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Decoding the influence of anticipatory states on
visual perception in the presence of temporal
distractors
Freek van Ede 1, Sammi R. Chekroud 1, Mark G. Stokes 1,2 & Anna C. Nobre 1,2

Anticipatory states help prioritise relevant perceptual targets over competing distractor

stimuli and amplify early brain responses to these targets. Here we combine electro-

encephalography recordings in humans with multivariate stimulus decoding to address

whether anticipation also increases the amount of target identity information contained in

these responses, and to ask how targets are prioritised over distractors when these compete

in time. We show that anticipatory cues not only boost visual target representations, but also

delay the interference on these target representations caused by temporally adjacent

distractor stimuli—possibly marking a protective window reserved for high-fidelity target

processing. Enhanced target decoding and distractor resistance are further predicted by the

attenuation of posterior 8–14 Hz alpha oscillations. These findings thus reveal multiple

mechanisms by which anticipatory states help prioritise targets from temporally competing

distractors, and they highlight the potential of non-invasive multivariate electrophysiology to

track cognitive influences on perception in temporally crowded contexts.
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In a world in which the amount of information that reaches our
senses is increasing by the day, it is becoming increasingly
relevant to understand the mechanisms by which our brains

extract and prioritise information that is most relevant to current
goals. Foreknowledge of what, where or when relevant events are
likely to occur enables the instantiation of anticipatory neural
states that provide key determinants of such prioritisation1–3, and
it has long been recognised that such anticipatory states amplify
early brain responses to perceptual targets. In fact, such effects
provided the first clear evidence in humans that modulatory
effects of anticipatory attention occur early during sensory pro-
cessing4–6. Yet, despite a long tradition, vast literature and sus-
tained interest in this line of research7–9, it has remained unclear
whether anticipation actually amplifies the amount of informa-
tion defining the identity of the perceptual target in these early
sensory brain responses. Building on recent progress on multi-
variate decoding of visual orientation information from high
temporal resolution magneto-encephalography and electro-
encephalography (M/EEG) measurements10–15, we tackled this
issue directly and reveal that anticipatory states also amplify
stimulus-identity information contained in early visual EEG
responses.

Multivariate decoding with high temporal resolution
additionally enabled us to individuate neural information linked
to target vs. competing distractor items occurring within the
temporal window of attentional competition. While the neural
mechanisms that prioritise inputs that compete in space have
received ample scientific investigation16–19, the mechanisms by
which the human brain accomplishes such prioritisation for
inputs that compete in time remains far less well understood.
This is in part because conventional human neuroimaging
approaches have been hampered either by insufficient temporal
resolution (as with functional Magnetic Resonance Imaging;
fMRI), or by the presence of additive responses when
stimuli occur in fast temporal succession (as with classical
event-related-potential (ERP) analyses). By combining stimulus
orientation decoding analyses with high temporal resolution
EEG measurements, we reveal that anticipatory states not only
enhance neuronal target representations, but also delay the
interference on these target representations caused by temporally
adjacent distractors, thereby possibly providing a protected
temporal window for extended target analysis.

Results
Anticipation facilitates perception in face of distraction. Thirty
healthy human volunteers performed a visual orientation
reproduction task in which the presence/absence of preparatory
auditory cues and temporally adjacent visual distractors were
orthogonally manipulated (Fig. 1a; Methods for details). Auditory
cues, when present, indicated that a target would follow after 500
ms. Because our main research questions regard largely unex-
plored territory, we deliberately used such simple (but highly
effective) temporal warning cues. While we will refer to the
influence of these cues as anticipation, we acknowledge up front
that this type of anticipation likely involves a mix of involuntary
increases in arousal and voluntary orienting of attention in time20.

The left panel of Fig. 1b depicts average reproduction errors
and highlights the utility of the cue in reducing distractor
interference. While we found no cueing benefit on performance
in distractor-absent trials (t(29)= 0.3021, p= 0.7647, d= 0.056),
reliable cueing benefits occurred in distractor-present trials (i.e.,
lower reproduction errors to cued vs. uncued targets), which
interacted with inter-stimulus-interval (ISI; F(2,58)= 13.784,
p= 1.266e-5, ηp

2= 0.322). Planned comparisons confirmed a
moderate cueing benefit at the 20-ms ISI (t(29)=−3.674,

p= 0.001, d=−0.671), a large benefit at the 100-ms ISI (t(29)
=−6.488, p= 4.214e−7, d=−1.184), but no longer any
benefit when distractors followed targets at an ISI of 200 ms
(t(29)=−0.011, p= 0.991, d=−0.002). Cueing benefits were also
significantly larger in distractor-present compared to distractor-
absent trials, both at 20-ms ISI (t(29)=−3.779, p= 7.267e−4,
d=−0.67) and at 100-ms ISI (t(29)=−7.314, p= 4.683e−8,
d=−1.335). (Note that ISIs of 20, 100 and 200 correspond to
SOAs of 70, 150 and 250 ms, respectively). Although reports
could only be programmed and executed after the target-probe
interval, we also observed robust cueing benefits on reaction times
(RT; Fig. 1b, right panel). However, these appeared much more
generic. Planned comparisons now also revealed a cueing benefit
in distractor-absent trials (t(29)=−6.869, p= 1.515e−7,
d=−1.254), and similar effects on distractors-present trials, at
least at the 100-ms ISI (t(29)=−6.633, p= 2.852e−7, d=−1.211)
and the 200-ms ISI conditions (t(29)=−3.899, p= 5.253e−4,
d=−0.712). No significant cueing benefit was observed at the
20-ms ISI condition (t(29)=−1.635, p= 0.113, d=−0.299),
although the interaction with ISI was not significant either
(F(2,58)= 2.833, p= 0.067, ηp2= 0.089).

Because we had anticipated (based on prior piloting) that the
100-ms ISI would be particularly effective, we had deliberately
used this ISI in the vast majority (80%) of distractor-present
trials. Unless otherwise specified, all reported analyses below were
performed exclusively on this set to ensure sufficient trial
numbers per condition.

