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Abstract Blood-based microRNA (miRNA) signatures as biomarkers have been reported for

various pathologies, including cancer, neurological disorders, cardiovascular diseases, and also

infections. The regulatory mechanism behind respective miRNA patterns is only partially

understood. Moreover, ‘‘preserved’’ miRNAs, i.e., miRNAs that are not dysregulated in any disease,

and their biological impact have been explored to a very limited extent. We set out to systematically

determine their role in regulatory networks by defining groups of highly-dysregulated miRNAs that

contribute to a disease signature as opposed to preserved housekeeping miRNAs. We further

determined preferential targets and pathways of both dysregulated and preserved miRNAs by

computing multi-layer networks, which were compared between housekeeping and dysregulated

miRNAs. Of 848 miRNAs examined across 1049 blood samples, 8 potential housekeepers showed

very limited expression variations, while 20 miRNAs showed highly-dysregulated expression

throughout the investigated blood samples. Our approach provides important insights into miRNAs

and their role in regulatory networks. The methodology can be applied to systematically investigate

the differences in target genes and pathways of arbitrary miRNA sets.
Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs
consisting of around 22 nucleotides. They are known to regu-

late translations post-transcriptionally [1–3]. There is ample
evidence that miRNAs play crucial roles not only in physiolog-
ical but also in pathological processes [2,4,5]. Depending on

the genes that are targeted by selected miRNAs, they can
nces and
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either act as tumor suppressors or as oncogenes. Using high-
throughput profiling, dysregulation of miRNAs has been
widely observed in cancers at different stages, not only in the

tissue but also in body fluids such as whole blood or serum
[6–8]. Furthermore, miRNA expression can contribute to the
maintenance of cancer stem cells, as proposed by Lu and co-

workers in 2005 [9]. Furthermore, miRNAs were more accu-
rate compared to mRNAs in classifying poorly-differentiated
tumors [9]. Over the last years, miRNAs have been increas-

ingly proposed as specific and sensitive non-invasive biomar-
ker candidates [10]. A key advantage of miRNA signatures
as compared to other RNAs is their stability in various body
fluids such as peripheral blood, urine, and saliva [11,12]. More

importantly, bioinformatics data suggest that each single
miRNA potentially regulates very large sets of genes (even
hundreds of putative gene targets are known) [13]. This high-

lights the potential influence of miRNAs on almost every
metabolic and regulatory pathway. miRNAs potentially regu-
late more than 60% of mammalian mRNAs [10,14]. Several

thousand interactions between miRNAs and mRNAs have
already been validated by reporter assays. These findings
underline the importance of an integrative network analysis

of miRNAs and mRNAs [13,15]. The general concept of our
previous studies was the interpretation of dysregulated miR-
NAs in small case�control studies. First, we extended this con-
cept to general disease markers. A meta-analysis revealed miR-

144* as miRNA that seems to be generally altered in diseases in
the expression abundance [16]. In this study, we extended the
concept in two directions. Besides focusing just on dysregu-

lated miRNAs, we were also interested in the miRNAs whose
expression is not altered in patients with different diseases. Sec-
ondly, we extended the approach from a pure miRNA perspec-

tive toward a systemic view including target genes and
pathways. Respective networks of the unaltered miRNAs
may, for instance, be of special interest for maintaining phys-

iological processes of living cells.
We implemented a computational pipeline integrating anal-

ysis and visualization of miRNA, mRNA and pathway data.
To find miRNA�mRNA networks, we evaluated expression

profiles composed of 848 human miRNAs, which were previ-
ously determined by microarrays of 1049 blood samples [8].
The data set contains profiles from patients with 19 different

diseases including 10 types of cancer and healthy controls.
All signatures were obtained from whole blood collected in
PAXgene blood tubes (BD, USA). We set out to define groups

of highly-dysregulated miRNAs that show altered expression
among different diseases in comparison with healthy controls,
contributing most to a disease signature, and groups of pre-
served miRNAs that show limited expression variations. We

next tried to build networks specific for the dysregulated miR-
NAs and networks specific for the miRNAs with very low
expression variation [8]. To this end, we also determined pref-

erential targets and pathways of both dysregulated and pre-
served miRNAs using validated interactions between
miRNAs and mRNAs. Beyond the generation of general net-

works for preserved and dysregulated miRNAs, we further
tested the applicability of our approach to diseases affecting
specific organs. Our largest data collection for this task has

been done for diseases affecting the lung. We thus analyzed
and compared miRNA data from patients with lung cancer
or chronic obstructive pulmonary disease (COPD) using our
novel approach.
Results and discussion

