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Despite the massive distribution of different vaccines globally, the current pandemic has

revealed the crucial need for an efficient treatment against COVID-19. Meta-analyses

have historically been extremely useful to determine treatment efficacy but recent debates

about the use of hydroxychloroquine for COVID-19 patients resulted in contradictory

meta-analytical results. Different factors during the COVID-19 pandemic have impacted

key features of conducting a good meta-analysis. Some meta-analyses did not evaluate

or treat substantial heterogeneity (I2 > 75%); others did not include additional analysis for

publication bias; none checked for evidence of p–hacking in the primary studies nor used

recent methods (i.e., p-curve or p-uniform) to estimate the average population-size effect.

These inconsistencies may contribute to contradictory results in the research evaluating

COVID-19 treatments. A prominent example of this is the use of hydroxychloroquine,

where some studies reported a large positive effect, whereas others indicated no

significant effect or even increased mortality when hydroxychloroquine was used with

the antibiotic azithromycin. In this paper, we first recall the benefits and fundamental

steps of good quality meta-analysis. Then, we examine various meta-analyses on

hydroxychloroquine treatments for COVID-19 patients that led to contradictory results

and causes for this discrepancy. We then highlight recent tools that contribute to evaluate

publication bias and p-hacking (i.e., p-curve, p-uniform) and conclude by making

technical recommendations that meta-analyses should follow even during extreme global

events such as a pandemic.
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BACKGROUND

The 2020 COVID-19 pandemic has highlighted the urgent need for the development and
administration of a new treatment for COVID-19. Despite the rollout of several different vaccines
globally, the need to find treatment remains essential given the uncertainty and shortcomings with
equal distribution of vaccines and vaccine availability. Meta-analyses have historically been used to
establish the existence, size, and confidence of therapeutic effects or causes of particular diseases.

Meta-analysis is an important tool to determine the effectiveness of COVID-19 treatments,
but it is essential that the strength of evidence be maintained by adhering to all components of
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the methodology. Various factors during the COVID-19
pandemic, including time pressure, have resulted in alterations
and omissions of key aspects of meta-analysis that lower
the quality of evidence. Some meta-analyses did not evaluate
publication bias, nor treat substantial heterogeneity (I2 > 75%);
none checked for evidence of p–hacking in the primary studies
nor used recent techniques (i.e., p-curve or p-uniform) to
estimate average population-size effect. Journals greatly favor
publishing significant findings in comparison to non-significant
findings, resulting in publication bias which can overestimate
effect sizes (the strength of the relationship between two
variables). These discrepancies may contribute to opposing
results in the research evaluating COVID-19 treatments. A
prominent example of this is the use of hydroxychloroquine
(HCQ), where some studies reported a large protective
effect, whereas others indicated no significant effect or even
increased mortality when HCQ was administered with the
antibiotic azithromycin.

In this paper, we first highlight the benefits and fundamental
steps of meta-analytical studies. Then, we analyze examples of
meta-analyses of HCQ treatments for COVID-19 patients that
led to contradictory results and causes for this discrepancy.
We conclude by making recommendations that meta-analyses
should follow even during extreme global events such as a
pandemic (see Table 1).

METHODS

Meta-Analysis: Principles and Procedures
Meta-analysis involves a set of statistical techniques to synthesize
effect sizes of several studies on the same phenomenon (2, 3).
Several benefits are expected from clinical meta-analyses:

• Identify, screen, select, and include studies based on systematic
reviews of the literature (i.e., as recommend by the PRISMA
Statement) (7).

• Compute the mean effect sizes across different studies (i.e., the
average effect of a particular treatment on a specific condition).

• Evaluate the level of heterogeneity (i.e., the amount of
variation in the outcomes detected by the different studies).

• Determine the impact of publication bias (i.e., the lack of
publication of negative trials and underrepresentation of
unpublished data, can lead to overestimated effect sizes).

• Run meta-regressions and subgroup analyses to control for
the effects of studies’ characteristics (e.g., design, procedure,
measures) and sample (e.g., age/gender, BMI, clinical history).

