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Recent leaps in elucidating the biology of myeloma, particularly the intracellular 
pathways and the complex interaction with the bone marrow microenvironment, have 
resulted in an unprecedented surge of novel, targeted therapies and therapeutic 
regimens. There are currently over 30 new agents being tested in the treatment of 
multiple myeloma (MM). Many of these are novel, targeted agents that have demonstrated 
significant efficacy and prolonged survival. In this review, we summarize the current 
understanding of the mechanisms of action of novel therapies being tested in the 
preclinical and clinical settings in MM. These include agents that act directly on the 
intracellular signaling pathways, cell maintenance processes, and cell surface receptors. 
Finally, we present the clinical responses to some of these agents when used alone or in 
combination in clinical trials of patients with MM. Indeed, MM has become a model 
disease for the development of novel, therapeutic agents. 
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INTRODUCTION 

The first case descriptions of multiple myeloma (MM), a plasma cell malignancy characterized by lytic 
bone lesions, anemia, hypercalcemia, and renal failure, occurred as early as 1844 in patients described as 
having “mollities ossium” (soft bones); at the time, leeches and therapeutic bleeding were common 
treatment options[1,2]. It was not until over a century later, in 1958, that melphalan was first reported as a 
successful treatment for myeloma[3]. Shortly afterwards, melphalan combined with prednisone (MP) 
achieved better results than melphalan alone, and MP remained the conventional regimen until the recent 
advances of therapy in MM[4]. Recent leaps in elucidating the biology of myeloma, particularly the 
intracellular pathways and the complex interaction with the bone marrow microenvironment, have 
resulted in an unprecedented surge of novel, targeted therapies and therapeutic regimens. There are 
currently over 30 new agents being tested in the treatment of MM. Many of these are novel, targeted 
agents that have demonstrated significant efficacy and prolonged survival. Indeed, there has been a 
paradigm shift in the treatment of MM in the last 5 years.  

Here, we provide a brief summary of the pathophysiology of MM, emphasizing the important role of 
the bone marrow microenvironment, and describing the mechanisms and pathways associated with novel 
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therapies. We will discuss the preclinical evidence supporting novel therapies that target intracellular 
signaling pathways (Table 1), cell maintenance processes (Table 2), and cell surface receptors (Table 3). 
Finally, we will discuss therapies currently showing great promise in clinical trials both as single agents, 
and more importantly, in combination. 

TABLE 1 
Novel Agents Targeting Intracellular Signaling Pathways 

Pathways Novel Agent Description Status 

PI3K/Akt  Perifosine Alkylphosphocholine Phase II 
 Rapamycin mTOR inhibitor  
 CCI-779  Phase II 
 RAD-001  Phase II 
 Enzastaurin PKCβ inhibitor Phase II 
MEK/ERK  Tipifarnib Farnesyltransferase inhibitor Phase II 
 L744832   
 Manumycin   
 BMS-214662   
 Lonafarnib   
p38 MAPK  SCIO-469 p38 MAPK inhibitor Preclinical 
MAPK/JNK  Aplidin/plitidepsin  Phase II 
NF-κB  PS-1145 IKK inhibitor Preclinical 
 Bortezomib Proteasome inhibitor Phase 

III/FDA 
approved 

JAK/STAT Atiprimod Azaspirane Preclinical 
Apoptosis Arsenic trioxide  Phase II 
 LPAAT inhibitor  Preclinical 
 2-Methoxyestradiol  Preclinical 
 ABT-737 Bcl-2 inhibitor Preclinical 
 CDDO-Im Triterpenoid Preclinical 
 VX-944 Inosine monophosphate dehydrogenase inhibitor Preclinical 
 PK1195 Smac mimetic Preclinical 
 FTY720 Sphingosine monophosphate inhibitor Preclinical 
 Etodolac  Preclinical 
Multiple pathways Thalidomide  Phase III 
 Lenalidomide/Revlimid  Phase III 
 CC-4047/Actimid  Phase III 

PATHOGENESIS OF MULTIPLE MYELOMA 

Although MM is usually defined as a malignancy of the plasma cell, there is strong evidence to suggest 
that the initial mutation may have occurred in a less-differentiated cell[5]. Malignant plasma cells are 
usually immature plasmablasts that exhibit numerous chromosomal abnormalities. While a full discussion 
of the initial pathogenesis of disease is beyond the scope of this review, it is important to note that early  
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TABLE 2 
Novel Agents Targeting Cell Maintenance Processes 

Cell Maintenance Process Novel Agent Description Status 

Protein degradation Bortezomib/Velcade Proteasome inhibitor FDA-approved phase III 
 NPI-0052  Preclinical 
 Tubacin Aggresome inhibitor Preclinical 
Transcription SAHA HDAC inhibitor Phase I 
 NVP-LAQ824  Preclinical 
 NVP-LBH589  Preclinical 
Protein chaperoning 17AAG Hsp90 inhibitor Phase I/II 
Mitosis GRN163 Telomerase inhibitor Preclinical 

TABLE 3 
Novel Agents Targeting Cell Surface Receptors 

Cell Surface Receptors Novel Agent Description Status 

IL-6 Anti-IL-6 mAbs  Phase I 
 Sant-7 IL-6 superantagonist Preclinical 
bFGF SU5402 Small molecule tyrosine kinase 

inhibitors 
Preclinical 

 PD173074   
 PKC412   
 PRO-001 Anti-FGFR3 antibody Preclinical 
IGF-1 NVP-ADW742 IGFR tyrosine kinase inhibitor Preclinical 
VEGF Avastin/bevacizumab Anti-VEGF antibody FDA approved for 

metastatic colon 
cancer 

  PTK787 VEGFR tyrosine kinase inhibitor Phase I 
 SU5416  Phase II 
 GW654652  Preclinical 
TNF family TRAIL/Apo2L  Preclinical 
 SGN-40 CD40 ligand Preclinical 
TGF-β SD-208 TGF-βR tyrosine kinase inhibitor Preclinical 
CD20 Rituximab Anti-CD20 antibody Preclinical 

chromosomal translocations result in the overexpression of several important oncogenes, including 
MMSET and FGFR3 (at 4p16), CCN D3 (at 6p21), CCB D1 (at 11q13), c-MAF (at 16q13), and MAFB 
(at 20q11)[6,7,8,9,10]. In particular, as high as 40% of MM cells have at least one of these mutations[11]. 
Eventually, malignant clones carrying these mutations progress and undergo further genetic insults 
leading to advanced disease. In particular, mutations in c-myc, N-Ras, and K-ras oncogenes have been 
implicated in later stages of myeloma pathogenesis, and these will be discussed later in this review. 