To further interrogate the behavioural performance data, we
ran a mixture-modelling analysis21 quantifying the precision of
the orientation reproduction reports, alongside the proportion of
reports classified as a target report, a distractor report ('swapping
error'), or a random guess. Figure 1c shows these parameters as a
function of cue and distractor presence. For precision, we
observed a significant main effect of cue presence, with higher
precision for cued compared to uncued trials (F(1,29)= 7.514,
p= 0.01, ηp

2= 0.206), as well as a significant main effect of
distractor presence, with lower precision for distractor-present
trials (F(1,29)= 68.569, p= 3.959e−9, ηp2= 0.703). Although the
interaction between cue presence and distractor presence was not
significant (F(1,29)= 1.767, p= 0.194, ηp

2= 0.057), planned
comparisons revealed that cues increased precision in
distractor-present (t(29)= 3.598, p= 0.001, d= 0.657), but not
in distractor-absent trials (t(29)=−0.877, p= 0.388, d= 0.160).
In addition, we observed that cues increased the number of target
reports in the distractor-present (t(29)= 4.688, p= 6.035e−5,
d= 0.856), but not the distractor-absent trials (t(29)=−1.054,
p= 0.301, d=−0.192), this time also marked by a significant
interaction between cue and distractor presence (F(1,29)= 27.619,
p= 1.247e−5, ηp

2= 0.488). Complementing this increase in
target reports in distractor-present trials, we also found that
cues reduced the number of distractor reports in these trials
(t(29)=−4.360, p= 1.492e−4, d=−0.796). Finally, we observed a
significant interaction between cue and distractor presence also
for the proportion of guess reports (F(1,29)= 9.006, p= 0.006,
ηp

2= 0.237), where cues significantly reduced the proportion
of guesses in distractor-present (t(29)=−2.336, p= 0.027,
d=−426), but not in distractor-absent trials (t(29)= 1.054,
p= 0.301, d= 0.192).

The impact of the cue on performance in our task is further
visualised in Fig. 1d, showing response distributions aligned to
the target and distractor orientations. When there are no
distractors (left panel), response distributions look very similar
between cued and uncued trials. However, in face of temporal
distractors (right panel), cues increase the proportion of target
responses (solid lines), while reducing the proportion of
distractor responses (dashed lines). Collectively, these data thus
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demonstrate that cues can facilitate perception by overcoming
temporal distractors.

Decoding to individuate target and distractor processing. Our
main aim was to investigate the influence of the preparatory cues
and temporally competing distractors on the amount of sensory

information contained in the EEG responses regarding the
identity (orientation) of target and distractor stimuli. To this end,
we applied a time-resolved decoding approach. Before turning to
the influence of the preparatory cues, we explain our decoding
approach and highlight its utility in individuating and tracking in
time both target and distractor representations.
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Per time point, we calculated the multivariate Mahalanobis
distance (using electrodes as dimensions) between the left-out
trial (the test trial) and all other trials (the reference or training
trials)— in which the target or distractor orientation was at a
particular angular difference from the test trial. By evaluating this
multivariate distance metric for a range of angular differences

between test and reference trials, we were able to reconstruct
orientation tuning profiles (as in ref. 22). We mean-centred
(across all angular differences) the obtained distances and
inversed the data such that lower distances (reflecting higher
pattern similarity) are plotted as positive values (as in ref. 22).

Fig. 1 Task design and behavioural performance. a Visual orientation reproduction task with preparatory auditory cues and visual distractors. Participants
reproduced the orientation of the visual target grating using a computer mouse. In half the trials, targets were preceded by an auditory warning cue.
Targets could be followed by no distractors, or by a visual distractor at one of three ISIs (20, 100, 200ms). Target-probe intervals and inter-trial intervals
were drawn independently of cue and distractor presence. b Average orientation reproduction errors (in degrees) and reaction times (in ms) for cued and
uncued trials, as well as their difference, as a function of distractor presence and ISI. c Mixture-modelling parameters as a function of cue and distractor
presence. 'c+' for cue present, 'd−' for distractor absent, and so on. d Response distributions centred on the target and the distractor orientation. To ensure
sufficient trial numbers, we only considered distractor-present trials in the 100-ms ISI condition in panels c and d. Error bars represent ±1 s.e.m. calculated
across participants (n= 30). ISI, inter-stimulus-interval; SOA, stimulus-onset-asynchrony. *p < 0.05; **p < 0.01; ***p < 0.001. Scattered data points in
panels b and c show individual participant data. To increase visibility, individual data points were slightly jittered in the horizontal plane
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Figure 2a shows the time-resolved tuning profiles separately for
all targets without a distractor (left), all targets with a distractor
(middle), as well as for all distractors (right). Clearly, neural
responses evoked by the targets (left two panels) and the
distractors (right panel) are more similar to other targets/
distractors that have similar orientations (red), relative to other
targets/distractors that have dissimilar orientations (blue). Thus,
despite that fact that the latter two conditions always contained
two stimuli in close temporal succession, both target and
distractor identities (which were drawn independently of each
other across trials), were decodable with high temporal resolution
from the EEG.

Figure 2b shows the tuning profiles associated with the data in
panel a, averaged over successive 100 ms time windows. To
capture this tuning profile (orientation decoding) in single metric
per time point, we simply multiplied the (mean-centred) tuning
profiles with an inverted cosine function and averaged the result
along all angular differences between test and reference trials (as
in ref. 22,23). Figure 2c shows the time courses of this summary
statistic associated with the tuning profiles in Fig. 2a. We report
on this summary statistic in all further analyses.

To concentrate our decoding analysis on visual activity, we
limited the decoding analysis to data from the eight most
posterior electrodes (inset Fig. 2a), which also showed the largest
ERP. To further substantiate the visual origin of the orientation
decoding, we additionally ran this analysis separately for each of
the electrode rows. As shown in Fig. 2d (for all targets), this
confirmed a predominantly posterior (putatively visual) origin.

Anticipation boosts target coding and distractor resistance. We
next evaluated EEG orientation decoding as a function of cue and
distractor presence. We considered six (non-mutually exclusive)
scenarios by which anticipatory states may help prioritise
relevant over irrelevant sensory inputs that compete in time
(Fig. 3). As we detail below, we found evidence in support of
scenarios 1 (enhanced target decoding) and 6 (delayed distractor
interference).

Figure 4a depicts time-resolved orientation decoding for each
of the experimental conditions, for both targets and distractors.

