst their normal uterine cells were a hodge-
podge of cells expressing one of the two alleles (notion-
ally the A and B alleles), all the cells in tumours from
these patients expressed either the A or B alleles (but
not both). At the time, this was seen as compelling
evidence that cancer arose from a single cell, rather than
a collection of cells.

More recently, direct visualisation of the different
G6PD phenotypes allowed researchers to observe that
cells that share the same X-activation status are found
together in large clonal patches because X-inactivation
occurs relatively early in the developmental process,
and therefore studies of this type are biased towards find-
ing a monoclonal origin of cancers (Figure 1B) [18].
This highlights a broader point: the timing of when a
marker appears during development, or equivalently
the rate at which a marker is introduced for the case
of continuous labelling (e.g. for ongoing somatic
DNA mutations), determines the temporal and spatial
resolution at which cell dynamics can be assessed.

As an example of this principle, staining for G6PD
activity in mouse colon [20] incorrectly concluded that
each colonic crypt is maintained by a single stem cell
(more recent lineage tracing studies revealed that crypts
are maintained by a pool of equipotent stem cells, as we
shall discuss in more detail below). The authors applied
a carcinogen over 21 weeks that induced somatic abro-
gation of G6PD expression, then stained for G6PD
expression 2 weeks after the final carcinogen dose. They
did not identify any examples of mixed G6PD expres-
sion phenotypes, and thus concluded that crypts are
maintained by a single stem cell. However, the authors
failed to account for the possibility of clonal expansion.
If a pool of equipotent stem cells were replacing each
other rapidly and the rate of mutation induction was
sufficiently low, one would not expect to see a large
number of partially mutant crypts. As above, the power
of the study to resolve clonal dynamics was limited by
the induction rate of the lineage tracing marker.

In blood, germline mutations in X-linked genes were
utilised to probe the haematopoietic stem cell (HSC)
pool and time X-inactivation via an elegant argument
arising from binomial statistics [21]. The key concept
was that the proportion of blood cells expressing one
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of the two alleles is reflective of when in the developmen-
tal process Lyonization occurred. If this X-inactivation
occurred following the first division of founder HSC,
across patients, we would expect all to contain roughly
equal proportions of the two X-inactivation patterns. If
instead, Lyonization occurred following the second divi-
sion when there were four founder cells, we would expect
to observe some patients with roughly a quarter of their
blood cells as one X-inactivation pattern and three quar-
ters as the other. Following this logic, the authors com-
pared the cumulative mass probability of the proportion
of blood cells with a given X-inactivation pattern to the
expected binomial distribution with 4, 8, and 16 founder
cells, concluding that 8 founder cells (i.e. following the
third division) best fit the data. Further, the authors went
on to estimate the number of HSCs by examining the
intrapatient heterogeneity in phenotype at multiple time-
points, estimating that the blood stem cell pool is main-
tained by 400 HSCs. We note that multiple adult clones
are nested within each embryonic clade, so this places
only a lower bound on the number of HSCs.

As with heterozygous sex-linked germline mutations,
individuals with other rare genotypes offered early
researchers’ natural markers to track lineages within
normal and aberrant tissue. A prime example of this is
an individual with X0/XY mosaicism who coinciden-
tally also had familial adenomatous polyposis (FAP), a
hereditary condition in which a heterozygous germline
APC mutation leads to a heightened risk of colorectal
cancer [22]. In situ hybridisation (ISH) allowed for
visualisation of the X0/XY phenotype and revealed that
morphologically-normal intestinal crypts were com-
posed of exclusively one of the two phenotypes arranged
into irregular clonal patches, strongly suggesting the
clonal origin of intestinal crypts. As expected, villi at
the border of the two phenotypes were a mixture of X0
and XY, confirming that villi were fed from multiple
crypt populations. Intriguingly, several adenomas
contained a mixture of X0 and XY cells, suggesting a
polyclonal origin of these precancerous lesions;
although subsequent statistical analysis cautioned that
the authors overestimated the polyclonal fraction [23].