Environmental factors play an equally important role in the progression of disease. The malignant 
plasma cells home to the bone marrow where subsequent interactions serve to facilitate the development 
and progression of disease. In particular, advances in understanding myeloma biology have implicated the 
phosphatidylinositol-3 kinase (PI3K)/Akt (also known as protein kinase B [PKB]), mitogen-activated 
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protein kinase (MAPK), Janus kinase 2 (JAK2)/signal transducers and activators of transcription (STAT) 
3, I-κB kinase (IKK)/nuclear factor κB (NF-κB), and Hsp90 signaling pathways as key culprits in the 
pathogenesis of disease (Fig. 1). 

 
FIGURE 1. Simplified overview of intracellular signaling pathways. 

The important role of the bone marrow microenvironment cannot be emphasized enough in the 
development of disease. There is now a large body of data describing how the bone marrow 
microenvironment, a complex landscape composed of hematopoietic stem cells, extracellular matrix 
(ECM) proteins, bone marrow stromal (BMSC) and endothelial cells, fibroblasts, osteoclasts, and 
osteoblasts, helps to facilitate MM cell growth, survival, and migration as well as mediate the 
development of drug resistance[12,13,14].  

NOVEL AGENTS TARGETING INTRACELLULAR SIGNALING PATHWAYS 

Many of the agents currently being evaluated in myeloma exert their effects on a broad range of 
pathways, and for many drugs, the exact mechanisms of action are still being delineated. For the purposes 
of this review, the novel agents will be loosely grouped based on the pathways that appear to be most 
significant. 
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Targeting the PI3K/Akt Pathway 

The phosphatidylinositol-3 kinase (PI3K) signaling cascade is one of two major pathways that are 
activated by receptor tyrosine kinases. PI3K is composed of regulatory and catalytic subunits, which 
when activated, catalyze and further activate a wide range of downstream targets, most notably the 
serine/threonine protein kinase Akt (PKB). Akt has emerged as an important player in mediating tumor 
progression. It has a multifaceted role in cell survival, including sequestering the FOXO family of 
Forkhead transcription factors from activating their proapoptotic targets, such as FasL and Bim[15]; 
phosphorylating and thus sequestering Bad, a proapoptotic Bcl-2 family member, from the 
mitochondria[16]; phosphorylating I-κB kinase (IKK) and thus preventing the degradation of NF-κB[17]; 
and reciprocal regulation of the tumor suppressor gene, p53[18]. In addition, Akt regulates cell 
proliferation and growth by targeting the activity of glycogen synthase kinase β and preventing cyclin D1 
degradation[19] as well as targeting mTOR (mammalian target of rapamycin). mTOR, also known as 
rapamycin-associated protein (FRAP), is a serine/threonine kinase that serves as a molecular sensor that 
regulates cell growth and proliferation in response to nutrients, growth factors, and insulin[20,21]. 
mTOR-dependent phosphorylation of several downstream molecules is critical for the cap-dependent 
translation of cell cycle proteins and progression from G1 to S phase[22]. 

Recently, there has been exciting evidence suggesting that the PI3K/Akt pathway is an important 
target in antimyeloma therapy. Akt is constitutively activated in patient myeloma cells, but interestingly, 
not in nonmalignant cells from the same patient[23]. Perhaps most importantly, many of the key growth 
factors in myeloma, such as IL-6, VEGF, and IGF-1, are ligands for tyrosine kinase receptors, which then 
activate the PI3K/Akt pathway. IL-6, the major myeloma growth factor, has been shown to induce 
phosphorylation of Akt and its downstream targets in a time- and dose-dependent manner. Furthermore, 
IL-6 overcomes dexamethasone-induced apoptosis via activation of PI3K/Akt[24].  

Given the importance of the PI3K/Akt pathway in tumorigenesis, numerous drugs are currently under 
evaluation for a variety of malignancies[25]. In MM, three agents are currently being evaluated. 

Perifosine 

Perifosine, an orally active, alkyl-phosphocholine compound, belongs to a novel class of antitumor drugs 
that effect membrane permeability, phospholipid metabolism, and mitogenic signal transduction[26]. 
Importantly, perifosine has been shown to inhibit Akt activation without affecting the activity of PI3K or 
phosphoinositide-dependent kinase 1 (PDK1)[27]. It has been shown in vitro to induce p21WAF1 
expression and cell cycle arrest in head and neck squamous cell carcinoma[28], and two phase I studies 
have been completed in solid tumors[29]. 

In MM, Hideshima and colleagues found that perifosine inhibits Akt activation, induces 
JNK/caspase-dependent apoptosis in conventional therapy-resistant and -sensitive MM cell lines, 
overcomes the survival advantages of interaction between MM cell and BMSCs, and is not cytotoxic to 
peripheral blood mononuclear cells. Furthermore, it has significant antitumor effects in a murine MM 
mouse model[30]. Finally, given its pleotropic effects and based on initial preclinical studies, perifosine 
may have a valuable role in combination with other novel and standard therapies. When used in 
combination with standard therapies, such as dexamethasone, melphalan, and doxorubicin, perifosine 
augmented MM cytotoxicity in vitro. Interestingly, the proteasome inhibitor, bortezomib, was found to 
activate Akt and combination with perifosine blocked this activation. This finding offers preliminary 
evidence that combination with perifosine may overcome clinical resistance to bortezomib[30]. Phase II 
clinical trials are currently underway to evaluate the clinical uses for perifosine +/- dexamethasone as well 
as examining perifosine in combination with bortezomib in patients with relapsed or refractory MM.  
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Rapamycin and Its Analogues: CCI-779, RAD-001 

Rapamycin and its more soluble derivatives CCI-779 and RAD-001 are mTOR inhibitors. Rapamycin 
binds to its receptor, FK506 binding protein12, which then complexes with mTOR to block its activity 
effectively[31,32]. Several studies have examined mTOR inhibitors’ ability to not only induce cell cycle 
arrest, but induce apoptosis[32]. In particular, studies have found that both rapamycin and CCI-779 
augment dexamethasone-induced apoptosis in vitro and in vivo[22]. mTOR inhibitors have been 
examined in phase II clinical trials for solid tumors, and are currently in phase II trials for myeloma[33]. 
In addition, Phase II trials of combination of CCI-779 with bortezomib are underway. 