Cluster-based permutation statistics24 were used to evaluate the
main effects of cueing (cued vs. uncued trials), distractor presence
(distractor-present vs. absent trials) and their interaction (i.e., the
cueing effect in distractor-present vs. absent trials), while
circumventing the multiple-comparisons encountered along the
time axes. Although we below state the time ranges of the
significant clusters as they were observed in the observed (non-
permuted) data, we note that this cluster-based permutation test
does not warrant inferences regarding significant time ranges, as
it evaluates whether the compared conditions are 'exchangeable'
or not—and, for this evaluation, it considers the full time
range24,25.

First, we observed a main effect of cue presence (light blue), as
reflected in better orientation decoding for cued compared to
uncued targets (cluster p= 0.006, cluster-interval in non-
permuted data: 118 to 248 ms post target). This is in line with
scenario 1 in Fig. 3. In contrast, we found no significant cueing
effect on distractor decoding (if anything, we observed a
numerical increase, rather than a decrease, arguing against
scenario 2 in Fig. 3). Second, we observed a main effect of
distractor presence (pink), as reflected in reduced target decoding
for distractor-present compared to distractor-absent trials (i.e.,
distractor interference; cluster p= 0.004, cluster-interval in non-
permuted data: 262 to 414 ms post target). Finally, we observed
an interaction between cue and distractor presence (green; cluster
p= 0.03, cluster-interval in non-permuted data: 196 to 268 ms
post target). This effect was constituted by a larger cueing benefit
for distractor-present trials, or, equivalently, a larger distractor
interference for cue-absent trials. While we note that the main
effect of distractor presence on target decoding was maximal in
the time window in which distractor decoding itself was also
maximal, the interaction effect on target decoding was maximal
in the time window in which the distractor decoding emerged
(Fig. 4a). All three effects were again largely confined to the
posterior electrode rows (Fig. 4c), thus enhancing their
'plausibility'26. We also note that these effects were largely
invariant to our choice of data smoothing (Supplementary Fig. 1)
or baselining (Supplementary Fig. 2).

Figure 4b shows the time courses of distractor interference on
target decoding (i.e., target decoding in distractor-present minus
distractor-absent trials), and suggests that the observed interac-
tion may be best understood as a delayed distractor interference
effect (scenario 6 in Fig. 3). While both cued and uncued trials
ultimately reach a similar level of distractor interference (unlike
scenario 3 in Fig. 3), the onset of this interference appears delayed
in cued trials. To further quantify this delay, we estimated the
latencies at which the cued and uncued interference effects first
reached the value associated with 50% of the maximal
interference value (averaged over both conditions), and used a
Jackknife approach (as described in ref. 27) to evaluate this delay
statistically. This confirmed a 77 ± 18.57 ms (mean ± SE) delay in
cued compared to uncued trials (Jackknife t(29)=−4.145,
p= 6.74e−5). Moreover, although we initially selected 50% of
the maximum interference value for this analysis, it is reassuring
to note that similar statistics were obtained when estimating
latencies from values ranging anywhere from 10 to 70% of the
maximum interference value (right panel Fig. 4b).

These results suggest that cues are particularly useful for
protecting target analysis from distraction. To test this possibility
more directly, we performed another complementary analysis.
We reasoned that, if cues protect target analysis from
interference, then target representations in distractor-present
trials with a cue should more closely resemble distractor-absent
trials than should distractor-present trials without a cue (i.e., in
distractor-present trials, cues should make the target representa-
tion appear more as if there was no distractor). To test this
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prediction, we re-evaluated target orientation decoding, but this
time only included distractor-absent trials (irrespective of cue
condition) in our reference ('training') set. This confirmed that
target orientation could be better decoded from cued compared to
uncued distractor-present trials (Supplementary Fig. 3).

Although limited trial numbers for the 20-ms and 200-ms ISI
distractor conditions hampered statistical sensitivity for quantify-
ing cueing benefits on decoding, we did observe qualitatively
similar patterns in these conditions whereby, descriptively,
distractor interference immediately after the respective distractor
time appeared attenuated by the cue (Supplementary Fig. 4). This
appeared particularly clear in the 20-ms ISI condition for which
we also observed a similar cueing benefit on behavioural accuracy.
In this condition we further noted substantially larger distractor
interferences in target decoding (Supplementary Fig. 4) in further
agreement with the behavioural performance data.

In contrast to scenarios 4 and 5 in Fig. 3, Fig. 4a showed no
evidence for a cueing effect on the latencies of either target or
distractor decoding alone (target: Jackknife t(29)= 0.251,

p= 0.299; distractor: Jackknife t(29)= 0.342, p= 0.316). We
additionally ran a cross-temporal decoding analysis whereby we
only included uncued trials in our reference sets and tested
decoding performance on cued trials. Decoding was always best
when reference and test times corresponded (Supplementary
Fig. 5), thus providing further evidence that the EEG 'orientation
code' does not appear to shift forward (for targets) or backward
(for distractors) in time with cueing.

Because our decoding was based on the broadband visual
responses, a natural question is whether the observed cueing
effects on target decoding and distractor resistance may simply be
carried over from amplified ERP responses in cued trials (for
example, by virtue of higher signal-to-noise ratio). When
evaluating ERP amplitudes (Fig. 5a, c), we did also observe a
main cueing effect that occurred at a similar time window as the
main cueing effect on target decoding (putatively reflecting
amplification of the classic N1 potential). Interestingly, however,
across our 30 participants, the magnitude of this cueing effect on
the ERP appeared uncorrelated with the magnitude of the cueing

Main effect Cue

O

PO

P

CP/TP

C/T

F

Fp

Main effect Distractor Interaction

Time after target (ms)

200 4000 200 4000 200 4000

a

c

0

2

4

6

8
e–3

e–3 e–3 e–3

e–4

e–3

O
rie

nt
at

io
n 

de
co

di
ng

 (
a.

u.
)

200 300 400 5000 100
Time after target (ms)

–6 / –10 / –15

Δ
target 

decoding (a.u.)