Meta-analyses begins by identifying, screening, and evaluating
potentially relevant studies, and ultimately collecting data from
included studies and evaluating their quality (through PRISMA,
for instance) (7). The mean and variance of the estimates is
collected from every included study to compute a global weighted

Abbreviations: AZ, Azithromycin; COVID-19, Coronavirus disease 2019;
CQ, Chloroquine; EUA, Emergency-use authorization; FDA, Food and Drug
Administration; HCQ, Hydroxychloroquine; HR, Hazard ratio; ICU, Intensive
care unit; IPD, Individual patient data; OR, Odd ratio; PRISMA, Preferred
reporting items for systematic reviews and meta-analyses; RCT, Randomized
controlled trial; RR, Risk ratio.

mean based on the inverse variance (2, 3). Some recent meta-
analyses on the effect of HCQ in COVID-19 patients have
omitted basic practices to assess publication bias (8), resulting
in massive untreated heterogeneity (8) (i.e., I2 > 80%) or meta-
analyzed small sets of studies [k ≤ 3 implying low statistical
power (9)]. None used recent tools to evaluate p-hacking and
recent techniques for assessing the publication bias, possibly
leading to an overall biased representation of the population-
size effect.

Gathering the Studies
The first step in conducting a meta-analysis is to search
the literature for studies investigating a specific predefined
question and using predetermined inclusion and exclusion
criteria based on theoretical or methodological criteria (7)
to determine eligibility. Several methods exist to assess and
correct for publication bias among a set of studies (e.g.,
Egger or PET-PEESE tests, p-uniform, p-curve) (5, 10). A
general issue is that studies likely differ significantly in design
(e.g., randomized controlled trial vs. observational studies)
and the specific questions they investigate (e.g., viral load,
shedding, mortality/ICU events, mild symptoms). For instance,
investigators must decide whether observational or quasi-
experimental studies should be included alongside experimental
studies. The lack of randomization inherent to observational or
quasi-experimental studies is problematic as they are at risk of
bias by uncontrolled confounding variables (11).

Recent advances in techniques question the reliance on
estimates presented in the original studies for meta-analysis
due to significant limitations (12). Systematic reviews and
meta-analyses that use individual patient data (IPD) suggest
collecting, validating, and reanalyzing the raw data from
all clinical trials included in the meta-analysis. Following
COCHRANE recommendations, IPD meta-analyses offer a
multidisciplinary and cross-cultural perspective that decreases
cultural and professional biases. IPD analyses also enable better
assessment of moderator variable impact and improves statistical
power (13). Integrating contextual variables helps ensure main
effects are not explained by sample or country characteristics
(or any other contextual factors). Limitations of including
such variables are potential collinearity with other variables
or insufficient precision in the measure. Although there are
several advantages of conducting IPD meta-analyses, it also
requires significant organization and coordination that can
be challenging.

Statistical Power
A major strength of meta-analysis is the relatively high
statistical power associated with compiling several studies
(i.e., independent RCTs may have few participants per group
limiting their statistical power). The median number of studies
in the Cochrane Database for Systematic Reviews is six,
according to Borenstein et al. (2). This is a serious concern
considering that (1) subgroup analysis and meta-regressions
are routine procedures that require high levels of statistical
power, and (2) many meta-analyses have high heterogeneity (I2

> 75%), which negatively affects precision and thus statistical

Frontiers in Public Health | www.frontiersin.org 2 September 2021 | Volume 9 | Article 722458

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Boudesseul et al. Keeping Meta-Analyses Hygienic

TABLE 1 | General recommendations for meta-analysis of clinical studies.

1. Include published and unpublished studies on the basis of inclusion/exclusion criteria (e.g., designs, measures, sample characteristics). Ideally, pre-register

your meta-analysis on an accessible server (1) (e.g., PROSPERO database, Open Science Framework)

2. Systematically run heterogeneity tests (Q statistic, the variance between studies (τ 2), and the relationship between the real heterogeneity and the total variation

observed, I2). Some depend on the number of participants (Q) whereas other depends on the metric scale (τ 2) so it is crucial to compare them to estimate true

heterogeneity (2, 3)

3. In case of substantial heterogeneity (i.e., I2 > 75%), create homogenous subgroups based on theoretical or methodological justifications (4)

4. Estimate publication bias using funnel plots and inferential tests (i.e., Begg’s/Egger’s tests). In case of publication bias, run additional analysis comparing the

main results with/without these studies (2, 3)

5. Evaluate p-hacking using p-curve. If H0 is true (no effect), the p-distribution must be uniform but right-skewed if there is an effect. In case of signs of

p-hacking, exclude those studies and run again the analysis to compare the results (5)

6. Conduct separate analyses for observational, quasi-experimental, and experimental studies and evaluate the risk of bias for each study (6).

power. For example, the statistical power to detect a small
effect size (d = 0.2) with 25 participants per group in 6
different studies using a random-effects model with moderate
heterogeneity (I2 = 50%) and a 5% of type I error is
only 26.7% (https://bookdown.org/MathiasHarrer/Doing_Meta_
Analysis_in_R/power-calculator-tool.html).