Enzastaurin 

The protein kinase C (PKC) family of serine/threonine kinases has a myriad of targets that are involved in 
a broad range of cellular events, such as proliferation, growth, and transcription. Recent preclinical 
studies suggest that the PKCβ inhibitor, enzastaurin (LY317615), can overcome growth advantages 
conferred by BMSCs and acts on MM cell lines that are both sensitive and resistant to conventional 
therapies by inhibiting cell growth, survival, and migration[34]. Furthermore, enzastaurin may exert its 
apoptotic effects via inhibition of Akt[34,35]. A phase II trial of enzastaurin will be available for patients 
with relapsed/refractory MM. 

The MAPK Signaling Pathways 

There are three major groups of mitogen-activated protein kinases (MAPKs): the extracellular signal-
regulated kinase (ERK) family, the p38 MAPK family, and the c-Jun NH2-terminal kinase (JNK) family. 
As their name implies, these families of serine/threonine kinases are activated by growth factors and other 
stimuli, and they also participate in the production and secretion of cytokines. The MAPKs are intimately 
involved in the regulation of key cellular processes, such as cell cycle progression, growth, 
differentiation, and apoptosis; as such, they are often implicated in malignant transformation and tumor 
progression[36].  

Targeting the Ras/Raf/MEK/ERK Family 

Numerous studies have shown that cytokine-induced cell proliferation is predominantly mediated through 
the ERK family of MAPKs[24,37,38,39,40], which are a part of a large cascade of proto-oncogenes 
including the upstream activators, Ras and Raf. In myeloma, 30–40% of patients have mutated Ras. N-
Ras and K-Ras mutations, which lead to constitutively active Ras, have been observed in the malignant 
cells of patients with advanced stage disease[41,42]. While IL-6–dependent proliferation of MM cells is 
known to be dependent on ERK activation[43,44], interestingly, the inhibition of ERK in an IL-6–
independent MM cell line with constitutively active Ras did not block cell proliferation. These data 
suggest that Ras can activate ERK-independent pathways[45]. 

Farnesyltransferase Inhibitor: Tipifarnib/R115777, L744832, Manumycin, BMS-214662, 
and Lonafarnib/SCH66336 

There has been great interest in the use of farnesyltransferase inhibitors (FTIs) to target Ras in myeloma. 
Farnesyltransferase catalyzes the first step in post-translational modification of Ras, which allows the Ras 
protein to migrate to the cell membrane, where it exerts its activity. Several agents, including L744832[46], 
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manumycin[47], BMS-214662[48], lonafarnib/SCH66336[49], and tipifarnib/R115777[50,51,52], have 
been shown to inhibit cell growth and survival in both drug-resistant and -senstitive MM cell lines. Of note, 
lonafarnib has been shown to work synergistically with bortezomib to enhance MM cell death. Interestingly, 
this synergistic response was associated with caspase cleavage as well as decreased phosphorylation of Akt, 
suggesting that FTIs may be promising agents in combination with proteasome inhibitors[49]. A phase II 
clinical trial of tipifarnib/R115777 in patients with advanced MM found that it was well tolerated and 
induced stabilization of disease[50]. 

Targeting the p38 MAPK Pathway 

p38 MAPK is a serine/threonine kinase involved in stress responses to environmental stressors such as 
inflammatory cytokines, UV light, and osmotic shock. There are four known splice variants of the p38 
MAPKs, and p38α has been found to have major documented effects on cell growth, differentiation, and 
apoptosis[53].  

SCIO-469 

SCIO-469, a selective p38 MAPK inhibitor, has been studied in phase I/II trials for rheumatoid arthritis. 
In myeloma, it decreases proliferation of MM cells and blocks IL-6 and VEGF secretion from 
BMSCs[37]. In addition, SCIO-469 is being considered in combination with the proteasome inhibitor, 
bortezomib, because while bortezomib achieves excellent response in 35% of relapsed/refractory MM 
patients, there is a substantial population that are either unresponsive or develop resistance. SCIO-469 has 
been shown to augment the cytotoxicity of bortezomib in vitro and in vivo, in part due to down-regulation 
of Hsp27, a molecule whose overexpression has been associated with dexamethasone resistance[54,55]. 

Targeting the MAPK/JNK Pathway 

JNK, often found to be activated after chemotherapy, has been shown to exhibit both oncogene[56] and 
tumor-suppressor gene activities[57]. The exact role of JNK in myeloma is unclear; JNK inactivation 
appears to be one mechanism by which IL-6 protects MM cells from Fas-induced apoptosis[39,58], and 
the proteasome inhibitor, bortezomib, induces JNK activation during MM cell apoptosis[59,60]. The 
JNK1/2 specific inhibitor, SP600125, has been shown to induce G2/M arrest in MM cells and, 
interestingly, activates NF-κB in a time- and dose-dependent fashion[59]. 

Aplidin/Plitidepsin 

Aplidin, a naturally occurring, cyclic depsipeptide isolated from the marine tunicate Aplidium albicans, 
exhibits very promising antitumor effects both in vitro and in vivo, and it is now in phase II clinical trials 
for a variety of solid and hematologic tumors. The exact mechanisms of action are unclear, but aplidin-
mediated cytotoxicity has been shown to be dependent on sustained activation of JNK[61,62,63]. It 
exhibits strong apoptotic effects on MM cell lines and patient cells by triggering JNK, Fas, and 
mitochondrial-mediated signaling pathways[64].  