6 / 10 / 15

c+/d–

c–/d–
c–/d+

c+/d+

c+

Cluster p < 0.05

0 100 200 300 400 500

0

0.5

1

0
Jackknife
T value

–0.5

10 %

50 %

avg
min

–1

5

Distractor onset

Time after target (ms)

D
is

tr
ac

to
r 

in
te

rf
er

en
ce

 
(Δ

ta
rg

et
 d

ec
od

in
g:

 d
is

tr
+

 v
s.

 d
is

tr
–) p 

<
 0

.0
5

%
 of avg m

inim
um

 used 
for latency-shift analysis

b

Δt
ar

ge
t 

de
co

di
ng

 (
a.

u.
) 1 1

1

–1
–1

Cued
Uncued

c–

Target decod.

Distr. decod.

Fig. 4 Anticipation increases target identity information and delays distractor interference in early visual EEG responses. a Time courses of target and
distractor orientation decoding (summary statistic) as a function of cue presence (blue for cued, 'c+'; red for uncued, 'c−') and distractor presence (solid
for distractor-absent, 'd−'; dashed for distractor-present, 'd+'). Horizontal lines mark where the clusters of the contrasts that survived cluster-based
permutation statistics were observed in the non-permutated data for the main effects of cue presence (light blue), distractor presence (pink), as well as
their interaction (green). All clusters involve target decoding; no significant cueing effect cluster was observed for distractor decoding. b Time courses of
the distractor interference effect on target decoding. Distractor interference is quantified as the difference in target decoding for distractor-present vs.
absent trials. Right panel shows Jackknife T values for latency differences between cued and uncued trials at thresholds ranging from 10 to 100% of the
maximal interference effect. Maximal interference was calculated as the lowest value in the average of the cued and the uncued trials (denoted 'avg min').
c Main and interaction effects as a function of time and electrode row. The interaction is expressed as the difference between cue-present vs. absent trials
in distractor-present vs. absent trials. Upper plots show decoding based on the same channels as in a (see Fig. 2a). Shadings represent ± 1 s.e.m. calculated
across participants (n= 30)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03960-z

6 NATURE COMMUNICATIONS |  (2018) 9:1449 | DOI: 10.1038/s41467-018-03960-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


effect on decoding (Fig. 5d; r=−0.093, p= 0.624). In
further contrast to the decoding results, we also did not
observe an interaction between cue and distractor presence on
the ERP that could account for the increased distractor
resistance observed in decoding (Fig. 5b, c) or behaviour (Fig. 1).
We did observe a clear effect of distractor presence (Fig. 5a-c),
which was expected given summation of target and distractor
evoked responses (this contrasts starkly with the decoding
analysis where we could individuate target from distractor
representations).

Attenuated alpha oscillations facilitate target prioritisation. A
key marker of attentional orienting in human M/EEG measure-
ments is the anticipatory attenuation of 8–14 Hz alpha oscilla-
tions in relevant sensory brain areas28–33. Here we link such brain
states in posterior electrodes to increased target decoding (across
participants), as well as distractor resistance (across trials),
thereby corroborating (using orthogonal analyses) the above
described influences of the anticipatory cues.

Figure 6a shows the time-resolved and frequency-resolved
difference in spectral power between cued and uncued trials,
averaged over all posterior electrodes. Following a transient
increase in low-frequency power with a frontal-central topogra-
phy (left topography Fig. 6a) that likely reflects processing of the
auditory cue, we observed a decrease in 8–14 Hz power with a
more posterior topography (right topography Fig. 6a). This likely
reflects the instantiation of an 'attentional brain state'. This state

appears to emerge before target onset (in line with above
references), although in our data it becomes most prominent
during target and distractor processing (likely as consequence of
our relatively short cue-target interval). Corroborating this
attentional interpretation, we found that those participants who
showed the largest cue-induced alpha attenuation, also showed
the largest cue-induced reductions in RT (expressed as the RT-
ratio between cued and uncued trials), yielding a positive
correlation (Fig. 6c; cluster p= 0.005, cluster-interval in the
non-permuted data: −180 to 220 ms post target; frequency range:
6 to 11 Hz). This correlation has a clear posterior topography
(topography Fig. 6b).

To address whether the cue-induced modulation of this brain
state is also related to the cue-induced amplification of target
decoding, we also correlated each time-frequency sample in
Fig. 6a with the participant-specific magnitude of the main cueing
effect on target decoding. Figure 6c shows the resulting
correlation map. Participants with a stronger cue-induced alpha
attenuation also have a larger cueing effect on decoding; resulting
in a negative correlation (cluster p= 0.024, cluster-interval in the
non-permuted data: −20 to 300 ms post target; frequency range: 6
to 11 Hz). This correlation also has a clear posterior topography
(topography Fig. 6c), and appears not to be driven by outliers
(scatter plot Fig. 6c).

We additionally evaluated the relation between alpha states and
target decoding across trials. We focused on all uncued trials
(where spontaneous variability is expected to be largest, and
where there is no contamination with cue processing) and sorted
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the trials by alpha amplitude in the 500-ms pre-target window.
Figure 6d shows target decoding as a function of both pre-target
alpha amplitude (median split; inset for associated spectra) and
distractor presence, while Fig. 6e shows the corresponding
distractor interference time courses (cf. Fig. 4a, b) as a function
of pre-target alpha state. This separation by pre-target alpha state
suggests that not only cues (as in Fig. 4), but also spontaneous
states of low-amplitude alpha oscillations can reduce the
immediate interference by the distractor. Figure 6f quantifies
this relation between pre-target amplitude and target decoding on
the basis of a trial-wise correlation. This confirmed that the
influence of pre-target alpha amplitude appears particularly
prominent when distractors were present, whereby attenuated
alpha states (lower amplitudes) are associated with a 'protective'
effect (better target decoding) (Fig. 6f, cluster p= 0.02,
cluster-interval in the non-permuted data: 186–307 ms
post-target). This is highly reminiscent of the interaction

effect observed between cue and distractor presence (Fig. 4a).
In fact, we noted a strikingly similar time window between both
effects (as highlighted in Fig. 6f). This analysis thus further marks
the utility of anticipatory states—either after cues, or as reflected
in 'spontaneously' attenuated alpha oscillations—on preserving
target decoding in the face of temporal distractors.