Assessing Heterogeneity
The objective of meta-analysis is not simply to calculate an
average weighted effect estimate but also to make sense of the
pattern of effects. An intervention that consistently reduces
the risk of mortality by 30% in numerous studies is different
from an intervention that reduces the risk of mortality by 30%
on average, with a risk reduction ranging from 10 to 80%
across studies. We must determine the true variance to provide
different perspectives on the dispersion of the results based
on the Q statistic, the variance between studies (τ 2), and the
relationship between the real heterogeneity and the observed
total variation (I2).

Publication Bias
Publication bias affects both researchers conducting meta-
analyses and physicians searching for primary studies in a
database. If the missing studies are a random subset of all studies,
excluding them will result in less evidence, wider confidence
intervals, and lower statistical power, but will not have a
systematic influence on the effect size (2). However, whenever
there are systematic differences in unpublished and published
studies included in the meta-analysis, the weighted effect sizes
are biased (e.g., a lack of studies reporting non-significant effects
of HCQ in COVID-19 patients). Dickersin (14) found that
statistically significant results are more likely to be published
than non-significant findings, and thus when published studies
are combined together, they may lead to overestimated effects.
Also, for any given sample size, the result is more likely to
be statistically significant if the effect size is large. Studies with
inflated estimate effects are expected to be reported in the
literature more frequently as a result (i.e., the first studies on
HCQ likely reported large effects). This trend has the potential to
produce large biases both on effect size estimates and significance
testing (15).

Different techniques have been developed to detect
publication bias (16). A widely used method—the funnel
plot—consists of plotting effect sizes against their standard
errors or precisions (the inverse of standard errors). A skewed
funnel plot is usually an indication of the presence of publication
bias. However, subjective visual examination as well as coding
of the outcome, the choice of the metric, and the choice of
the weight on the vertical axis all impact the appearance of
the plot (17). Inferential tests such as Egger’s regression test
regress the standardized effect size on the corresponding
precisions (the inverse of the within-study variance). Although
widely used, the Egger test may suffer from an inflated type
I error rate or low statistical power in certain conditions
(16, 17).

RESULTS

Hydroxychloroquine and COVID-19
Meta-Analysis
HCQ and chloroquine (CQ) have been used for decades to
manage and treat malaria and several autoimmune conditions.
At the beginning of the pandemic, preliminary studies (18–
20) suggested that HCQ might have a positive effect on the
treatment of COVID-19 patients. This led the U.S. Food and
Drug Administration (FDA) to issue an emergency-use (EUA)
authorization on March 28, 2020 allowing for HCQ sulfate and
CQ phosphate to be donated to the Strategic National Stockpile
for use in hospitalized COVID-19 patients. Given its multiple
antiviral effects, it is plausible that HCQ could be beneficial
in COVID-19 patients (21). In vitro data have shown that
HCQ/CQ blocks viral infection by inhibiting virus/cell fusion
through increasing endosomal pH (22) and by reducing the
production of inflammatory cytokines (23–25). Shortly after the
EUA of HCQ/CQ, a group in France published a study describing
viral load reduction/cure with HCQ (20). However, this study
included a small sample size, was non-randomized, only reported
viral load as an outcome, and excluded the most severely ill
patients from the analysis. Numerous meta-analyses have already
been published on the use of HCQ in COVID-19 patients, with
some indicating a large protective effect for HCQ (8), and others
reporting no effect (9) or increased mortality when HCQ was
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TABLE 2 | Meta-analysis on the efficacy of hydroxychloroquine on COVID-19 patients published in peer-reviewed journals.