Determination of preserved and dysregulated miRNAs

The first goal of this study was to identify miRNAs that show
a significantly-altered expression in different diseases and

healthy controls, and miRNAs that by contrast show very
low expression variability in diseases and in controls. The
two groups of miRNAs are referred to as ‘‘dysregulated’’ or
‘‘preserved’’ miRNAs from now onward. miRNA profiles have

been obtained from 1049 blood samples in total [8], all of
which were collected in PAXgene blood tubes using the same
protocol. In each case, the profiles were generated from the

expression data of 848 miRNAs as previously determined by
microarray analysis [7,8]. For discovering dysregulated miR-
NAs, multiple biostatistical or information theory based

approaches are used. Moreover, different cut-off values for
the respective methods are applied (e.g., different alpha levels
for hypothesis tests) to define dysregulated miRNAs. The dif-

ferent approaches combined with different cut-offs potentially
have a substantial influence on the set of dysregulated miR-
NAs. Since we do not want to perform all downstream calcu-
lations using just on one criterion, we evaluated different

measures (such as adjusted P value and area under the receiver
operator) with different threshold values and performed path-
way analyses for the different sets. Specifically, we used t-test

and area under the curve (AUC) values to identify dysregu-
lated or preserved miRNA sets. By applying 20 different
thresholds for P values or AUC values (summarized in

Table S1), we obtained 20 different sets of dysregulated and
preserved miRNAs. To minimize the influence of false positive
miRNAs that result from using a specific criterion or threshold

value, both the preserved and the dysregulated miRNAs were
analyzed for their involvement in functional categories. To this
end, the dysregulated and preserved miRNA criteria were each
analyzed by Tool for Annotations of miRNAs (TAM) that sta-

tistically evaluates whether a set of miRNAs shows a signifi-
cant enrichment in a functional category. For each of the
analyzed TAM categories (Table S2), we counted the number

of significant associations with each of the two miRNA groups
(P < 0.05). The functional categories that were significant for
at least two of the 20 criteria are summarized in Table 1 [17,18],

including the number of significant associations in the 20 crite-
rion categories. If functional categories were found for at least
two preserved and two dysregulated miRNA criteria in a sim-
ilar frequency, they were considered also for both miRNA

groups (one example is the category angiogenesis, which is
found with three preserved and three dysregulated miRNA
sets). By this consensus approach we defined the two final sets

of dysregulated and preserved miRNA categories. All further
analyses were done on the consensus pathways that are pre-
sented in Table 1.

To further check the validity of the different sets, we carried
out non-parametric permutation tests, i.e., we performed the
same calculations with randomly-assigned distributions in

cases and controls. Moreover, we also performed a stability
analysis. As an example for permutation tests, we here describe
the results obtained for randomly-permuted data that have
been evaluated with the t-test. In more detail, the original P

values of the t-test for each miRNA were compared to 1000
P values obtained for 1000 permutations of class labels. For



Table 1 Significant miRNA functional categories for dysregulated and preserved miRNAs

miRNA functional categories No. of significant associations with

dysregulated miRNAs

No. of significant associations with

preserved miRNAs

Akt Pathway 4

Angiogenesis 3 3

Apoptosis 2 –

Bone regeneration 3 –

HIV latency 4 –

Hormones regulation 6 –

Human embryonic stem cell regulation 6 –

Cell proliferation [17] 3 –

Muscle development 2 –

Immune system [18] 6 –

Immune response 2 6

mRNA tumor suppressors 2 –

Onco-miRNAs 5 3

Cell cycle related – 6

Note: Different sets of dysregulated and preserved miRNAs were obtained by applying 20 different thresholds for t-test, P values or AUC values