These correlations cannot be trivially explained by an increase
in signal variance due to higher alpha amplitude. To take away
this potential concern, all presented decoding analysis were
performed on the time-domain signal from which we had
removed the 8–14 Hz band using a band-stop filter (we confirmed
that qualitatively similar results were obtained when no filter was
applied). At the same time, several recent studies have shown that
not only target location34 but also orientation35 can be decoded
also from topographical maps of alpha amplitude. While we could
confirm such alpha-based orientation decoding in our data, this
appeared less robust and did not yield clear conditional

f (Hz)

a

5

10

15

20

25

30

35

40

45

50

–400 –200 0 200 400 –10

P
ow

er cue vs. no cue (Δ
%

)

10

Time relative to target (ms)

–400 –200 0 200 400

Time relative to target (ms)

F
re

qu
en

cy
 (

H
z)

c

5

10

15

20

25

30

35

40

45

50

–400 –200 0 200 400

Time relative to target (ms)

F
re

qu
en

cy
 (

H
z)

Cluster p = 0.02

d e

0 100 200 300 400 500

0

2

4

6

8

10

0 100 200 300 400 500

0

0.03

–0.06

Time after target (ms)Time after target (ms)
C

or
r.

 w
ith

 p
re

-s
tim

 α
 a

m
pl

. (
r)

T
ar

ge
t d

ec
od

in
g 

(a
.u

.)

Low α / d–

High α / d–

Cluster p = 0.02

10 30
0

5

A
 (

μV
)

Pre-target
spectra

Interaction
window
Fig. 4

Distr +
Distr –

0

0

3

–20 Δα

ΔD
ec

od
in

g

e–3

e–3 e–3

b

5

10

15

20

25

30

35

40

45

50

–0.5

C
orrelation (r)

0.5

F
re

qu
en

cy
 (

H
z)

Cluster p = 0.005

0–20 Δα

R
T

 r
at

io

0 to 300 ms
8 to 14 Hz

–400 to –200 ms
5 to 10 Hz

0 to 300 ms
8 to14 Hz

–0.5

0.5

Correlation with main cueing effect 
on target decoding

C
orrelation (r)

Correlation with main cueing effect
on RTCue-induced modulation

0 to 300 ms
8 to14 Hz

0.4

1

0

0
Jackknife
T value

Time after target (ms)

Low α
High α

D
is

tr
ac

to
r 

in
te

rf
er

en
ce

 
(Δ

ta
rg

et
 d

ec
od

in
g:

 d
is

tr
+

 v
s.

 d
is

tr
–) Distractor onset

avg
min

p 
<

 0
.0

5

10%

1

–1

–2

5

f

0 100 200 300 400 500

Low α / d+ 

High α / d+

Fig. 6 Attenuated posterior alpha oscillations predict enhanced target decoding (across participants) and distractor resistance (across trials). a Time-
frequency plot of the cue-induced modulation in spectral power, expressed as a percentage change (i.e., ((cued−uncued)/(uncued))×100). Data from all
posterior electrodes marked in the inset in the right top. Topographies show modulations from 5 to 10 Hz in the interval between −400 to −200ms (left)
and from 8 to 14 Hz in the interval between 0 and 300ms post-target (right). Topographies were scaled according to the same colorbar as the time-
frequency plot. b Time-frequency plot of the correlation (across participants) of the cue-induced modulation with the magnitude of the main cueing effect
on reaction time (RT; expressed as a ratio between cued and uncued RTs). c Similar to panel b, except showing the correlation with the main cueing effect
on target decoding (averaged over 118 to 248ms post-target; see Fig. 4a) The participant-specific magnitudes of the alpha modulation used for the scatter
plots in panels b and c were extracted from the significant time-frequency clusters and only serve to show the underlying distributions. d Time courses of
target decoding in uncued trials as a function of distractor presence and pre-target alpha amplitude (median split). Trials were sorted by alpha amplitude
averaged over all posterior channels in the 500ms pre-target interval. Inset shows associated pre-target spectra. e Distractor interference time courses as
a function of pre-target alpha state. Same conventions as for Fig. 4b. f Time courses of the trial wise correlation between pre-target alpha amplitude and
target decoding, separately for distractor-present and absent trials. Shadings represent ± 1 s.e.m. calculated across participants (n= 30). The green shaded
band in panel f highlights the similarity of the alpha-dependent decoding effect with the cue-dependent decoding effect (the interaction effect) in Fig. 4

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03960-z

8 NATURE COMMUNICATIONS |  (2018) 9:1449 | DOI: 10.1038/s41467-018-03960-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


differences as a function of cue and distractor presence
(Supplementary Fig. 6).

We also investigated potential cue-induced resetting of
oscillatory phase36, as well as potential relations between
pre-target alpha phase and target decoding, as the phase of alpha
oscillations may also critically shape perception37. However,
beyond a clear phase-reset in the lower frequencies (which, again,
most likely reflected the auditory ERP), we did not find
compelling evidence for anticipatory phase-alignment following
the cue, nor did we observe compelling associations between
pre-target phase and target decoding.

Correspondence between decoding and behavioural perfor-
mance. In the simplest perceptual task one would expect the
quality of target decoding to correlate with behavioural perfor-
mance on a trial-by-trial basis. In our task, however, many factors
are likely to influence behavioural performance, of which the
perceptual processing that takes place during initial encoding is
but one. Behavioural performance was likely influenced by many
additional factors that are not well captured by the early EEG
responses that we focused on (such as post-target lapses in short-
term memory, post-target changes of mind as to which item was
the target, interference by the probe, motoric errors, etc.). This
may explain why we were not able to demonstrate compelling
and consistent correlations between the trial-by-trial variability in
the magnitude of target decoding and in behavioural performance
(Supplementary Fig. 7). Noteworthy, however, at the level of
condition averages, the patterns in target decoding and in the
behavioural reproduction accuracy showed excellent correspon-
dence—both measures showed better performance for cued trials,
larger cueing effects for distractor-present trials, prominent
interference by the presentation of distractors and the largest
interference for the earliest distractors.

Discussion
Combining multivariate decoding and high temporal resolution
EEG enabled us to investigate how anticipation influences the
amount of sensory information extracted by the brain from target
stimuli and temporally adjacent competing distractors. We
observed two complementary effects—enhanced target identity
coding and delayed interference from temporally adjacent
distractors. Enhanced target processing and distractor resistance
were furthermore each correlated with alpha oscillatory markers
of preparatory attention, thus linking these target decoding effects
to two independent operationalisations (cueing and variability in
neural dynamics) of 'anticipatory state'. These effects emerged
from a larger set of possible mechanisms by which anticipatory
states may help resolve competition between sensory inputs that
compete in time.