Figure 1. Lineage tracing using germline mutations. (A) An illustration of how germline mutations ‘label’ a cell lineage. As an example of this,
early in development, rare individuals with sex-linked germline mutation inactivate either the wildtype or mutant allele, labelling the diverg-
ing lineages. Following embryogenesis, the mutant and wildtype lineages are evidenced as large, contiguous clonal patches. The relative mix-
ing (or lack thereof) of these two genotypes is therefore informative about the clonal makeup of the constituent tissue. An underappreciated
facet of these sorts of studies is that they are only powered to detect mixing at the boundaries of clonal patches. (B) A top-down slice of colon
epithelium stained for G6PD activity. The mutant crypts form large clonal patches, reflecting the X-inactivation of a particular cell lineage
early in development. Reproduced with permission from [18]. Copyright (2003) National Academy of Sciences, U.S.A.
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Another naturally occurring lineage tracing marker is
O-acetylation of sialoglycoproteins in goblet cells, which
can be distinguished from non-O-acetylated sialoglycopro-
teins with mild periodic acid-Schiff (mPAS) staining
[24,25]. The OAT gene determining O-acetylation is auto-
somal; hence, in individuals heterozygous for OAT, the
majority of colonic crypts are mPAS-negative (O-acety-
lated) but with sporadic mPAS-positive crypts randomly
distributed across the colon, the frequency of which
increases with age as the result of somatic mutation [26].
The OAT mutation rate is greatly increased during radio-
therapy, leading to a dramatic increase in the number of
mPAS-positive crypts following treatment. Notably, imme-
diately following treatment, a large number of crypts that
are a mixture of mPAS+ and mPAS� cells are observed,
but over time the number of partially fixed crypts falls
[27]. This allowed Campbell et al to estimate that the time
to monoclonal conversion of human colonic crypts follow-
ing radiation is �1 year [27], significantly longer than the
few months that had been previously estimated for mouse
[28,29]. Importantly, unlike G6PD staining, mPAS staining
can be performed upon formalin-fixed paraffin-embedded
(FFPE) tissue.

Mitochondrial DNA mutations

While heterozygous germline mutations provide powerful
tools to explore clonal relationships between cells, it limits
our field of view to rare individuals who carry these
alterations, and is only powered to detect clonal differ-
ences at the boundaries of large clonal patches. Leveraging
the multiple somatic mutations that occur during ageing,
rather than the few germline/early developmental muta-
tions, would allow for more recent clonal architecture
to be resolved. Until the recent advent of sensitive
whole-genome sequencing methods [30], it was generally
infeasible to use somatic nuclear DNA mutations as
markers. This was because genomic analysis was
restricted by the use of targeted (Sanger) sequencing,
which could analyse only a few hundred base pairs of
DNA in a single sequencing run; given the low somatic
mutation rate, the probability of a somatic mutation would
exist within these small genomic regions was incredibly
low. To circumvent this technical hurdle, the second
generation of lineage-tracing techniques instead focused
on alterations that occurred at a higher rate than nuclear
DNA mutations, namely, mutations of mitochondrial
DNA (mtDNA).
Naturally occurring, somatic mtDNA mutations

accrue at a mutation rate orders of magnitude greater
than nuclear DNA mutations, and are therefore more
likely to be present in a sample (reviewed in [31]).
Nevertheless, mtDNA mutations occur infrequently
enough that the odds of the same mutation occurring
independently in two cells in close spatial proximity is
low. MtDNA mutations can therefore be used directly
to trace somatic cell lineages.

Importantly, in addition to the raw genetic information
in mtDNA mutations can also lead to histochemically-
detectable changes in protein expression, allowing direct
visualisation of clonal relationships in situ in human
tissues. There are multiple copies of a given mtDNA gene
in a single cell, but once amutation has occurred in a single
mitochondrial genome, there is a chance of that mutation
coming to dominate the cell via genetic drift, leading
to that cell expressing the mutant phenotype. A pertinent
example is the loss of expression of the mitochondrially-
encoded gene cytochrome C oxidase (CCO), readily
visualisable via histochemical staining (Figure 2), which
is caused by an underlying mtDNA mutation that has
expanded to become dominant in the mtDNA pool.