(summarized in Table S1). miRNA groups were analyzed by TAM to evaluate whether a set of miRNAs shows a significant enrichment in a

functional category and number of significant associations with each of the two miRNA groups was counted. The functional categories that were

significant for at least two of the 20 criteria are summarized here. Categories that were found with at least two sets significantly enriched for similar

frequency are highlighted in bold.
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the original data, 9.4% of miRNAs remained significant after
adjustment for multiple testing, whereas 0.08% miRNAs were
discovered for the permutation tests. To test the stability, we

left out single diseases and repeated all calculations. Here,
the median correlation with the original data was 0.99 with
the standard deviation of 0.03, indicating a high stability when

leaving out single diseases from the analysis.
According to our consensus approach, dysregulated miR-

NAs were associated with 13 significant categories and pre-

served miRNAs were associated with four categories only.
Furthermore, categories including hormone regulation, human
embryonic stem cell regulation, the cell cycle, and the immune
system were significantly associated with six different miRNA

criteria each. Associations with both dysregulated and pre-
served miRNAs were also revealed for some functional cate-
gories, including the immune response, onco-miRNAs, and

angiogenesis (P < 0.05).
To determine dependencies between the identified miRNAs,

we calculated a network with the miRNAs as the first layer and

the functional categories as the second layer of the network.
For the dysregulated miRNAs, the network consists of 89
nodes, including 77 miRNAs and 12 functions, and 206 edges

(i.e., connections between functions and miRNAs). For the
preserved miRNAs, the network consists of 56 nodes, includ-
ing 53 miRNAs and three functions, and 80 edges between
them. To discover potential key players, we calculated the net-

works with the highest average degree (highest number of
edges relative to the number of nodes) by removing miRNAs
with a low degree in both networks. This analysis of the dys-

regulated network resulted in identification of 20 miRNAs
including 11 downregulated and 9 upregulated miRNAs
(Table 2), and 8 miRNAs were found to be preserved by ana-

lyzing the preserved network (Table 3). The sub-networks for
the dysregulated and the preserved miRNAs are shown in Fig-
ure S1. The highest number of associations between miRNAs
and functional categories was found for the dysregulated miR-
NAs hsa-miR17 and hsa-miR20a, which were connected to 10
and to 9 different categories, respectively.

Determination of validated target genes of preserved and

dysregulated miRNAs

As described in the Materials and methods section, the third
layer of the network consists of validated target genes of miR-
NAs. miRecords [19] has been used as a predicted and

experimentally-validated target resource. Since we searched
for specific interactions, we used validated gene targets and left
out all predicted ones. In total, we identified 58 target genes for

16 of the 20 dysregulated miRNAs and 93 target genes for 4 of
the 8 preserved miRNAs (Table 4). On average, the 20 dysreg-
ulated miRNAs had 2.9 validated targets, while the 8 pre-
served miRNAs had 11.6 validated targets. The target genes

for the miRNAs were, however, not uniformly distributed.
For example, miR-16 has 77 targets (Table 4). Correcting for
this factor, we recalculated the target distribution by excluding

miR-16 and found that the preserved miRNAs showed on
average 2.3 miRNAs targets, which is below the average num-
ber of the dysregulated miRNAs. A total of 9 target genes were

identified both for preserved and for dysregulated miRNAs.
These include JAK1, VEGFA, and BCL2, which are known
to be regulated by hsa-miR17 and hsa-miR20a. The sub-
networks with the preserved and the dysregulated miRNAs

along with their target genes are shown in Figure S2.
Again, we carried out permutation tests and randomly

selected target gene sets of the same size, counting for each

gene how often it was randomly selected in 1000 repetitions.
While most genes were not discovered in any or just very
few random target sets, ESR1, CCND1, BCL2, and VEGFA

were discovered in more than 50% of all permutation test. This
in fact means that there is a high chance to pick one of these