The relevant 'coding variable' for perception is not carried by
response amplitude, but instead by stimulus identity information
contained in these responses38. Previous fMRI work has already
demonstrated that anticipatory expectations about features
defining target identity can increase representational information
in human visual cortex39. Our results show that even simple
anticipation of stimulus timing, with no expectation that enables
any feature-related template to be established, also significantly
boosts target representations. Furthermore, by resorting to high
temporal resolution EEG measurements, our results reveal that
this occurs already during early sensory processing stages. Spe-
cifically, this 'representational boost' peaked around the classical
N1 time range. Interestingly, however, while we also observed a
parallel cueing effect on ERP amplitude (an amplified N1
response), the magnitude of the cueing effects on target
identity decoding and on ERP N1 amplitude were uncorrelated.

This suggests that the influence of anticipatory cues on ERP
amplitudes and on target identity decoding are mediated by
complementary aspects of the EEG, and that the boost in target
decoding cannot be simply attributed to a boost in response
amplitude.

An open question remains what physiological mechanisms
may underlie the observed enhancement in target decoding. As
likely sources for this modulation, we consider a combination of
heightened level of arousal, anticipatory orienting in time2,3 and
preparatory upregulation of neuronal populations coding for the
relevant feature dimension (i.e., orientation channels). We
speculate that each of these possible 'causes' may in turn be
mediated by upregulation of the cholinergic system40 (as well as
possibly the norepinephrinic and dopaminergic systems41), in
line with the observation that basal forebrain stimulation
similarly enhances discriminability of visual input in rodents42. In
the latter work, increased discriminability of visual responses was
furthermore linked with decorrelation of neuronal firing rates in
visual cortex. It is conceivable that macroscopic states of
attenuated alpha oscillations (i.e., alpha 'desynchronization'43)
provide a non-invasive index of such decorrelated visual
activity44.

In addition to a direct influence of anticipatory cues on target
processing, we also observed a second effect that depended on
distractor presence. While distractors always interfered with
target decoding, this interference was delayed when targets
could be anticipated. Anticipation may therefore enable adaptive
perception by allocating a 'protective temporal window' from
distractor interference, thereby possibly extending the high fide-
lity processing of the task-relevant target information and further
orthogonalising target and distractor representations. Although
speculative, similar protective windows may also contribute to
phenomena such as the 'attentional blink'45. Interestingly, this
delayed interference on target decoding by distractors occurred
despite the fact that distractor decoding and distractor ERPs
themselves appeared not to be delayed. How these observations
are to be reconciled remains an important question for future
research. One possibility is that, following anticipatory cues,
distractor input is being routed to neural populations that show
less overlap with those processing targets (despite the fact that
both targets and distractors always occupied the same part of
visual space). Another possibility is that this reflects increased
investment in target processing only until sufficient target
orientation information is extracted (after which distractor
interference is 'tolerated' again). In future work, it will be
interesting to evaluate whether the extent of the delayed
interference varies with the amount of time required for
perceptual processing; becoming shorter for easier tasks and
longer for harder tasks.

Enhanced target decoding (across participants) and distractor
resistance (across trials) were each also related to the attenuation
of posterior alpha oscillations—an electrophysiological proxy for
attentional engagement in human extracranial M/EEG measure-
ments28–33. This was the case both for the task-related modula-
tion by anticipatory cues (across participants), as well as for the
spontaneous fluctuations in the absence of cues (across trials)—
although variability in the cue-induced modulation across parti-
cipants only correlated significantly with the main cueing effect
on decoding, whereas the spontaneous variability across trials
only correlated with the target decoding in distractor-present
trials. Resolving this apparent discrepancy remains an interesting
target for future research as it suggests there may be distinct
sources of variability in posterior alpha oscillations that may have
different bearings on perception. Still, by linking such states to the
quality of content-specific early visual brain responses, the cur-
rent work already makes an important extension to a growing
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body of evidence suggesting a role for such states also in shaping
response amplitudes46 underlying neurophysiology47,48, and
perceptual33,49, as well as mnemonic50,51 performance.

A recent study also evaluated target decoding in the presence of
distractors that were presented during a working memory delay52

(for related behavioural studies see also ref. 53,54). This study
nicely demonstrated that the impact of distractors may be dif-
ferent in different brain areas, in their case impairing decoding of
mnemonic representations in visual areas, while leaving them
largely preserved in parietal areas. In our data, all effects occurred
in posterior sites where decoding also peaked. In future studies, it
will be interesting to resolve the specific areas in which these
different effects occur, as well as to compare distractor-dependent
effects that occur during time frames of encoding (as in the
current work) with those during subsequent mnemonic retention
(as in ref. 52).

To maximise sensitivity, we focused on a set up with simple
(but highly effective) temporal warning cues and with large
centrally presented stimuli. Because of this, we cannot be sure
whether our effects are driven primarily by changes in arousal,
voluntary orienting of temporal attention or both. Still, by linking
increased target decoding and distractor resistance observed with
cueing also to states of attenuated posterior alpha oscillations,
these data do provide a direct link to the voluntary attention
literature where such brain states are commonly observed.
Moreover, it should also be noted that the influence of the cues
appeared largely specific to the targets and was particularly pro-
nounced in distractor-present trials. This shows that the cues did
more than merely boost all sensory information in a non-selective
way. Rather, they specifically helped separating targets from
distractors in time (an 'attentional' function). In future studies, it
will be interesting to also track target and distractor identities in
relation to more refined attentional and stimulus manipulations
(e.g., embedding targets in streams of distractors, cueing different
foreperiods, manipulating also spatial and feature-based
expectations, etc.). Indeed, as this work showcases, high
temporal resolution M/EEG stimulus identity decoding provides
a powerful tool for reaching out to previously inaccessible ques-
tions regarding cognitive influences on sensory processing in
humans (for similar arguments see ref. 14,15,55,56). As this work
highlights, this will prove particularly advantageous in tasks with
rapidly changing displays as the decoded output appears largely
robust against additive responses (unlike classical ERP responses;
compare Fig. 4a with Fig. 5a) while maintaining excellent
temporal resolution (unlike fMRI responses).