Lopez-Martin and colleagues reported in abstract form that in Phase I and II trials of 215 and 112 
patients, respectively, Aplidin was generally well tolerated with major dose limiting toxicity being 
adverse musculoskeletal events including increased CPK, myalgia and weakness [65]. Tumor shrinkage 
and long-lasting disease stabilization were reported in patients with colorectal, renal, neuroendocrine, 
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lung, and head and neck cancer as well as melanoma and non-Hodgkin’s lymphoma. Based on these 
initial results, phase II trials are currently underway in myeloma. 

Targeting the NF-κB Pathway 

Nuclear factor κB (NF-κB), a small class of Rel family transcription factors, has emerged as a key player 
in the pathogenesis of myeloma. It plays a critical role in regulating many cellular responses, including 
immunity, inflammation, proliferation, survival, and angiogenesis[66,67,68]. Inactive NF-κB complexes 
with its inhibitor, IκBα, and remains sequestered in the cytosol. A variety of stimuli trigger the 
phosphorylation of IκB by IκB kinase (IKK). Phosphorylated IκB is then a target for ubiquination and 
proteasome-mediated degradation, which in turn releases NF-κB to translocate from the cytosol to the 
nucleus. Once in the nucleus, NF-κB stimulates transcription of numerous cytokines, chemokines, and 
cell adhesion molecules[69]. NF-κB is constitutively activated in numerous hematologic malignancies, 
including myeloma[70], and several agents have been examined to target the NF-κB pathway directly and 
indirectly.  

PS-1145 

PS-1145, a selective IKK inhibitor, was shown to inhibit IL-6 production from BMSCs cocultured with 
MM cells; however, compared to the complete cell proliferation blockade observed with bortezomib 
treatment, PS-1145 only partially inhibits MM cell proliferation in vitro, suggesting that there other 
therapeutic targets of proteasome inhibition[71,72,73]. 

Other Agents 

Dexamethasone has been shown to down-regulate NF-κB activity, and conversely, constitutive activation 
of NF-κB mediates dexamethasone resistance in MM cells[74]. Thalidomide has also been shown to 
down-regulate NF-κB activity[75]. Finally, one of the most exciting new classes of agents in myeloma 
therapy is the proteasome inhibitor, which by preventing the degradation of NF-κB inhibitor, IκB, 
effectively inactivates NF-κB and prevents its promalignancy effects[76]. The prototype proteasome 
inhibitor, bortezomib, and its newer analogue, will be extensively discussed later in this review. 
Importantly, NF-κB blockade accounts for only part of bortezomib’s antimyeloma effects.  

Targeting the JAK/STAT Pathway 

The Janus kinase (JAK) family of tyrosine kinases plays a crucial role in cytokine signaling by 
phosphorylating the intracellular domains of cytokine receptors and recruiting downstream factors, such 
as STATs (signal transducers and activators of transcription), which then migrate to the nucleus and up-
regulate gene transcription. STAT3 is of particular relevance in myeloma and other malignancies because 
its binding elements have been found on the promoters of several antiapoptotic genes, including Mcl-1, 
Bcl-2, and Bcl-xL[77]. Importantly, IL-6 binding to its receptor and the subsequent JAK/STAT3 
activation is associated with myeloma cell survival[43,78] likely secondary to up-regulation of Mcl-1[79] 
and drug resistance[80].  
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Azaspirane: Atiprimod 

Azaspiranes are compounds that have previously been studied in preclinical and clinical trials as anti-
inflammatory agents for rheumatic diseases. While the exact mechanisms of action remain unclear, 
atiprimod, an orally bioavailable azaspirane, has been found to down-regulate the expression of adhesion 
molecules and cytokines, such as IL-6, TNF-α, and IL-2[81]. In myeloma, it has shown very promising in 
vitro antimyeloma effects including inducing apoptosis via down-regulation of phosphorylated STAT3 
and its antiapoptotic targets, Mcl-1 and Bcl-2; inhibiting cell proliferation; and decreasing NF-κB 
activation. Importantly, the effects of atiprimod could not be overcome by the survival advantages 
conferred by IL-6, VEGF, or adherence of MM cells to BMSC[82]. Furthermore, azaspirane has been 
shown in a SCID-hu mouse model to inhibit tumor growth, further suggesting that it may have a 
beneficial role in patient therapy[83]. Currently, phase I/II trials are underway examining atiprimod in 
refractory or relapsed myeloma. 

Triggering Apoptotic Pathways 

Almost all the therapies being evaluated in the treatment of myeloma exhibit some in vitro apoptotic 
effects, and many of these also have in vivo effects as well. The details of the intrinsic, extrinsic, and 
mitochondrial apoptotic pathways are beyond the scope of this review. In this section, the preclinical data 
for several novel therapies that have been shown to induce apoptosis in myeloma will be summarized, 
most notably, arsenic trioxide, LPAAT inhibitors, 2-methoxyestradiol, and others. 

Arsenic Trioxide (As2O3) 

Arsenic trioxide, currently being used in the clinic for treatment of relapsed/refractory, acute, 
promyelocytic leukemia, has shown promise in the treatment of myeloma as well[84]. In vitro studies 
have suggested that it works via several different pathways. Most notably, it has been shown to down-
regulate Bcl-2, induce caspase-9 cleavage, and induce apoptosis in both drug-senstitive and -resistant MM 
cell lines[85]. Furthermore, it has been shown to inhibit both the JAK/STAT3 and NF-κB signaling 
pathways as well as decreasing paracrine IL-6 secretion from BMSCs[12,86]. It has also been found to 
up-regulate the expression of TRAIL (tumor necrosis factor–related apoptosis-inducing ligands) 
receptors, suggesting that combination with TRAIL may be of benefit[87]. 