Table 2 Significantly-dysregulated miRNAs

miRNAs Node degree Raw P value Adjusted P value Change of expression

hsa-miR-17 10 1.55E�09 5.04E�08 fl
hsa-miR-20a 9 2.81E�07 3.84E�06 fl
hsa-miR-18a 8 9.84E�05 6.13E�04 fl
hsa-miR-222 8 7.27E�08 1.26E�06 fl
hsa-miR-92a-1* 8 8.56E�05 5.51E�04 ›
hsa-miR-19b 7 2.37E�05 1.78E�04 ›
hsa-miR-106b 5 5.06E�06 5.10E�05 fl
hsa-miR-126 5 1.88E�07 2.75E�06 fl
hsa-miR-24-2* 5 1.05E�04 6.47E�04 fl
hsa-miR-93 5 1.46E�06 1.70E�05 fl
hsa-miR-223 5 2.73E�09 8.26E�08 ›
hsa-miR-93* 5 9.42E�06 8.37E�05 ›
hsa-miR-106a 4 5.43E�08 1.00E�06 fl
hsa-miR-20b 4 1.84E�11 1.11E�09 fl
hsa-miR-26a 4 4.51E�04 2.20E�03 fl
hsa-miR-126* 4 2.24E�15 4.74E�13 ›
hsa-miR-25* 4 1.89E�06 2.08E�05 ›
hsa-miR-26a-1* 4 9.54E�05 5.99E�04 ›
hsa-miR-27a* 4 2.60E�06 2.76E�05 ›
hsa-miR-34a 4 5.35E�08 1.00E�06 ›

Note: Node degree refers to the number of edges connected to the node. Dysregulated miRNAs with downregulated and

upregulated expression are indicated with fl and ›, respectively. Asterisk indicates a miRNA with lower expression than

its counterpart, when two mature miRNAs originate from the opposite arms of the same pre-miRNA. miRNAs are

ranked based on their degrees in this table.

Table 3 Significantly-preserved miRNAs

miRNA Node degree Raw P value Adjusted P value

hsa-miR-150* 3 0.87668 0.90883

hsa-miR-16 3 0.78348 0.84635

hsa-miR-19a* 3 0.65080 0.75345

hsa-miR-92a 3 0.65099 0.75345

hsa-miR-15a* 3 0.62203 0.72918

hsa-miR-27b 3 0.54836 0.67198

hsa-miR-21* 3 0.47290 0.60988

hsa-miR-19a 3 0.41498 0.55204

Note: Node degree refers to the number of edges connected to the node. miRNAs are ranked based on their adjusted P

values. Asterisk indicates a miRNA with lower expression than its counterpart, when two mature miRNAs originate from

the opposite arms of the same pre-miRNA.
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genes randomly by chance. One reason for this may be that the
respective genes are targeted by many different miRNAs. For

example, miRecords lists 23 entries for VEGFA.
Calculation of target gene pathways

The fourth layer of the network consists of the pathways of
validated target genes. To find pathways significantly enriched
for the target genes, we applied our gene set analysis toolkit

GeneTrail [20]. All layers that we calculated are summarized
in Figure 1. With respect to the fourth layer we found signifi-
cant enrichment for 20 and 12 KEGG pathways for the dys-
regulated and preserved miRNAs, respectively (0.3 pathways

per target for dysregulated miRNAs and 0.13 pathways per
target on average for preserved miRNAs). Of these, 11 were
significant for both dysregulated and preserved miRNAs, leav-

ing 9 pathways specific for targets of dysregulated miRNAs
and a single pathway, namely NOD-like receptor signaling,
specific for the targets of preserved miRNAs (Figure 1). Inter-

estingly, a previous work [8] suggested that miRNAs that are
not dysregulated between cases and controls do not regulate
biochemical pathways. Our data however suggest that there

might be significant enrichment for target genes of preserved
miRNAs on specific pathways. This might be however due
to a more stringent definition of preserved miRNAs in this

work (t-test >0.05 and AUC ranging 0.35–0.65, just 12 as
compared to 121 in [8]) and the limit to experimentally-
validated targets in this study.

Since preserved miRNAs could be considered as a kind of

control for dysregulated miRNAs, the 11 pathways shared
by preserved and dysregulated miRNAs may potentially repre-
sent just a background. As for the dysregulated miRNAs, we

carried out permutation tests. Our results showed no signifi-
cant enrichment for the respective 11 pathways. Nevertheless,
given the positive target genes in the permutation test in the



Table 4 Validated gene targets of the significantly-dysregulated and preserved miRNAs

miRNA group miRNA name No. of target genes Name of target genes

Dysregulated hsa-miR-17 15 BCL2, NCOA3, CCND1, VEGFA, CDKN1A, BMPR2, RUNX1, IL-8,