References k/N Main results Heterogeneity analysis Publication bias analysis

Ayele Mega et al. (27) 20/6,782 HCQ group did not differed on the

rate of virologic cure (OR = 0.78;

95% CI [0.39–1.56]) or the risk of

mortality (OR = 1.26; 95% CI

[0.66–2.39]) compared to control.

Some analysis revealed high heterogeneity (up

to I2 = 95%). Subgroup analysis of

observational vs. RCTs studies.

Cochrane risk of bias tool for RCTs.

Newcastle-Ottawa Quality

Assessment scale (NOS) for

observational studies. Subgroup

analysis with low biased studies.

Bignardi et al. (28) 12/7,629 HCQ (with or without AZ) was not

associated with mortality (RR = 1.09,

[0.98–1.20]).

Moderate heterogeneity (I2 ≤ 54.6%).

Subgroup analysis based on sensitivy analysis.

Egger test did not revealed sign of

publication bias (p > 0.05).

Choudhuri et al. (29) 14/12,455 HCQ did not affect mortality

compared to control group (RR =

1.003, [0.983–1.022]).

Low to high heterogeneity (up to I2 = 97.9%).

No subgroup analysis.

Two authors independently evaluated

within-study bias.

Das et al. (30) 7/726 HCQ did not affect the virological cure

except after day 5 (OR = 9.33,

[1.51–57.65]).

Null (I2 = 0%) to high heterogeneity (I2 = 96%)

but small set of comparisons (k = 2).

Cochrane handbook to assess

biased of RCTs (2 independent

authors) and NOS for observational

studies. ROBINS-I tool for

non-randomised trials.

Ebina-Shibuya et al.

(31)

8/2,063 HCQ was not associated with

mortality (OR = 1.05, [0.53–2.09]).

I2 varies between 0 (adverse event), 31% (all

cause death), 57% (time to viral clearance) up

to 74% (for viral clearance at 7 days).

Subgroup analysis on study design (RCTs vs.

observational).

Cochrane Risk of Bias tool for RCTs.

Elavarasi et al. (32) 15/10,659 No significant reduction in mortality in

HCQ group (RR = 0.98, [0.66–1.46]),

fever duration (mean difference – 0.54

days) or clinical deterioration (RR =

0.90, [0.47–1.71]).

High heterogeneity for mortatliy and clinical

deterioration (I2 = 87%), virological clearance

(I2 = 80%), time to fever remission (I2 = 72%).

Subgroup analysis of RCTs vs Cohort studies.

Cochrane Risk of Bias Tool for

RCTs/Newcastle Ottawa Scale

revealed significant bias without

additional analysis.

Elsawah et al. (33) 6/609 No significant effect on viral

clearance, clinical progressions, or

mortality (p’s > 0.10). Significant

improvement on radiological

progression (risk difference −0.20

[−0.36, −0.03]).

Low (I2 = 0%) to high heterogeneity (I2 = 94%)

without subgroup analysis.

Cochrane Risk of Bias Tool (2

independent authors). Sensitivity

analysis after removing the low-quality

studies.

Kashour et al. (34) 21/20,979 No effect of HCQ on mortality (OR =

1.05, [0.96–1.15]) and small

increased mortality with HCQ/AZ

combination on a subset of studies

(OR = 1.32, [1.00–1.75]).

No heterogeneity for the HCQ group and

moderate for the HCQ/AZ comparison (I2 =

68.1%). Sensitivy analysis excluded studies

with high risk of bias.

Neither funnel plot nor Egger’s

regression test revealed signs of

publication bias (p = 0.276)

Fiolet et al. (26) 17/11,932 No difference in mortality for all

studies or RCT (OR = 0.83 and 1.09).

I2 = 84% among non-RCTs with null

heterogeneity for RCTs.

Funnel plot, Begg’s and Egger’s tests.

Ghazy et al. (35) 14/12,821 No difference between standard care

en HCQ group (RR = 0.99,

[0.61–1.59]). Mortality higher in

HCQ/AZ comparison (RR = 1.8,

[1.19–2.27]).

High heterogeneity was observed in different

analysis (0% < I2 < 98%). Subgroup analysis

no revealed significant effect (e.g., mortality

HCQ/AZ, RR = 2.23, [1.70–2.91]).

Publication bias assed by funnel plot.