LPAAT Inhibitor 

Lysophosphatidic acid acyltransferase (LPAAT) catalyzes the conversion of lysophosphatidic acid to 
phosphatidic acid, a phospholipid involved in lipid biosynthesis and signal transduction. LPAAT-β 
inhibitors, in particular CT-32176 (the most potent), have been shown in myeloma cell lines to induce 
apoptosis via caspase cleavage and JNK signaling. Importantly, the antimyeloma effects of LPAAT-β 
inhibitors overcome growth advantages conferred by MM cell-BMSC adhesion and can overcome 
resistance to conventional therapies, such as dexamethasone and melphalan[88], as well as novel 
therapies, such as bortezomib[89], in vitro.   
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2-Methoxyestradiol 

2-Methoxyestradiol (2-ME2), an endogenous derivative of estradiol, was initially found to have 
significant antileukemic actions in vitro and in vivo. It has been found to induce apoptosis via the 
mitochondrial release of Smac protein and cytochrome C, which results in the inactivation of IAP 
(inhibitors of apoptosis) proteins followed by activation of the caspase cascade[90]. Furthermore, it 
decreases VEGF and IL-6 secretion from BMSC, suggesting antiangiogenic potential. In addition, in vitro 
and in vivo data indicate that 2-ME2 is effective in MM cells resistant to melphalan and doxorubicin[91].  

Bcl-2 Inhibitor: ABT-737 

The Bcl-2 family of proteins is a key player in the regulation of mitochondria-dependent apoptosis. 
Overexpression of Bcl-2 and Bcl-xL has been noted in numerous malignancies, including MM, and Bcl-2 
has also been implicated in the development of drug resistance and disease progression[92,93]. The small 
molecule Bcl-2 inhibitor, ABT-737, binds specifically to Bcl-2, Bcl-xL, and Bcl-w, and inhibits their 
proapoptotic effects by augmenting the effects of death signals[94].  

Early results for ABT-737 have been very promising in solid tumors[94]. In myeloma, ABT-737 has 
been shown to induce apoptosis in MM cell lines and patient cells. Furthermore, it is cytotoxic in MM 
cells that are resistant to conventional therapies, and it enhances the antimyeloma effects of bortezomib 
and melphalan[93,95].   

Others 

Many novel, apoptotic agents are currently in the early stages of evaluation in myeloma. Some of these 
include triterpenoids (CDDO-Im)[96], inosine monophosphate dehydrogenase inhibitors (VX-944)[97], 
Smac mimetics (PK1195), sphingosine monophosphate inhibitors (FTY720)[98], and etodolac (SDX-
101)[99].  

Targeting Multiple Pathways: Thalidomide and Its Derivatives, Imids 

Thalidomide, a glutamic acid derivative, was first used in myeloma based on its known antiangiogenic 
effects. However, it is now known that thalidomide and its more potent derivatives exert their activities 
through a broad spectrum of effects not limited to angiogenesis. In fact, microvessel density in the bone 
marrow and plasma VEGF and bFGF levels are not significantly different between patients treated with 
or without thalidomide[100,101]. Its other mechanisms of action include, but are not limited to, directly 
inhibiting MM cell growth and survival, preventing MM cell-BMSC adhesion, inhibiting secretion of 
cytokines needed for survival and growth, and promoting antimyeloma immune responses. The full 
details of the many cellular effects of thalidomide are beyond the scope of this review; however, several 
activities are particularly important in combating myeloma. Thalidomide blocks the secretion of potent 
myeloma growth factors (IL-6 and VEGF), induces apoptosis via caspase-8 activation, blocks NF-κB 
activity, and inhibits IL-6–induced MAPK pathways[12,102,103,104,105,106]. 

Thalidomide derivatives, such as lenalidomide (Revlimid)[107,108] and CC-4047 (Actimid) 
[109,110], are two of the most promising, second-generation thalidomide derivatives. Both can be 
administered orally and although they exert many similar biologic effects as thalidomide, both agents are 
much more potent and have significantly fewer toxic side effects than their predecessor[111,112,113]. 
Clinical trials are currently underway for both drugs and will be discussed later in this review.  
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NOVEL AGENTS TARGETING CELL MAINTENANCE PROCESSES 

Targeting Protein Degradation via Proteasomes and Aggresomes 

The Proteasome  

The ubiquitin-26S proteasome pathway, which regulates the turnover of a vast number of intracellular 
proteins, has become an exciting target in a variety of malignancies, most notably MM. Normally, 
proteins that are tagged with multiple, ubiquitin molecules enter the 26S proteasome for subsequent 
degradation. The proper functioning of this system is crucial for cell cycle regulation, gene transcription, 
and signal transduction. One of the proteins degraded by the 26S proteasome, IκBα, is an inhibitory 
protein that is bound to NF-κB and prevents NF-κB translocation to the nucleus. As mentioned earlier, 
once in the nucleus, NF-κB promotes the transcription of numerous genes involved in cell survival, 
proliferation, and drug resistance. Inhibition of the proteasome effectively increases the presence of IκBα 
and prevents NF-κB release to the nucleus. 

Bortezomib 

The prototype 26S proteasome inhibitor, bortezomib (Velcade, PS-341), selectively binds to the catalytic 
domain of the proteasome and prevents its activity. Predictably, bortezomib exhibited exciting 
antimyeloma effects associated with inhibition of NF-κB activity[72,76,114,115,116]; however, it should 
be noted that subsequent in vitro studies have revealed numerous other antimyeloma effects independent 
of the NF-κB pathway. Thus, the complete molecular mechanisms of its activity remain undefined[117]. 
It is now known to regulate cell cycle proteins, and targets both the intrinsic and extrinsic apoptotic 
pathways via caspase-9 and caspase-8, respectively. 

NPI-0052 

Recently, another proteasome inhibitor, NPI-0052, with a different chemical structure, toxicity profile, 
and mechanism of action, has been studied. Like bortezomib, NPI-0052 also inhibits NF-κB, blocks 
proteasome activity, and induces apoptosis in MM cells, but not BMSCs; furthermore, it is active at lower 
concentrations than bortezomib and can be orally administered. Interestingly, NPI-0052–mediated 
apoptosis appears to be predominately through the caspase-8 cell death cascade. This difference between 
bortezomib and NPI-0052 may, in part, explain the finding that a combination of the two proteasome 
inhibitors had a synergistic effect on cytotoxicity[118].  