BIM, p21, EDG1, VIM, MEF2D, MAP3K12, JAK1

hsa-miR-20a 11 BCL2, E2F1, CCND1, VEGFA, RUNX1, IL-8, BIM, BMPRII,

MEF2D, MAP3K12, JAK1

hsa-miR-222 13 KIT, TIMP3, CDKN1B, CDKN1C, ESR1, PPP2R2A, PTEN, BIM,

SOD2, MMP1, FOS, BBC3, STAT5A, p27

hsa-miR-126 7 VCAM1, IRS1, PIK3R2, CRKL, VEGFA, TOM1, PIK3R2

hsa-miR-106a 6 RB1, VEGFA, RUNX1, APP, CDKN1A, RB1

hsa-miR-106b 4 E2F1, VEGFA, CDKN1A, ITCH

hsa-miR-18a 4 THBS1, CTGF, ESR1, BIM

hsa-miR-126* 1 SLC45A3

hsa-miR-223 8 NFIA, IRS1, gag-pol, LMO2, STMN1, RHOB, FBXW7, EPB41L3

hsa-miR-27a* 3 SP1, SP3, SP4

hsa-miR-93 3 E2F1, VEGFA, CDKN1A

hsa-miR-19b 3 CTGF, ESR1, FMR1

hsa-miR-93* 2 CDKN1A, VEGFA

hsa-miR-20b 2 VEGFA, ESR1

hsa-miR-26a-1* 1 SERBP1

hsa-miR-26a 5 SMAD1, PLAG1, TGFBR2, SERBP1, EZH2

Preserved hsa-miR-27b 6 CYP1B1, NOTCH1, ADORA2B, PPARG, MMP13, ST14

hsa-miR-19a 10 PTEN, CTGF, THBS1, BIM, ESR1, NR4A2, ERBB4, CCND1,

BMPRII, TNF

hsa-miR-16 77 TPPP3, BCL2, VEGFA, CCND1, PDCD4, RAB21, CADM1, SKAP2,

WT1, RAB9B, ACTR1A, TPI1, CFL2, H3F3B, MCL1, ASXL2,

C10orf104, C14orf109, CARD8, CDC14B, CENPJ, CEP63, CREBL2,

ECHDC1, CCDC76, NPAL2, C4orf27, C2orf43, CCDC111, GOLGA5,

GOLPH3L, GTF2H1, HACE1, HDHD2, HERC6, C17orf80, HRSP12,

HSDL2, HSPA1A, JUN, PWWP2A, FAM122C, LOC339804,

FAM69A, MSH2, NT5DC1, OMA1, OSGEPL1, PDCD6IP, PHKB,

PMS1, PNN, PRIM1, RAD51C, RHOT1, RNASEL, SLC35A1,

SLC35B3, TIA1, HSP90B1, UGDH, UGP2, VPS45, WIPF1, ZNF559,

CRHBP, CSHL1, CDK6, CCNE1, CCND3, HMGA1, CAPRIN1,

RECK, BMI1, VEGFR2, FGFR1, VEGF

hsa-miR-92a 2 ITGA5, BMPRII

Figure 1 Overview of the full network with both preserved and dysregulated miRNAs

The upper part represents dysregulated miRNAs and the associated functions, target genes, and pathways, while same content is shown

for the preserved miRNAs in the lower part. The functions, targets and pathways shared by these two groups of miRNAs are shown in the

middle.
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preceding subsection, certain likelihood remains that these net-
works are generated due to noise or are influenced at least par-
tially by non-specific targets. Thus, we compared the

significance values instead of differentiating between enriched
and not-enriched networks. For the 11 significant pathways
that were shared by targets of dysregulated and preserved

miRNAs, 9 were more significant for the network of dysregu-
lated miRNAs as compared to the network of preserved miR-
NAs. An example is ‘‘cancer pathways’’ with P values of 10�6

for the targets of preserved miRNAs and of 10�12 for targets
of dysregulated miRNAs. As summarized in Figure 2, our data
indicate that the dysregulated miRNAs have a stronger influ-
ence on most of the 9 pathways than the preserved miRNAs.