Methods
Participants. Thirty healthy human volunteers (10 female; age range 19–35; mean
age 25.5 years) participated in the study. This sample size was chosen based on a
prior study that used the same decoding methodology and that yielded robust
group-level conditional differences22. All participants had normal or corrected-to-
normal vision and either held a university degree or were enrolled in university at
time of participation. One participant was left handed. Data from all participants
were retained for analysis. All participants provided written informed consent prior
to participation and were reimbursed £10/h All experimental procedures were
reviewed and approved by the Central University Research Ethics Committee of
the University of Oxford.

Stimuli, procedure and task. Participants were seated in front of a monitor
(100-Hz refresh rate) at a viewing distance of approximately 90 cm. We presented
both visual and auditory stimuli (Fig. 1a). Visual grating stimuli consisted of six
square wave cycles with a total diameter of 18 cm (11.4 degrees visual angle) such
that the spatial frequency was approximately 0.53 cycles per degree. We randomly
interleaved two types of gratings that were in anti-phase (gratings were either black
or white centred), and over which we collapsed in all analyses. Grating orientations
were randomly drawn, but were redrawn if within ±5 degrees from cardinal (0, 90,
180 degrees). We used the same stimuli for target, distractor and probe displays
(see Fig. 1a), although their orientations were independently drawn. Distractors
were presented in half the trials and were defined simply by their serial position

(i.e., the second grating). Distractors thus acted as visual masks, with the main
difference with conventional masks being that distractors consisted of oriented
gratings too, enabling us to decode and track both target and distractors identities.
Targets and distractors were always presented for 50 ms each, and separated by an
ISI of 20, 100 or 200 ms (on distractor-present trials), corresponding to a stimulus-
onset-asynchrony (SOA) of, respectively, 70, 150 and 250 ms. Based on a prior
pilot, we anticipated that the 100-ms ISI would yield the largest cueing benefit and
we therefore used this ISI in the majority (80%) of distractor-present trials (Fig. 1a).
Probe displays always appeared 500 ms after target offset (to avoid response-related
contamination of the EEG traces immediately following target onset) and remained
on the screen until the participant completed their orientation dial-up using the
mouse (or until dial-up time ran out, see below). Auditory cues occurred in half the
trials and consisted of 500-Hz pure tones that were presented for 50 ms. Cues
indicated that the target would occur after 500 ms, but did not predict whether a
distractor would also be present (i.e., cue and distractor presence were manipulated
orthogonally). Inter-trial intervals (ITIs), defined as the interval between the
response and the next target, did not differ between cue present and absent trials.
To maximise the effect of the cues, ITIs were drawn from a truncated negative
exponential distribution ranging between 600 and 5000 ms, with a mean of 1000
ms. Because this distribution approximates a flat hazard rate, target onset times
were hard to predict, unless a cue was presented.

Participants’ task was to reproduce the perceived orientation of the target
stimulus as accurately as possible. To probe perception, we placed a probe grating
on the screen, at a randomly drawn orientation. Participants used the computer’s
mouse to dial-up the perceived target orientation and clicked once satisfied.
Participants were given unlimited time to decide what to report once the probe
display appeared, but had to complete their dial-up within 2500 ms once they
initiated their response. At response completion, feedback was provided by turning
the fixation cross green for 300 ms for responses closer than ±15 degrees from the
actual target orientation (with brighter green colours for more accurate responses);
and red otherwise. In total, participants completed 30 blocks of 40 trials each,
lasting about 1 h.

Behavioural performance analysis. We analysed both accuracy and RT. Accuracy
was quantified as the absolute angular deviation between target orientation and
reported orientation, while RT was quantified as the time from probe-onset to the
first movement of the mouse to start the dial-up. We also analysed our circular
reproduction responses using Bays’ three-parameter mixture model21 that models
both the precision of the reports, as well as the respective proportions of target,
distractor and guess responses. Finally, we obtained densities of responses relative
to both target and distractor orientations. For this, we simply quantified the
proportion of responses that were at a particular angular distance from either the
target or the distractor. We evaluated response density in bins of ten degrees that
we advanced from −90 to 90 degrees in steps of one degree.

EEG acquisition and analysis. EEG was acquired with Synamps amplifiers and
Neuroscan acquisition software (Compumedics Neuroscan, North Carolina, USA).
We used a custom 38-channel set up, sampling all electrodes posterior to the
midline from the international 10–10 system and the rest from the associated
10–20 system; thus providing highest density at posterior sites of interest. Data
were referenced to the left mastoid during recording, and re-referenced to an
average-mastoid reference offline. The ground was placed on the left upper arm.
Two bipolar electrode pairs recorded EOG. One pair was placed above and below
the left eye (vertical EOG), whereas the other pair was placed lateral of each eye
(horizontal EOG). During acquisition, data were band-pass filtered between 0.1
and 200 Hz, digitised at 1000 Hz and stored for offline analysis. All analyses were
run on data with a sampling rate of 1000 Hz. Participant-specific trial-averaged
ERP and decoding time courses were subsequently smoothed with a Gaussian
kernel with a 15 ms standard deviation. This allowed us to bridge variability in the
timing of the responses across participants, without smoothing away the essential
characteristic of the ERP waveform (i.e., the distinct peaks). Such smoothing has
similar consequences as low-pass filtering, which is also common in ERP research.
We did confirm that our main results were largely invariant to this particular
choice of smoothing (Supplementary Fig. 1).

Data were analysed in Matlab using a combination of FieldTrip57 and custom
code. During data preprocessing, we cut out our epochs of interest (relative to
target onset), and removed excessively noisy epochs based on visual inspection of
the signal’s variance across trials and channels. Artefact rejection was performed on
all trials, without knowledge of the conditions to which trials belonged. We
additionally removed all trials in which targets and distractors may not have been
perceived properly as a result of blinking. To this end, we iteratively removed all
trials in which the vertical EOG contained samples with a z-score higher than five
anywhere within the 400-ms window surrounding target onset. We did not
explicitly cull for eye movements as the task was presented at fixation (although
trials with large artefacts as a result of saccading would have likely been removed
anyways based on our variance-based artefact rejection). After artefact rejection,
there were 1042 ± 24 (mean ± 1 s.d.) trials left. Broken down by our main four
conditions, numbers were: 291 ± 8 (cued, no distractor), 288 ± 7 (uncued, no
distractor), 233 ± 5 (cued, distractor at 100-ms ISI) and 230 ± 7 (uncued, distractor
at 100-ms ISI).
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Time-frequency analysis was based on a short-time Fourier transform of
Hanning tapered data. We estimated frequencies between 2 and 50 Hz in 1-Hz
steps, using a 400-ms sliding time window that was advanced over the data
in 80-ms steps. For relating pre-target alpha power to decoding, we also estimated
alpha amplitude in a 500 ms pre-target window. Based on previous results using
similarly short windows51, we decided to use a relatively broad alpha range between
8–14 Hz. This also enabled us to use a multi-taper method58 to obtain reliable
single-trial estimates.