The Aggresome 

There are several pathways through which misfolded or aggregated proteins are processed in a cell, 
including refolding via molecular chaperones or degradation via proteasomes. Recently, there has been 
evidence suggesting a third pathway of protein disposal involving the sequestration of aggregated proteins 
into spherical aggresomes for further processing, most commonly, lysosomal degradation. Notably, 
aggresomes are not simply static depositories for misfolded proteins, they also recruit chaperones and 
proteasomes to help in the clearance of the misfolded proteins. In light of the success of proteasome 
inhibition, it is possible that other means of cell protein catabolism may also be good therapeutic targets.  
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Tubacin 

Histone deacetylase 6 (HDAC6) plays an essential role in aggresome activity by binding polyubiquinated 
proteins to the dynein motors needed for recruitment to aggresomes[119]. Tubacin, a small molecule that 
triggers acetylation of α-tubulin, directly inhibits HDAC6 to block aggresome activity. In a study by 
Hideshima and colleagues, tubacin was found to inhibit interaction with HDAC6. Furthermore, when 
used in combination with bortezomib, it induces synergistic accumulation of polyubiquinated proteins, 
increases cytotoxicity to MM cells, as well as decreases paracrine (BMSC)-induced cell growth[120].  

Targeting Transcription 

Histones are positively charged proteins that attract and organize negatively charged DNA into 
nucleosomes. As such, their regulation by the opposing actions of histone acyltransferases and histone 
deacetylases (HDAC) plays a key role in gene expression, cell differentiation, and survival.  

HDAC Inhibitors: SAHA, NVP-LAQ824, and NVP-LBH589 

In MM, several novel HDAC inhibitors, including suberoylanilide hydroxamic acid (SAHA), NVP-
LAQ824, and NVP-LBH589, are currently being evaluated. SAHA, in particular, has been shown to have 
pleiotropic antimyeloma effects; most notably, it induces apoptosis in MM cell lines and patient cells that 
are both sensitive and resistant to conventional therapies, and it sensitizes MM cells to other chemotherapies 
in vitro[121,122]. A phase I study of SAHA in relapsed/refractory myeloma is currently underway. 

Targeting Protein Chaperoning  

Heat shock proteins (HSP) are a class of molecular chaperones that, under normal conditions, facilitate 
proper protein folding and regulate the turnover of important cell growth and survival proteins. When 
under conditions of environmental stress, HSP expression increases in an adaptive means to maintain cell 
homeostasis and enhance cell survival. Elevated levels of HSPs have long been noted in many 
malignancies, and these chaperones seem to help protect malignant cells from stressful 
microenvironments as well as from otherwise lethal mutations within the tumor cells themselves. HSP90 
plays a particularly important role in oncogenesis because many of its protein substrates (such as receptor 
tyrosine kinases, serine/threonine kinases, telomerase, Akt, HIF1α) are signal transducers that regulate 
cell growth, proliferation, and survival[123,124].  

HSP90 Inhibitor: 17AAG 

Several HSP90 inhibitors have been tested in preclinical studies; however, only one, 17AAG, a 
geldanamycin derivative that binds to the N-terminal ATP-binding pocket of HSP90, has been studied in 
vivo and in clinical trials[125]. In myeloma, 17AAG induces potent apoptosis in drug-sensitive and  
-resistant cells in vitro. It has also been reported to act synergistically with bortezomib[126] and HDAC 
inhibitors[127]. Phase I trials are currently underway for 17AAG as a single agent in myeloma and also in 
combination with trastuzumab (Herceptin). Other HSP90 inhibitors with a more tolerable profile than 
17AAG, such as KOS-953[128,129,130] and IPI-504[131,132,133], are being tested in phase I and II 
clinical trials in MM. 
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Targeting Mitosis 

Telomeres are nucleoprotein complexes that protect against degradation and erosion of chromosomes 
during replication cycles and serve to protect chromosome ends, which may otherwise be mistaken for 
double strand breaks, from fusion by repair mechanisms[134]. During each round of replication, the 
telomeres are eroded, and critical shortening of telomeres results in irreversible mitotic inhibition and cell 
death. Cells, thus, rely on the activity of telomerase, a reverse transcriptase, to lengthen and stabilize the 
telomeres, and in malignant cells, telomerase activity helps to confer immortality. High telomerase 
expression has been noted in up to 95% of human cancers[135,136]. 

Telomerase Inhibitor: GRN163 

Telomerase inhibitors, such as GRN163[137], an oligonucleotide against human telomerase RNA 
component, and Telomestatin (3533-SV4)[138], an intercalating agent specific for telomeric sequences, 
have been found to shorten telomere length in MM cells and induce apoptotic cell death and growth 
inhibition.  

NOVEL AGENTS TARGETING CELL SURFACE RECEPTORS 

Targeting IL-6 

IL-6 is known to be a major growth and survival signal in MM cells whose effects are both autocrine and 
paracrine[139,140]. Serum IL-6 levels correlate with the proliferative fraction of MM cells, and high 
levels are associated with a poor prognosis[141]. IL-6 is secreted by both tumor cells and BMSCs, and 
secretion is augmented by direct binding between tumor cells and BMSCs as well as by additional 
cytokines, such as TNFα, VEGF, and TGF-β, within the BM microenvironment[142]. 

IL-6 activates several major signaling cascades, including the Ras/Raf/MEK/ERK, the JAK2/STAT3, 
and the PI3K/Akt cascades, which mediate cell proliferation, survival, and drug resistance, 
respectively[12]. The initial step in the activation of these pathways involves the binding of IL-6 to its 
low-affinity receptor (IL-6Rα/gp80) and the subsequent homodimerization of signal transducer, 
gp130[143]. Notably, gp130 has no IL-6 binding capacity by itself, but activation by the IL-6/IL-6R 
complex results in homodimerization and phosphorylation of tyrosine residues in the intracellular domain 
of gp130 by the JAK family of enzymes[144,145].  

Anti-IL-6 Monoclonal Antibody 

Treatments targeting IL-6 have focused on monoclonal antibodies (mAbs) to IL-6 and IL-6R, and, more 
recently, the IL-6 superantagonist, Sant7. Anti-IL-6 mAbs, initially studied as promising therapies for 
rheumatoid arthritis and lupus, have been shown to have antitumor effects in animal and preclinical 
human studies[146,147]. In myeloma, anti-IL-6 mAbs have cytostatic effects on tumor cells in vitro as 
well as transient, antimyeloma effects in both animal models and human preclinical trials[148,149]. In 
particular, Bataille and colleagues found in a clinical trial that treatment with anti-IL-6 mAbs had 
antimyeloma effects, such as reduction of myeloma cell production and inhibition of C-reactive protein 
synthesis, an acute phase reactant synthesized in the liver in response to IL-6; however, none of the 
patients achieved remission or improvement as assessed by standard clinical criteria[150].  