Such mtDNA markers were used with great success
to map the clonal dynamics of intestinal stem cells.
Studying colon tissue from older individuals, Taylor
and colleagues observed that crypts were either CCO-
proficient (CCO+), wholly CCO-deficient (CCO�),
or a mixture of the two phenotypes [33]. These experi-
ments demonstrated that somatic mutations first occur
in a single stem cell within a crypt (causing a partial
CCO� crypt), before clonally expanding until the mutant
allele reaches fixation in a process termed monoclonal
conversion (causing a wholly CCO� crypt); hence, con-
firming that intestinal crypts are maintained by a pool of
stem cells, rather than a single asymmetrically dividing
stem cell. Our subsequent work recognised that the num-
ber of wholly CCO� mutant crypts increases with age
and that CCO� crypts cluster in small patches where
adjacent CCO� crypts all carry the same mtDNA muta-
tion [34]. Together with an analysis of bifurcating crypts,
where the same CCO� mutation was present in both
crypt arms, these lineage-tracing data provided clear
evidence of the clonal expansion of human colon crypts
by the process termed crypt fission (reviewed in [32],
Figure 2A) [35,36].

Somatic mtDNA mutations have been applied to
uncover the clonal architecture of the liver [37], stomach
[38], breast [39], oesophagus [40], prostate [41,42], and
bladder [43].

More recently, the advent of high-throughput single-
cell sequencing has extended the possibilities for
mtDNA-based lineage tracing. In chromatin accessibil-
ity sequencing (assay for transposase assessable chroma-
tin: ATACseq), a transposase is applied to the DNA of
interest, which cuts and inserts a sequencing adapter in
regions of open (accessible) chromatin. MtDNA lacks
chromatin structure and so is accessible and thus labelled
by the transposase. In single-cell ATACseq (scATAC-
seq), upon sequencing, thousands of reads are derived
from the multiple mtDNA copies present in each cell
providing sensitive detection of the somatic mtDNA
mutations present in each cell [44,45]. These high-
throughput techniques offer utility in addition to that
provided by our previous histology-based approach
because they allow very large numbers of cells to be
‘screened’ for mtDNAmutations, enabling the detection
and characterisation of clonal relationships even in the
absence of histologically evident clonal expansion.
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Mathematical analysis of single-label
lineage-tracing data

A commonly used mathematical formulation to describe
the dynamic process of cell birth and death are branching
models. In these models, a cell can either divide to form
two daughter cells at a rate b, growing the population, or
be removed from the population (die) at a rate d. At each
birth step, the phylogenetic tree that describes the evolu-
tionary relationships between cells branches (Figure 3),
hence the name. Branching models provide a flexible
framework for modelling evolution, allowing for the
potential inclusion of mutations and multiple cell ‘types’
(e.g. labelled and unlabelled members of the population,
or cells with a selective advantage). An excellent intro-
duction to branching processes can be found in Jones
and Smith [46].

Using statistical inference techniques, we can
discover the parameters of the mathematical model that
make the model reproduce the key features of observed
(biological) data. For an example, we can construct a
model that describes the emergence and expansion of
CCO� clones in the colon, and fit this model to
data we have collected on the distribution of CCO�
patch sizes we have observed across colonic re-
section specimens [47], resulting in the inference of
the rate of crypt fission. A very important consequence
of interpreting data with dynamical mathematical
models is that we can derive quantitative information

about dynamic processes, even though our data are
collected at only a single point in time.
Mathematical models describing colon stem cell evolu-

tionprovidean instructiveexample todelvedeeper into the
mathematics of lineage tracing. Amathematical model for
continuous labellingat rateω of S stem cells arranged in a
ring replacing each other at a rate λ per stem cell per divi-
sion was explicated by Kozar et al [48]. In the long-time
limit, the model predicted that the fraction of fixed
mutant crypts will increase approximately linearly with