EEG orientation decoding. Stimulus orientation decoding was based on the
broadband time domain signal that was preprocessed in two ways. First, a 250-ms
pre-target trial-specific baseline was subtracted. We chose to position our baseline
in the pre-target period because this interval is closest in time to the data period of
interest (the target/distractor processing period), whilst not in itself containing any
information regarding target/distractor identity. We did, however, confirm that
highly similar results were obtained when positioning the baseline pre-cue, or when
changing the duration of the baseline or subtracting the median as opposed to the
mean baseline value from each trial (Supplementary Fig. 2). Second, the classical
alpha band was filtered out of this signal. This was done to ensure that conditional
differences in decoding could not be attributed to conditional difference in the
signal’s variance related to conditional differences in alpha amplitude (that we
anticipated and observed). This is particularly relevant for interpreting the
observed correlations of alpha amplitude (across trials) and amplitude modulation
(across participants) with target orientation decoding. For filtering, we used an
8–14 Hz band stop Butterworth filter (two pass, filter order 4).

Visual orientation decoding was based on the multivariate (across electrode)
Mahalanobis distance metric22,59 using the data from the eight most posterior
electrodes that showed the largest evoked response (O1, Oz, O2, PO7, PO3, POz,
PO4, PO8). For generalisation, we applied a leave-one-out procedure. Because this
procedure provides a trial-wise decoding estimate, this also enabled subsequent
trial-wise correlation analyses with pre-target alpha amplitude and behavioural
performance. Per trial, we calculated the Mahalanobis distance between that trial
(the test trial) and all other trials (the reference or training trials) in which the
target orientation was at a particular angular difference from the test trial. We did
this for 19 bins of reference trials centred at angular differences ranging from −90
to +90 degrees (i.e., in steps of 10 degrees). For each bin (i.e., each orientation
wedge), we included reference trials within ±22.5 degrees of the bin’s centre. While
we thus allowed substantial overlap between our bins (yielding smoother tuning
profiles), we confirmed that highly similar results were obtained when not allowing
any overlap between reference-bins. We then mean-centred the resulting distances
across all angular bins and averaged the outcome across all trials within each of the
experimental conditions. We ran this analysis separately for each time point, thus
resulting in a time-resolved orientation tuning profile. For interpretability, we
inverted this profile such that angular bins for which neuronal responses that were
more similar to the test trial (and thus associated with a lower Mahalanobis
distance) were associated with larger values. To capture orientation decoding in a
single metric (per time point), we multiplied the mean-centred tuning profile with
an inverted cosine function and averaged the result across all angular difference
bins (as in ref. 22,23). Due to low trial numbers, we did not consider the distractor-
present trials with an ISI of 20 or 200 (these served primarily to demonstrate a
temporally-specific effect of distractor timing on performance), except for one
supplementary analysis presented in Supplementary Fig. 4. Target decoding
incorporated all remaining trials in the reference ('training') set, whereas distractor
decoding incorporated all remaining distractor-present trials.

Statistical analysis. Behavioural accuracy, RT and each of the mixture modelling
outputs were compared between conditions using conventional repeated-measures
analysis of variance, combined with paired samples t-tests.

Decoding time courses were statistically compared between conditions using
cluster-based permutation tests24 that effectively deal with the multiple
comparisons encountered along the time axes. Specifically, this approach clusters
neighbouring samples that survive univariate statistical testing (p < 0.05, two-tailed)
and evaluates these clusters under a single permutation distribution of the largest
cluster that is observed after permuting conditions (at the level of participant
specific condition averages). We used 1000 permutations and considered both
positive and negative clusters. For target decoding, we evaluated the main effects of
cue presence and distractor presence, as well as their interaction (defined as cue
present vs. absent for distractor-present vs. absent trials). For distractor decoding,
we could only quantify the effect of cue presence.

In a complementary analysis, we also evaluated latency differences in the
decoding time courses, on the basis of a Jackknife approach (as described in ref. 27).
Latency differences were estimated as the temporal difference (between cued and
uncued conditions) at which the distractor interference effect first crossed the value
associated with 50% of the maximal interference effect (the latter being estimated
on the basis of the average of the cued and uncued interference effects). To obtain a
Jackknife estimate of the reliability of the observed latency difference, we iteratively
removed one participant from the participant pool and compared the resulting
latency difference to the one observed when all participants were included. The
Jackknife based estimate of the standard error then allowed us to compare the

observed latency difference against zero (i.e., the null hypothesis of no latency
difference) under the student’s t-distribution.

Correlations between target decoding and EEG amplitudes (across trials) or
amplitude modulations (across participants) were quantified using Pearson’s
correlation coefficients. EEG amplitudes were averaged over all channels posterior
to the midline where alpha amplitude, and its cue-related modulation, were most
prominent. For the trial-wise correlation analysis, we partialled out trial number, as
well as a trial-specific noise estimate that was anticipated to be associated with high
amplitude (across most frequencies) and low decoding, thus constituting a
potential confounding variable. This noise estimate was obtained by taking the
trial-specific variance (across samples) of the high-pass filtered (40 Hz cut-off) data,
and averaging this over all posterior electrodes. Correlations were again evaluated
using cluster-based permutation analysis to circumvent the multiple comparisons
encountered along the time and frequency axes.

All reported inferential statistics involved two-tailed tests, at an alpha
level of 0.05.

Data availability. All data are publically available through the Dryad Data
Repository at: https://doi.org/10.5061/dryad.fn664f060. Code will be made available
by the authors upon request.
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