 



Hwang et al.: New Frontiers in the Treatment of Multiple Myeloma TheScientificWorldJOURNAL (2006) 6, 1475–1503 
 

 1488

IL-6 Superantagonist: Sant7 

Recently, much interest has turned to IL-6 superantagonists, which have a high affinity for IL-6R, but no 
bioactivity[151]. The most potent of these superantagonists, Sant7, has been shown to inhibit cell 
proliferation and induce apoptosis in IL-6–dependent myeloma cell lines[152]. Importantly, it has shown 
promise in combination with dexamethasone, one of the most active drugs in the treatment of MM. 
Numerous studies have implicated IL-6 production in the development of MM cell resistance to 
dexamethasone[104,153,154]. Sant7 overcomes resistance to dexamethasone in MM cell lines as well as 
potentiates the cytotoxic effects of dexamethasone and zoledronic acid[155,156]. Importantly, when 
evaluated in a SCID-hu in vivo mouse model of myeloma, Sant7 also significantly potentiates the 
antimyeloma effects of dexamethasone without significantly affecting CD34+ hematopoeitic progenitor 
cell growth[151]. Taken together, Sant7 is a promising therapeutic agent when used in combination with 
glucocorticoids, such as dexamethasone. 

Targeting Fibroblast Growth Factor 

FGF-2 (basic FGF, bFGF) is a potent angiogenic cytokine secreted by MM cells and, to a lesser extent, 
BMSCs. Increased levels of FGF-2 are seen in serum, bone marrow, and plasma cell lysates of MM 
patients. Studies have demonstrated that serum FGF-2 levels decreased significantly after successful MM 
treatment[157,158,159]. Furthermore, paracrine interactions between FGF-2 and IL-6 contribute to 
increased neovascularization as well as MM cell proliferation. Notably, IL-6 enhances FGF-2 expression 
and secretion by MM cell lines and patient cells, and stimulation of BMSCs with FGF-2 induces a time- 
and dose-dependent increase in IL-6 secretion[157].  

The signaling of FGF-2 is mediated by binding to a family of four distinct tyrosine kinase receptors 
(FGFR1-FGFR4), all of which are present on patient BMSCs and MM cells. Activation of FGFRs 
transduces signals through MAPK and PI3K pathways. Dysregulation of fibroblast growth factor receptor 
3 (FGFR3) by the t(4;14) translocation is known to confer a poorer prognosis and is a primary event in 
15–20% of MM cases[160,161]. Thus, there has been interest in targeting FGFR3 by both selective small 
molecule tyrosine kinase inhibitors and monoclonal antibodies.  

Small Molecule Tyrosine Kinase Inhibitors: SU5402, PD173074, PKC412 

Small molecule tyrosine kinase inhibitors, such as SU5402, PD173074, and PKC412, decrease viability 
and induce tumor cell growth arrest in human MM t(4,14) cell lines[162,163,164]. However, these agents 
may be limited by cross-reactivity with other receptor kinases.  

Anti-FGFR3 Antibody: PRO-001 

PRO-001, an anti-FGFR3 antibody, has a high affinity for FGFR3, decreases proliferation, and induces 
apoptosis in t(4:14) MM cells[165]. These preclinical studies suggest a role for FGFR3 inhibitors in MM 
patients with the t(4,14) translocation. 

Targeting Insulin-Like Growth Factor-1 

IGF-1, a critical cytokine in the pathogenesis of MM, is known to have a plethora of downstream effects, 
including the activation of the MAPK/ERK and PI3K/Akt signaling pathways[166]. In recent studies, it 
has been shown to act synergistically with IL-6 and protects against dexamethasone-induced 
apoptosis[13,167,168]. Furthermore, IGF-1 mediates MM cell growth and survival in MM cells both in 
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vitro[168,169] and in vivo[170]. IGF-1 is a ligand for IGF receptor (IGF-1R), a tyrosine kinase signaling 
molecule, which is universally expressed on hematologic and solid tumor cell lines as well as patient MM 
cells[170].  

IGFR Tyrosine Kinase Inhibitor: NVP-ADW742 

Given the pleiotropic effects of IGF-1, targeted strategies against IGF-1R may have important clinical 
relevance [167]. A study by Mitsiades and colleagues showed that IGF-1R inhibition by the small-
molecule IGF-1R tyrosine kinase inhibitor, NVP-ADW742, induced cytotoxicity in MM cells and was 
active even in cell lines resistant to conventional treatments, such as dexamethasone. Importantly, 
systemic administration of NVP-ADW742 suppressed tumor growth, prolonged survival, and potentiated 
the effects of other chemotherapies in vivo[170]. 

Targeting Vascular Endothelial Growth Factor 

VEGF, a potent angiogenic factor, is produced both by MM cells and BMSCs[171,172]. In addition to 
neovascularization, it has pleiotropic effects in the pathogenesis of MM, including aiding MM cell 
migration via PI3K-dependent PKCα activation, increasing proliferation and resistance to apoptotic 
signals via the up-regulation of Mcl-1, and augmenting the secretion of IL-6 by the 
BMSC[172,173,174,175]. The VEGF ligand exerts its effect after binding to its high-affinity tyrosine 
kinase receptor molecule, Flt-1, which is expressed on both MM patient cells as well as cell 
lines[171,172]. VEGF-triggered phosphorylation of Flt-1 activates the MAPK signaling pathway and 
ultimately leads to increased proliferation[12].  

Bevacizumab (Avastin) 

Agents targeting VEGF have shown great promise in the treatment of other malignancies. Most notably, 
the humanized monoclonal antibody against VEGF, bevacizumab (Avastin), was recently FDA approved 
as first-line therapy for metastatic colon cancer when given in combination with 5-FU[176]. Given the 
important role that VEGF plays in the progression of myeloma, these agents are now being studied as 
potential antimyeloma therapies. Bevacizumab is being studied in relapsed or refractory MM (with or 
without thalidomide).  