Hussain et al. (36) 6/381 The risk of mortality in HCQ treated

individuals is on average 2.5 times

greater than in non-HCQ individuals

(95% CI [1.07–6.03]). For moderate

to mild symptoms, the rate of

improvement was 1.2 higher

compared to the control group (95%

CI [0.77–1.89]).

These studies were perfectly homogeneous

(I2/τ 2
= 0).

Marginal asymmetry on funnel plot.

Hong et al. (37) 14/24,780 No effet of HCQ alone or in

combination on mortality (OR = 0.95,

[0.72–1.26]).

Substantial heterogeneity in all analysis (71% ≤

I2 ≤ 93%). Subgroup analysis of HCQ alone

without effect (OR = 0.90, [0.60–1.34]).

Publication bias visible on funnel plot.

Comparisons results with and without

biased studies (no significant

differences).

(Continued)
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TABLE 2 | Continued

References k/N Main results Heterogeneity analysis Publication bias analysis

Lewis et al. (38) 4/4,921 HCQ group were not at fewer risks of

developing COVID-19 (RR = 0.82,

[0.65–1.04]), hospitalization (RR =

0.72, [0.34–1.50]) or mortality (RR =

3.26, [0.13–79.74]) compared to

control but increased the risk of

adverse events (RR = 2.76,

[1.38–5.55]).

Statistical heterogeneity was assessed using

the χ
2 and I2 statistics (either 0 or 95%).

Subgroup analysis based on (1) location

contact with COVID-19, (2) dose of HCQ, and

(3) pre- vs. post-exposure prophylaxis. No

heterogeinty available for subgroups.

Funnel plot was not assessed giving

the small number of studies.

Million et al. (8) 20/105,040 HCQ effective on cough, duration of

fever clinical cure death and viral

shedding (OR = 0.19, 0.11, 0.21,

0.32, and 0.43).

Q-test for the all set of studies (Q = 51.8, p <

0.001). I2 ≥ 75% and significant Q-test for

subset of studies when k > 2 studies (except

for deaths, I2 = 0%, p = 0.071). No subset

analysis based on heterogeneity.

None.

Patel et al. (39) 6/2,908 No difference between HCQ and

control group on mortality (OR =

1.25, [0.65, 2.38]). Higher mortality in

HCQ/AZ group compared to control

(OR = 2.34, [1.63–3.34]).

There was significant heterogeneity in mortality

outcome (I2 = 80%) for HCQ. Subgroup

analysis based on sensitivity analysis. For the

HCQ/AZ groups, there was perfect

homogeneity (I2 = 0%).

Funnel plot was asymmetrical.

Subgroup analysis based on

homogeneous studies.

Pathak et al. (40) 7/4,984 No difference in outcome with/without

hydroxychloroquine (OR = 1.11,

[0.72, 1.69]).

Moderate heterogeneity (32% ≤ I2 ≤ 44%). No

subgroup analysis.

Funnel Plot and Egger regression

asymmetry test (although not

available in the paper).

Putman et al. (41) 45/6693 HCQ use was not significantly

associated with mortality (HR = 1.41,

[0.83, 2.42]).

Low heterogeneity (I2 = 0–32%) but small set

of studies (k = 2 or 3).

Newcastle-Ottawa Scale for cohort

studies and the Risk of Bias 2.0 tool

for randomized controlled trials; case

series assumed to be high risk by

default.

Sarma et al. (9) 7/1,358 No differences on viral cure (OR =

2.37, [0.13–44.53]), death/clinical

worsening (OR = 1.37, [1.37–21.97])

or safety (OR = 2.19, [0.59–8.18]).

Heterogeneity varies from null (for safety issues)

to high (I2 = 72%, for virological cure). No

subset analysis (except for the

inclusion/exclusion of Gautret et al. [22]).

Cochrane/ROBINS-I/Newcastle

Ottawa Scale (3 researchers).

Shamshirian et al. (42) 37/45,913 No difference on mortality in HCQ

group (RR = 0.86, [0.71–1.03]) or

HCQ/AZ comparison (RR = 1.28,

[0.76–2.14]).

High heterogeneity (I2 = 87–90%).

Meta-regressions indicated significant effect of

age (p < 0.001).

Moderate publication bias for

mortality based on Egger’s test (p =

0.02).