Figure 2. Ongoing somatic mutation as lineage markers. (A) An illustration of how ongoing somatic mutations enable lineage tracing of
dynamic systems. At birth, all cells in a given tissue are wildtype to a specific somatic mutation. Over time, these somatic mutations can occur
in individual stem cells. If the mutant stem cell undergoes clonal expansion, all the progeny of that cell will also be labelled. Due to the low
rate of somatic mutation, the probability that two stem cells in close proximity will have independently developed the same mutation is low.
Because somatic mutations are ongoing, they have the opportunity to resolve more recent clonal expansions. Reprinted with permission from
[32]. Copyright (2011), AGA Institute. (B) Representative examples of CCO deficiency of crypts in the colonic epithelium which allow clonal
expansions to be visualised. A stem cell within a crypt that is initially wholly wildtype (brown) first undergoes an mtDNAmutation (blue). By a
process of neutral drift, this labelled stem cell can expand and fix within the niche. A somatic mutation that has fixed within a colonic crypt
can then spread by crypt fission, forming a clonal patch.

Figure 3. Branching processes. An illustration of the basic structure of
branchingmodels.Over time, eachcellwithinapopulation stochastically
eitherdividesata rateb, increasing the population, or dies at a rate d .
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time, t (Cfixed ¼ωt, although this expression fails to
account for the time taken for a mutant stem cell to fix
within the crypt); whereas the fraction of partially fixed
crypts tends towards a constant value (Cpartial¼
ωS S�1ð Þ

2λ ). Thus, the ratio of the two fractions is indepen-

dent of the mutation rate, Cfixed

Cpartial
¼ 2λ

S S�1ð Þ t. The intuition

behind the expression forCfixed can be understood by con-
sidering that the mutation rate per cell is ω. The rate of
any one of the S stem cells developing a label is thus
ωS, but each stem cell only has a 1

S chance of fixing
within the crypt; hence, the factor of S cancels. Con-
versely, the number of newly induced partially labelled
crypts is compensated for by the ongoing clonal extinc-
tion/fixation events, and thus Cpartial is a constant
depending on the replacement rate and the number of
stem cells. The ratio of the two fractions depends both
on the stem cell number and the replacement rate, hence
this ratio alone is insufficient to separately identify
λ and S. Additional data that measures the rate of lineage
labelling (which ultimately sets the number of fixed
crypts that are expected to be observed) is needed to
separately identify the clonal dynamics.
Utilising this theory, Stamp et al [49] and Nicholson

et al [50], applied histoenzymatic staining to visualise
somatic mtDNA and DNA mutations (specifically,
OXPHOS-deficiency and loss of O-acetylation of sialo-
mucins, respectively). By counting the number of partially
and fully fixedmutant crypts from individuals with a range
of different ages, they estimated the cohort average
replacement rate and stem cell number. Together, these
studies implied that the vast majority of stem cell divisions
in human are effectively asymmetric, producing one cell
that remains as a stem cell whereas the other differentiates.
Rare symmetric divisions, producing two cells that remain
as stem cells and displace another stem cell lineage from
the niche, lead to long average times to fixation.
Mathematical models have also been instructive in

measuring the rates of crypt fission in the human colon,
and the recently recognised counteracting process of crypt
fusion (whereby two adjacent crypts fuse to form a single
descendant [51]). As noted above, CCO� crypts are
found in increasingly large patches in older individuals
[34], and the size of these patches is evidently dependent
on the rates of crypt fission and fusion. Fitting the
observed distribution of CCO� patch sizes to an appro-
priate mathematical model [52] reveals that crypt fusion
occurs at approximately the same rate as crypt fission,
roughly once every 90 years per crypt, suggestive of its
role in homeostasis. This finding resolved a longstanding
biological puzzle, in which it was known that crypt fission
provided a mechanism for new crypts to enter the popula-
tion, but that the total length of the colon and the density
of crypts appear to remain largely constant over time.