Two pathways namely the ‘‘p53 signaling cascade’’ and ‘‘focal
adhesion’’ appear to be influenced to a comparable extent by
targets both of dysregulated and of preserved miRNAs. Path-

ways that are downstream of both preserved and dysregulated
miRNAs may have a higher inherent robustness and may be
less suited to be targeted by exogenous interventions aimed

to change disease-related miRNA pathways.
The sub-networks containing target genes and significant

pathways are shown in Figure S3. This network shows that

only a fraction of all target genes was of relevance for the
enrichment analysis. Of the 58 target genes of the dysregulated
miRNAs, just 25 targets participated in at least one significant
KEGG pathway (43%). This was even more obvious for the 93

target genes of preserved miRNAs with only 17 targets
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Figure 2 P values of the 11 overlapping KEGG pathways shared

by preserved and dysregulated miRNAs

P values of KEGG pathways shared by targets of dysregulated

and preserved miRNAs were log-transformed and plotted with the

P values for dysregulated miRNAs on the Y axis and preserved

miRNAs on the X-axis. The pathways in the upper left corner are

more significant in dysregulated miRNAs while the ones in the

lower right part are more significant for the preserved miRNAs.

The higher fraction of miRNAs in the upper left part indicates

that dysregulated miRNAs have a stronger regulatory influence

than the preserved miRNAs.
participating in at least one significant KEGG pathway (18%),
which suggest that KEGG pathways are more significant in
dysregulated miRNAs than preserved miRNAs.

The overall network of preserved and dysregulated miRNAs

We merged the networks for dysregulated and preserved miR-

NAs to generate a comprehensive visualization including all
four layers of miRNAs, miRNA functional categories, vali-
dated target genes, and the target gene KEGG pathways. A

schematic version of the network is presented in Figure 1, a
detailed version of the complete network in Figure S4. In both
visualizations, the upper part represents the dysregulated por-

tion of the network, the lower part represents the preserved
portion and the middle part represents the overlap of both
sub-networks. As aforementioned, we discovered 20 dysregu-
lated miRNAs and 8 preserved miRNAs, which are enriched

in 12 and 3 functional categories, respectively, sharing one of
them, namely angiogenesis.

The dysregulated miRNAs had 58 target genes, 49 of which

were not found for preserved miRNAs. On the other hand, the
preserved miRNAs had 93 targets genes, 84 of which are not
targets of dysregulated miRNAs. Dysregulated and preserved

miRNAs share 9 targets including CTGF, ESR1, BMPRII,
BIM, THBS1, PTEN, BCL2, CCND1, and VEGFA. Out of
49 target genes specific to dysregulated RNAs, 19 targets were
significantly enriched in KEGG pathways, whereas only 12 out

of the 84 target genes specific to preserved miRNAs were
enriched in KEGG pathways. Among them, 11 pathways are
shared by the preserved and dysregulated miRNAs, which

include pathways in cancer, small cell lung cancer, p53 signal-
ing pathway, focal adhesion, cell cycle, bladder cancer, glioma,
colorectal cancer, prostate cancer, pancreatic cancer, and mel-

anoma. Except for the pathways for p53 signaling and focal
adhesion, the remaining 9 pathways showed a higher signifi-
cance for the targets of the dysregulated miRNAs as compared

to the preserved miRNAs (Figure 2). Especially the pathways
for bladder cancer and for cancer in general were substantially
more enriched for the targets of dysregulated miRNAs.

Our results indicated that dysregulated miRNAs have a

higher regulatory influence as compared to preserved miR-
NAs. Interestingly, we also found a certain degree of regula-
tion for miRNAs that are stably expressed throughout the

blood samples. These miRNAs appear less influenced by dis-
eases and may be of increased relevance for pathways that
are central to maintaining basic cell biology functions. Path-

ways that are downstream of both preserved and dysregulated
miRNAs may have a higher inherent robustness and may be
less suited to be targeted by exogenous interventions aimed
to change disease-related miRNA pathways. The network

analysis also indicated that some specific miRNAs are involved
in many different functions. For example, miR-17 and miR-
20a are relevant in 10 and 9 functional categories with 15

and 11 target genes, respectively, which are relevant for disease
pathways such as cancer, focal adhesion, or the p53 signaling
cascade.

Network for specific diseases

To demonstrate that methodology can be applied to any com-

parison in case�control studies, we investigated the networks
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Figure 3 Network alignment between COPD and lung cancer diseases

The upper part represents miRNAs and the associated functions, target genes, and pathways for COPD, while the same content is shown

for the lung cancer in the lower part. The functions, targets and pathways shared by these two groups of miRNAs are shown in the middle.