Singh et al. (43) 7/746 No benefits of HCQ on viral clearance

(RR, 1.05; 95% CI, 0.79 to 1.38; p =

0.74). Significantly more deaths in the

HCQ group compared to the control

group (RR, 2.17; 95% 1.32 to 3.57; p

= 0.002).

Moderate heterogeneity in the clearance

analysis (I2 = 61.7%, p = 0.07) and none in the

death analysis (I2 = 0.0%, p = 0.43). No

subset analysis based on heterogeneity.

Trim and fill adjustment, rank

correlation, and Egger’s tests.

Ullah et al. (44) 12/3,912 Higher mortality (OR = 2.23,

[1.58–3.13]) and net adverse events

(OR = 4.59, [1.73–12.20]) in HCQ

group compared to control.

Moderate to high heterogeneity (I2 = 54–94%)

without subgroup analysis.

Funnel plot revealed minimal

publication bias.

Yang et al. (45) 9/4,112 HCQ-azithromycin combination

increased mortality in COVID-19

patients (OR = 2.34;, [1.63–3.36])

though it was also associated with

benefits on viral clearance in patients

(OR = 27.18, [1.29–574.32]).

HCQ-alone did not reveal significant

changes in mortality rate, clinical

progression, viral clearance, and

cardiac QT prolongation.

Null to high heterogeneity (I2 = 84%).

Subsequent subgroup analysis showed that

HCQ treatment could recuded mortality and

severe illness in severely infected COVID-19

patients (OR = 0.27, [0.13–0.58]).

Funnel plot analysis did not reveal

obvious publication bias. Possible

bias due to lack of demographic and

clinical data.

Zang et al. (46) 7/851 No difference in illness duration

between the HCQ group and the

standard treatment group (RR =

0.66, [0.18–2.43]). Death was higher

in HCQ group compared to standard

(RR = 1.92, [1.26–2.93]).

Moderate heterogeneity was observed (41.2%

≤ I2 ≤ 72.1%) without subgroup analysis.

Cochrane Risk of Bias Tool for RCTs

evaluated quality of studies (2

reviewers). Newcastle Ottawa Scale

for observational studies and Egger

test.

To date, 24 meta-analyses were published on April 11th, 2021. This table only described peer-reviewed meta-analyses evaluating HCQ efficacy on COVID-19 patients. We reported the

number of studies (k) and participants (N) after exclusion/inclusion criteria.
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used with the antibiotic azithromycin (AZ) (26) (see a complete
Table of HCQ/CQ meta-analysis and their bias on Table 2).

Some Examples of Questionable Research
Practices in Meta-Analysis Suggesting
No-Effect or Effects of HCQ
Million et al. (8) published a meta-analysis containing 20
studies involving 105,040 patients of which 19,270 had been on
chloroquine derivatives and found a positive effect of the drug
on mortality and symptoms associated with COVID-19. On the
other hand, Fiolet et al. (26) did not find any effect of HCQ/AZ
in a meta-analysis of 29 studies including 11,932 patients. In both
meta-analyses, the authors found large heterogeneity among the
included studies (I2 = 75% and I2 = 83%), which suggests the
presence of confounders not being accounted for across studies,
and neither study performed subgroup analysis to better explore
the high heterogeneity. Study selection was problematic in both
studies. For instance, Million and colleagues did not publish a
flow diagram with the different phases of a systematic review
as recommended by the PRISMA Statement (7). Several items,
fundamental in the method of the PRISMA protocol, were not
followed such as review protocol registration, detailed study
selection criteria, data collection process, risk of bias within and
across studies, and additional analyses. Million et al. (8) grouped
“clinical” studies together (studies that had direct access to
patients) and “observational big data” studies together (that may
present conflicts of interest and show no effect of HCQ) instead
of doing meta-regressions based on study designs (i.e., RCT vs.
observational study). Fiolet et al. (26) excluded several studies
because of critical risk of bias (i.e., lack of statistical information
and the assignment of treatment, unknown timing between
measures and confounders) with HCQ and AZ combination
therapy (47–49).