Somatic epimutations

An alternative somatic lineage-tracing technique that we
developed was based on epigenetic changes to the DNA,

principally changes in DNA methylation (hereafter
referred to as ‘epimutations’) [53]. DNA methylation
changes much more rapidly than the DNA sequence
itself, whilst still being somatically heritable. If one con-
siders the methylation on a single DNA strand, a partic-
ular CpG locus can either be methylated or
unmethylated. In this way, a set of allele-specific methyl-
ation patterns from a single clone can be considered as a
binary string (referred to as a ‘tag’ or ‘barcode’) of 1’s
(methylated) and 0’s (unmethylated). CpG loci located
on CpG islands are typically unmethylated at birth and
the methylation level of a number of these CpG loci
increase approximately linearly over time (Figure 4A).
CpG loci that follow this pattern can be selected by
searching for those loci where the percentage of methyl-
ated sites increases with age. Clonal relationships within
and between clonal patches can be assessed both via the
diversity in unique barcode tags found within and
between individual clonal patches and by the Hamming
distances (the proportion of CpG sites where the methyl-
ation status differs between two molecules) between
the unique barcodes (e.g. Figure 4B). A number of
studies have found that DNA methylation reflects
clonal ancestry, in both normal development [55] and
cancer [56–58].

Figure 4. DNA methylation as genetic barcodes. (A) An illustration
of how somatic changes in methylation can be employed as geno-
mic barcodes. At birth, certain CpG loci are unmethylated in every
cell (white circle), but over time these CpG loci can spontaneously
become methylated (black circle) in individual cells. The progeny
of these cells carry the same pattern of methylation changes. Hence,
the epigenetic distance between cells serves as a proxy for their
relatedness. (B) Example methylation barcode data. Each circle rep-
resents a single methylated (black) or unmethylated (white) CpG
locus, each row of circles corresponds to a single methylation tag,
and each block represents a set of methylation tags from a single
crypt, all taken from the colon of a 58-year-old individual.
The methylation patterns within a single crypt are more similar to
each other than the methylation patterns between crypts, due to
the recent niche succession within the crypt. Reproduced with
permission from [54].
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In the context of intestinal crypts, methylation
barcodes were first employed to test the then competing
hypotheses of immortal stem cell versus the stem cell
niche. In the immortal stem cell hypothesis, a crypt
was proposed to be maintained by multiple stem cell lin-
eages that all divided strictly asymmetrically, with the
differentiated daughters producing the rest of the crypt
cell population [59]. Contrastingly, in the niche model,
a crypt is maintained by a population of multipotent stem
cells that compete with each other to retain their place in
the niche, and so the stem cell lineages undergo stochas-
tic loss and replacement. One would expect that if intes-
tinal stem cells were immortal, there would be a greater
degree of variability in the intracrypt methylation pattern
diversity than that predicted by the niche hypothesis.
This is because, in the niche model, one stem cell will
inevitably clonally expand until it has replaced all other
stem cells in the niche, generating a new common ances-
tor. Our single-molecule resolution sequencing of select
CpG loci, again interpreted with mathematical model-
ling, provided evidence that intestinal crypts in human
were maintained by multiple stem cells competing for
their place in the niche, rather than a number of immortal
stem cells [5,53]. Further, we observed that methylation
barcodes were similar between the bottom and top of
each crypt, confirming that the mutations present in the
differentiated cells reflect that of the stem cell ancestor.

We subsequently applied methylation lineage tracing
to other tissues, including hair [60], endometrium [61],
and different immune cell lineages in the blood [62].
Intriguingly, unlike in the colon, the average methylation
error levels of hair follicles do not increase with age,
suggesting that the bulge stem cells divide only infre-
quently, with the bulk of the methylation errors accumu-
lated in long-lived but mortal transit-amplifying cells.
Conversely, average methylation in the endometrium
does increase with age until �50 years, at which point it
plateaus due to the decrease in the cell division rate fol-
lowing menopause. In blood, different leucocytes experi-
enced varying rates of epigenetic error accumulation
according to each cell type’s position on the differentia-
tion hierarchy. Together, these studies demonstrate the
broad-ranging applicability of methylation barcodes as
molecular clocks.