Nodes shared by both networks are connected by red dotted lines. COPD, chronic obstructive pulmonary disease.
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for lung cancer and for COPD patients. After network was
constructed analogously to the methodology described above,

we performed a network alignment to find differences in
pathways between both diseases (Figure 3). As a result, we
identified 5 dysregulated miRNAs, miR-19b, miR-18a, miR-

223, miR-106b, and miR-93, which were expressed for lung
cancer but not COPD. And conversely, we found that miR-
92a was detected for COPD but not lung cancer. We also iden-
tified 2 dysregulated miRNAs, miR-17 and miR-20a, both for

lung cancer and COPD. Analyses of the target genes specific
for either COPD or lung cancer indicated that ITGA5 was as
the only specific target for the COPD, whereas 14 specific tar-

get genes were found for lung cancer with 16 target genes
shared by both diseases. A literature research in PubMed
revealed that the majority of lung cancer-specific target genes,

including IRS1, ITCH, ESR1, CTGF, THBS1, RHOB,
STMN1, and FUS1, have previously been related to lung can-
cer. Notably, for target pathway, we did not find any pathway
specific for lung cancer and only two pathways specific for

COPD were revealed. The majority of the identified pathways
was shared by both COPD and lung cancer. These pathways
were mostly identified by the general approach as it was

described above for lung cancer ad COPD. Our analysis indi-
cates that the target genes of miRNAs regulate similar path-
ways in lung cancer and COPD. The main differences

between both are found at the target gene level.

Conclusion

Biomarkers for the early and specific detection of various dis-
eases could satisfy an urgent clinical need. To fully explore the
value of a biomarker, it is essential to understand its biological
role. miRNAs are increasingly recognized as valuable

biomarkers for various diseases. Here, we systematically ana-
lyzed potential regulatory patterns of miRNAs. We build net-
works that contained significantly-enriched miRNA functions,

validated target genes and target pathways to allow identifica-
tion of miRNAs with disease-related expression variability, of
miRNAs with nearly-unaltered expression in different diseases,
and of downstream target genes and targeted pathways of both

dysregulated and preserved miRNAs. To demonstrate that our
methodology can be applied for specific diseases, we compared
blood-borne miRNA profiles of COPD patients to those of

lung cancer. The respective analysis results indicate that we
can derive specific target genes for the different diseases that
may be of relevance for molecular pathological mechanisms.

In the case of lung cancer and COPD, target pathways were
however similar to each other. The comparative analysis can
thus be used to investigate miRNA signatures from different
diseases across multiple scales, from single miRNA and target

gene level up to enriched pathways.

Materials and methods

Core concept of our approach is to define two sets of miRNAs,
dysregulated and preserved miRNAs. Dysregulated miRNAs

are those, which are significantly altered in the expression
abundance in diseases in comparison to controls. In contrast,
preserved miRNAs are those whose expression show a limited
variability (see the criteria that we used to define ‘‘preserved’’)

between diseases and controls and thus are mostly preserved
expressed. In this study, dysregulated and preserved miRNA
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data were calculated in comparing profiles of patients to con-
trols using different parameters such as t-tests, adjusted P
value, raw P value, and AUC. Based on these data, multi-

layer networks have been constructed, analyzed and visualized,
partially relying on ideas from previous publications [7,8]. As
mentioned, the foundation of this study are 848 miRNAs pro-

filed in 1049 samples [8] from both patients with cancer and
non-cancer diseases, and healthy controls, which were
obtained from whole blood collected in PAXgene blood tubes

(BD, USA). In addition to unaffected individuals (controls),
the subjects also included patients with lung cancer, prostate
cancer, pancreatic ductal adenocarcinoma, melanoma, ovarian
cancer, gastric tumors, Wilms tumor, pancreatic tumors, mul-

tiple sclerosis, chronic obstructive pulmonary disease (COPD),
sarcoidosis, periodontitis, pancreatitis, or acute myocardial
infarction. Detailed information on the data set was presented

previously [16].
Microarray measurement and miRNA extraction have

been carried out as described previously [7,8]. In brief, we

collected blood in PAXgene Blood RNA tubes containing
chemistry for stabilizing RNAs. Total RNA was obtained
using the miRNeasy kit (Qiagen) and the RNA was stored

at �70 �C. The RNA was screened for miRNAs using the
Geniom Biochip miRNA Homo sapiens (versions v12 and
higher). Of each available 30 and 50 mature form, seven
identical replicates were synthesized on the biochips, of which

the median expression was calculated. The unlabeled samples
were hybridized for 16 h before on-chip labeling with Biotin
was performed. Besides miRNA probes, five controls labeled

with Cy3 or biotin were included in the analysis for quality
control.