Outcome selection is concerning, as Million et al. (8) reported
positive effects on the duration of symptoms such as cough, fever,
and clinical care with analysis of 1 to 7 small sample size studies
(50). In Fiolet’s et al. meta-analysis (26), the type of estimate used
for effect sizes was inconsistent and not clearly reported. They
did not make a distinction between Risk Ratios (RR), which are
usually used in cohort studies, and Hazard Ratios (HR) and Odds
Ratios (OR), which are used in case-control studies. This can
influence the analysis because OR tend to overestimate effects
compared to RR when the selected outcome occurs frequently
(51). In both meta-analyses, the selection of included studies, the
degree of heterogeneity in these analyses, and the calculations of
effect sizes make the veracity of the estimates uncertain. Many of
the meta-analyses published had low statistical power, untreated
heterogeneity and none used tools to evaluate potential risks of
p-hacking (13, 27–46, 52).

DISCUSSION

A Proposal for Conducting Meta-Analyses
in Clinical Research
As discussed above, one potential bias in meta-analyses is
“selection bias,” which may lead to inaccurate estimation of

effect sizes. An important question is whether to incorporate
unpublished pre-print studies, especially when the field has
limited studies and there is urgency for reliable data. An
argument against this approach could be that unpublished studies
might not be as rigorous as published studies. From this point
of view, unpublished studies should not be included in meta-
analyses because the inclusion of poorly conducted research
also introduces bias. However, having access to published and
unpublished studies helps decide which studies to include in
a meta-analysis based on a priori inclusion criteria [through
pre-registered meta-analyses for instance (1), see Table 2].

Readers typically focus on the forest plot, which depicts
the quantitative effects and level of uncertainty for each study
included in the meta-analysis. Forest plots are great tools to
visually assess heterogeneity (coupled with quantitative index
such as I2 orQ-test) and pooled results (53). However, forest plots
do not address publication bias and thus can mislead readers’s
conclusion if not presented with additional information such as a
funnel plot.

One of the most widely used tools to assess publication bias is
plotting the effect sizes for each study against an indicator for the
precision to which each study estimated the effect size. In funnel-
plots, studies will be plotted near the average effect size, while
studies with low precision (e.g., small sample) will have effect
estimates distributed on either side of the average effect, creating
a funnel-shaped plot.

Although funnel plots are a widely used and reliable way
to evaluate publication bias, another useful tool is the p-curve
(5). The p-curve plots a proportion of observed p-values for
each value of p in a set of studies. Because true effects are
more likely to have smaller values of p (e.g., “p < 0.01”) than
values around the arbitrary significant threshold of p < 0.05, a
flat p-curve or a p-curve indicating a higher proportion of p-
values between 0.04 and 0.05 is more likely to be an indicator
of questionable research practices, sometimes referred to as p-
hacking. Van Assen et al. (4) propose the use of another tool,
p-uniform, to estimate population effect size in the presence of
small to moderate heterogeneity (I² < 50%).

Conducting sub-group analyses for observational, quasi-
experimental, and experimental studies will also help evaluate
the risk of bias of each study design (6). In cases of substantial
heterogeneity, researchers can generate a homogenous group
of studies based on theoretical or methodological criteria and
then use the p-curve and p-uniform to estimate the average
population effect sizes for each subgroup analysis (4). Additional
tools can be useful to determine publication bias. For instance,
selection models can adjust for suspected selective publication;
Rosenthal’s fail-safe N is used to estimate the number of
unpublished studies necessary to overturn the significant results
and Copas sensitivity approach uses regression models to
evaluate publication bias (54).

The fact that statistically significant results are more likely
to be published than non-significant results is a major
source of publication bias. Additional sources of potential
bias that should be addressed when possible include pipeline
bias (non-significant results take longer to publish than
significant results), subjective reporting bias (selective reporting
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of the results), duplicate reporting bias (results published
in multiple sources), and language bias (non-native English
speakers tend to publish non-significant findings in their native
tongue) (54).

CONCLUSION

Tensions over the use of HCQ for COVID-19 patients have
unfortunately led some authors to disregard basicmeta-analytical
protocols. Concern over the quality of studies included in meta-
analyses has also emerged in a recent comparative psychological
study betweenmeta-analytical findings and registered replication
studies. The authors found that meta-analytical effect sizes
significantly differed from the replication effect sizes for 12
of the 15 meta-replication pairs, and meta-analytic effect sizes
were almost three times larger than the replication effect sizes

(15). These inconsistencies call for caution when running and
interpreting meta-analyses of new clinical studies.
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