More recently, methylation barcoding techniques
were used to compare chronic lymphocytic leukaemia
(CLL) to healthy B-cells [63]. The authors found that,
despite the CLL cells displaying a greater epimutation
rate, indicating increased tissue aging, the cell-to-cell
variability in epimutation rates was lower than in healthy
B-cells, reflecting the common ancestry of the cancer.
Phylogenies built upon the methylation data revealed
that CLL had balanced trees, consistent with CLL evolv-
ing under a neutral-drift paradigm following malignant
expansion.

Whilst methylation barcoding presents a powerful
technique to resolve clonal dynamics, it is not without
its technical limitations. Bisulphite conversion, which
converts unmethylated cytosine to uracil and is the stan-
dard method to determine the methylations patterns

across the genome, is a destructive process causing
DNA degradation, and careful optimization is required
for lowDNA input amounts. Fortunately, bisulphite-free
methods for characterising methylation have been
proposed [64,65], although these methods are not yet
standard practice.

Clone-by-clone analysis

A subtle but important limitation of the lineage-tracing
data described thus far is that inferences are made from
the complete ensemble of data, giving average behav-
iours rather than clone-specific measurements. In other
words, from CCO� patch size data, for instance, we
can infer the average rate of crypt fission, but not the
fission rate of an individual patch.
We recently developed a novel lineage-tracing

method based on fluctuating methylation clocks
(FMCs), which enable clone-by-clone individual mea-
surements of stem cell dynamics [66]. The key differ-
ence compared to previous methods is that selecting
for fluctuating CpG (fCpG) loci that stochastically jump
between homozygously methylated, heterozygously
methylated and homozygous demethylated states in
individual diploid cells allows for recurrent clonal
dynamics to be measured. In stem cell pools with rapid
clonal expansion and fixation, the distribution of bulk
methylation patterns will reflect that of the recent pro-
genitor cell, leading to the FMC distribution of individ-
ual colon crypts bearing a characteristic ‘W-shape’
(Figure 5). Contrastingly, the methylation states of fCpG
loci in polyclonal populations will be desynchronised,
such that the FMC distribution is unimodal. In this man-
ner, the FMC distribution encodes the clonal dynamics
of a stem cell population. We developed a mathematical
model to link the number of stem cells, their replacement
rates, and the rates of fCpG (de)methylation to the mea-
sured FMC distribution, allowing us to infer these clonal
dynamics with readily-available microarrays.
Unlike previous attempts to measure intracrypt

dynamics in humans [49,50], which relied on measure-
ments across a cohort with a wide range of ages, the
FMCmethodworks on individual clonal structures, allow-
ing the intraindividual heterogeneity of clonal dynamics to
be probed. This allowed us to conclude that the intraindivi-
dual variability in the effective number of stem cells was
significantly greater in the endometrium than the colon,
perhaps reflective of the dynamic nature of the endome-
trium through menstrual cycles and age-related changes.
Furthermore, in the same study we demonstrated that the
fluctuating methylation lineage tracing approach applies
across a range of tissue types and is not only useful for
measuring the random neutral dynamics underlying
homeostasis, but also for probing the rapid growth of
malignant populations. This method, and others like it,
which combine novel mathematics with lineage tracing
markers, are powerful tools for measuring dynamic
somatic cell evolution from a single snapshot in time.
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Whole-genome sequencing as a
lineage-tracing tool

The advent of next-generation sequencing (NGS) has
allowed for deep whole-genome sequencing (WGS) of
multiple tissue samples from the same individual to be
performed relatively cheaply. This enables the use of
somatic nuclear DNA mutations as lineage-tracing
markers, because approximately 1–10 DNA mutations
occur in every cell division [12–14], meaning every cell
is uniquely marked. Of course, even with high depth
sequencing, mutations that have occurred very recently
will only be present in a small fraction of cells (unless
that mutation is strongly selected for and has therefore
undergone a clonal sweep). In this way, the link between
mutation rate, depth of sequencing, and the temporal res-
olution of lineage tracing markers is evident; higher
depth sequencing allows one to resolve more recent
clonal dynamics, whilst faster mutation rates are more
likely to ‘catch’ a given clonal event and provide more
power to distinguish between ancestries. There is also
an interrelationship between the size of a tissue sample
(number of cells) and the clonality of that sample. Sub-
clonal mutations will likely be at higher frequency in
samples with fewer cells (as there are fewer ‘non-clonal’
cells). Samples consisting of cells with a recent common