In the following sections we focus on the bioinformatics

analyses, including the basic statistical analysis, the step-wise
generation of the multi-layer networks and the visualization
and comparison of results.

Statistical analysis

The basic statistical analyses, e.g., detection of differentially-
regulated miRNAs have been carried out using the publicly-

available statistical language R (http://www.r-project.org/).
First, standard quantil normalization has been carried out
to account for intra-array variations. Following tests for

the approximate normal distribution of the 848 miRNAs,
two tailed unpaired t-tests have been calculated resulting in
raw P values. These have been adjusted for multiple testing

using Benjamini�Hochberg procedure. Beyond the t-test,
the area under the receiver operator characteristics curve
(AUC) with the respective 95% confidence intervals for all
patients (cancer and non-cancer diseases) versus all healthy

controls was calculated in order to discover potentially-
dysregulated miRNAs. To define miRNAs as dysregulated
or preserved, different P value thresholds and AUC values

have been systematically explored. The dysregulated and
preserved miRNAs are the nodes of the first layer of the
network.

miRNA annotation

In order to find functional categories of dysregulated and pre-

served miRNAs, TAM [21], a web-based tool for annotating
human miRNAs has been applied. In this tool, miRNAs are
summarized in various biological categories and TAM statisti-
cally evaluates whether a set of miRNAs shows a significant

enrichment in the considered categories. Altogether, TAM
offers 257 different categories, including many disease associa-
tions, functions, families and clusters of miRNAs. Since a sub-

stantial part of this functionality is not of relevance for our
study, we specifically analyzed 24 miRNA functional cate-
gories available in TAM, which are listed in Table S2. The

respective categories represent the second layer of the network,
edges between a miRNA i and a category y were added if the
category y was significantly enriched and i belongs to that
category.

miRNA�target interactions

In order to define interactions between miRNAs and target

genes, we evaluated different prediction approaches. Gener-
ally, they predicted a weak concordance between each other
and importantly also to validated target sets. For these analy-

ses, we parsed all available information from miRecords [19].
In order to achieve the highest certainty in miRNA – mRNA
target interactions, we used validated miRNA – mRNA inter-

actions, although validated targets potentially show a bias
toward more frequently-studied miRNAs. This bias is at least
partially addressed in this study since we did comparative anal-
ysis on preserved and dysregulated miRNAs. mRNAs repre-

sent the third layer of the network. Edges are added for the
respective validated interactions between miRNAs and
mRNAs.

Target gene set analysis

After specifying the validated miRNA target genes, the next

step was to identify target gene pathways. To do this, we
employed GeneTrail [20], a web-based application that allows
specifying enriched functional categories and pathways in gene

sets. GeneTrail relies on the same basic principle as TAM.
Over ten thousand gene categories can be analyzed in an inte-
grative manner. Since we were most interested in biochemical
pathways, we focused our analysis on annotated pathways

from the KEGG database. The respective pathways represent
the fourth layer of the network. Edges between a gene i and a
pathway y were added if the pathway y was significantly

enriched with target genes and the gene i participates in the
pathway.

Network analysis, visualization, and alignment

Finally, in order to build the four-layer miRNA and gene
interaction networks and to compare the outputs between dys-

regulated and preserved networks or between lung cancer and
COPD, we utilized the open source software Cytoscape [22].
This tool is tailored for visualization of molecular interaction
networks and biological pathways and for integration of the

networks. Importantly, Cytoscape allows for any type of attri-
bute data to highlight relevant parts of the network. Addition-
ally, Cytoscape also offers a Java-based plugin system that

enables easy analysis of networks, starting from very basic
algorithms up to complex network alignment tools. The
multi-layer networks are schematically presented in Figure 4.

http://www.r-project.org/
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