ancestor (e.g. a colon crypt) will have more high-
frequency mutations than a random sample of cells
(e.g. from an endoscopic brush). These sampling consid-
erations influence intra- and intersample clonality
assessment in subtle ways (we refer the reader to the sup-
plementary material of [67] for a mathematical assess-
ment) and care should be taken to choose and/or
normalise for the sampling scheme in lineage-tracing
analyses. Further, detecting low-frequency mutations is
a pressing technical problem, in part due to the difficulty
of distinguishing between low-frequency mutations and
errors introduced during polymerase chain reaction
(PCR) amplification. However, the detection limit of
NGS can be improved dramatically with innovative
techniques, such as duplex sequencing [68] and applying
careful bioinformatic tools to technical replicates [69].

Multiregion WGS has revealed that the mutational
landscape of normal tissue is significantly more altered
than previously thought [2,3,70], with large clonal
patches containing key cancer driver mutations evident
across tissue types. In the normal colon of middle-aged
individuals, 1% of crypts were found to harbour a known
colorectal cancer driver mutation [71]. Work in skin has
shown that driver mutations in normal tissue vary with
body site [72], suggesting that the spectra of induced
mutations and the fitness landscapes of different normal

Figure 5. Clonal expansion synchronises FMCs. In a large polyclonal population, the unsynchronised fluctuating methylation patterns average
out to �50% methylated, leading to a histogram of the methylation level yielding a unimodal distribution (left). However, if a population
undergoes a clonal expansion, the methylation patterns of the resulting population inherit that of the progenitor cell, effectively synchronis-
ing the methylation clocks and yielding a distinctive W-shaped distribution (right).
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tissues are highly diverse. The power of employing
DNA mutations as lineage-tracing markers is that they
allow for inference of the selective advantage of repeat-
edly observed mutations to be inferred. This has been
done principally by considering the mutation rate nor-
malised ratio of nonsynonymous to synonymous muta-
tions (dN/dS). Synonymous mutations are assumed to
be neutral, whereas nonsynonymous mutations can
experience selection, thus an excess of nonsynonymous
mutations is indicative of positive selection (adaption)
[73]. Analyses of clone size distributions (or analogous
variant allele frequency [VAF] distributions) provide
alternative measures of selection [74–76]. Whilst the ini-
tial analysis of the clone size distribution applied to
human skin did not find evidence of widespread selec-
tion [74], contradicting the conclusions of the original
dN/dS approach [2], subsequent analysis reconciled the
two [77], indicating that the effect of selection on the
clone size distribution can be obscured by spatial con-
straints and experimental limitations.

Applications of these complementary methods show
that some cancer driver mutations, for example, TP53
and NOTCH mutations in the oesophagus [70,78], arise
in healthy tissues as a consequence of both natural age-
ing and environmental factors [79], and expand due to
strong selective pressure [78,80]. In fact, bizarrely, nor-
mal oesophagus appears to bear a higher rate of
NOTCH1 mutation than oesophageal cancer, which led
Colom et al to suggest a model in which early tumours
are outcompeted by NOTCH mutant but morphologi-
cally normal epithelial cells [81].

WGS has also provided important new insight into
HSCs, with recent work [1] applying phylogenetic tech-
niques to multiple WGS sequenced clonally expanded
HSCs from a single individual, allowing the authors to
infer that blood is maintained by 50,000–200,000 HSCs,
which share only a very distant common ancestor. In a
contrasting approach, Watson et al analysed the VAF
distributions of healthy blood samples from �50,000
individuals, determining that clonal haematopoiesis is
driven by positive selection rather than genetic drift [76].

Widespread WGS of cancerous tissue, together with
mathematical models of clonal dynamics, has led to
intriguing insights into the evolutionary histories of
growing tumours. For instance, a simple mathematical
model of a population growing exponentially under
effectively neutral dynamics suggests that the cumu-
lative frequency (M fð Þ) spectrum follows a characteris-
tic M fð Þ� 1

f distribution [82]. Turning to data, we
observed a good fit of this model in over a third of can-
cers investigated. Considering tumour WGS data as a
form of lineage tracing data and interpreting it with (sim-
ple) mathematical models that depict the basic biological
processes of cell growth and mutation, allowed us to
measure the mutation rates, timing of mutations, and
selective advantages of key driver mutations from bulk
sequencing data [83]. A particular use of the clone size
analysis approach is that it can measure evolutionary
dynamics on a patient-by-patient basis, whereas the

alternative dN/dS approach can only measure cohort
level averages (as data must be combined across patients
to yield sufficient mutations for the analysis).
Employing genomic mutations as naturally occurring

markers has great potential, not only for retrospectively
inferring a cancer’s history, but also for predicting future
evolution. Rather than tracking individual SNVs, large-
scale copy number aberrations (CNAs) also define line-
ages. CNAs typically occur less frequently than SNVs,
but their presence can be detected with much lower
depth sequencing, making sequencing significantly
cheaper and opening the door for single-cell analysis.
Time series single-cell WGS (scWGS) allowed Salehi
et al [84] to infer how the specific burden of CNAs borne
by a cell affected determine the clone’s relative fitness
within the tumour. Once clone-specific fitnesses had
been delineated, the authors could accurately predict
which clones would come to dominate the tumour
during treatment. In this manner, the genotype can func-
tion as a proxy for individual cancer cells’ phenotype.

Concluding remarks

Lineage-tracing data in human is usually ‘static’, in that
it is collected at a single point in time. Mathematical
models can be constructed that present the dynamical
processes that lead to the clonal structure captured in
the data, and fitting the mathematical models to data, to
infer the parameters that control model behaviours,
enables indirect measurement of the underlying dynam-
ics. Thus, together static lineage-tracing data interpreted
through the lens of mathematical modelling provides a
powerful lens into the dynamics of somatic evolution.
Importantly, mathematical models provide both a

rational framework to guide experimental design and
allow rigorous testing of competing hypotheses against
the data (e.g. the immortal versus niche model of colon
stem cell dynamics described above). It is worth men-
tioning that, whilst any particular mathematical model
relies on several assumptions, failing to cast a particular
result in mathematical terms does not eschew the
implicit assumptions that any purely qualitative model
rests upon; it simply obfuscates their implications. Argu-
ably, the process of mathematical modelling forces the
scientist to be explicit about the assumptions they use
to interpret the data and to rigorously consider their
consequences for the conclusions drawn.
One of the subtle aspects of employing naturally

occurring lineage-tracing markers is that the mutation
(labelling) rate of a particular marker defines the tempo-
ral resolution of the biological phenomena that can be
studied. That is, if mutations occur only very rarely
(as in the case of nuclear DNA), then distinguishing
between recent clonal divergence will be difficult, as
fewmutations will have occurred since the time of diver-
gence. Conversely, if a mutation occurs too rapidly, then
over the course of an individual’s lifetime the marker
will saturate, with unrelated lineages independently
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developing the same mutation. In the particular case of
nuclear DNA, the low mutation rate can be offset to a
degree by analysing every base pair (e.g. via WGS),
allowing the breadth of the genome to compensate for
the slow mutation rate. However, this is limited by both
the cost and technical limitations of performing a very
high depth of sequencing on small numbers of cells.
‘Relabelling’ techniques, such as our FMC method
[66], somewhat side-step the problem of saturation but
sites with methylation that fluctuates at rates comparable
to the timescale of the biological process of interest must
still be found.
The combination of using somatic (epi)mutations and

mathematical modelling provides a powerful toolkit to
measure the clonal architecture of tissue structures in
human and infer the otherwise unobservable temporal
dynamics of cell birth, death, and replacement.
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