VEGF Receptor Tyrosine Kinase Inhibitor: PTK787, SU5416, and GW654652  

Therapeutic agents targeting VEGF receptor tyrosine kinase include PTK787, SU5416, and 
GW654652[177,178,179,180]. PTK787, an orally administered tyrosine kinase inhibitor that binds to the 
ATP-binding sites of VEGF receptors, has been shown in vitro to inhibit MM cell growth and migration 
as well as inhibit paracrine interactions with IL-6[177]. It is currently undergoing phase I testing in MM. 
SU5416, a small molecule VEGFR2, was found in phase II clinical trials to have some biologic effects; 
however, there was minimal clinical response[181]. Finally, the pan-VEGF inhibitor GW654652 acts on 
both MM cells and the BM microenvironment. GW654652 inhibits the secretion of other prominent 
cytokines (IL-6) and decreases proliferation even in the presence of BMSC. Phase I clinical trials are 
planned for the future[180]. 
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Targeting the Tumor Necrosis Factor Family 

The tumor necrosis factor family includes numerous ligands, several of which have been studied in MM, 
including TNF-α, tumor necrosis factor–related apoptosis-inducing ligand (TRAIL/Apo2L), Fas, CD40 
ligand, B-cell activating factor, BAFF, and APRIL.  

TRAIL/Apo2L 

TRAIL/Apo2L appears to have the most potential benefit against myeloma as it has been shown in MM 
cell lines, MM patient cells, and in xenograft mouse models to induce apoptosis selectively and overcome 
drug resistance[182,183]. TRAIL binds to two receptors, TRAIL-R1 and TRAIL-R2, which then 
trimerize and ultimately trigger the activation of caspase cascade and apoptosis. 

CD40 Ligand: SGN-40 

CD40 ligand has been shown to effect MM cell proliferation directly via the PI3K/Akt pathway as well as 
indirectly through induction of IL-6 and VEGF secretion by the BMSCs[184]. Preclinical studies with a 
humanized anti-CD40 antibody, SGN-40, revealed cytotoxicity even in cell lines resistant to conventional 
therapies[185]. Furthermore, lenalidomide was shown to augment SGN-40–mediated cytotoxicity[107].  

Targeting TGF-β 

Transforming growth factor (TGF)-β1, a multifunctional cytokine that plays a major role in hematopoiesis 
and tumor progression, is known to enhance IL-6 secretion by BMSCs[142]. It is secreted predominantly 
by MM cells, and adhesion of MM cells with MM patient BMSCs augments this secretion[186].  

TGF-β Receptor Tyrosine Kinase Inhibitor: SD-208 

Inhibition of TGF-β1 may overcome the growth advantages conferred by MM cell adhesion to BMSCs. 
SD-208, a selective TGF-β receptor type I (TβRI) kinase inhibitor, down-regulates both cytokine secretion 
and proliferation of tumor cells even in the presence of BMSCs[186].  

Anti-CD20 Antibody: Rituximab 

CD20 is expressed on the cell surface in roughly 20% of MM patients, and a CD20+ phenotype is 
associated with shorter survival[187]. Rituximab, an anti-CD20 monoclonal antibody, is standard therapy 
for other hematologic malignancies, such as non-Hodgkin’s lymphoma. In myeloma, its clinical use is 
uncertain. It has been studied as a single agent[188,189], with modest results and in combination with 
melphalan/prednisone, also with equivocal results[190]. 

NOVEL AGENTS CURRENTLY IN CLINICAL TRIALS 

Many of the novel agents discussed in this review have shown great preclinical promise, both as single 
agents and in combination with current therapies. There are several upcoming or currently in progress 
clinical trials for many of these agents (Tables 1-3).  Here we will briefly summarize the clinical data for 



Hwang et al.: New Frontiers in the Treatment of Multiple Myeloma TheScientificWorldJOURNAL (2006) 6, 1475–1503 
 

 1491

several agents that have been more extensively studied: arsenic trioxide, thalidomide, lenalidomide, and 
bortezomib. 

Arsenic Trioxide 

Arsenic trioxide has been evaluated in clinical trials as both a single agent and in combination with other 
therapies. A phase 2, multicenter, open-label study was conducted in 24 MM patients relapsed or 
refractory to prior treatments. Patients received arsenic trioxide (0.25 mg/kg/day for 5 day/week) during 
the first 2 weeks of each 4-week cycle; 58% had either a >25% reduction in serum M-protein levels or 
had stable disease[191]. Arsenic has also been evaluated in a combination study with dexamethasone and 
melphalan. In a study of 10 patients with relapsed or refractory disease, arsenic with low-dose melphalan 
and ascorbic acid exhibited sustained response and treatment was well tolerated[192]. Ascorbic acid 
potentiates the effects of arsenic by reducing intracellular glutathione, a molecule that functions to repair 
mitochondrial damage[193]. Currently, phase II trials are underway to evaluate arsenic in combination 
with bortezomib, thalidomide, and melphalan.  

Thalidomide 

Thalidomide has shown excellent results as a single agent in patients with relapsed/refractory 
myeloma[101,194,195,196] and newly diagnosed disease[197,198,199]. Clinical response (complete, 
partial, and minor) was achieved in up to 50% of patients refractory to other treatments, and 30% of 
patients with new disease responded with 50% decreases in paraprotein. Subsequently, it has also been 
studied in combination with dexamethasone[195,199,200,201,202,203,204,205,206], dexamethasone/ 
cyclophosphamide[207,208,209,210], melphalan/prednisone[211], and as maintenance therapy following 
autologous stem cell transplantation[212,213,214].  

Thalidomide treatment is associated with several treatment-limiting side effects, including neuropathy 
(50–80% of patients), venous thromboembolism (1–3% patients with Thal alone; 10–15% with thal/dex), 
Stevens-Johnson syndrome, and hepatotoxicity. Other side effects include fatigue, somnolence, 
constipation, and rash[113]. For this reason, newer, more potent, thalidomide immunomodulatory 
derivatives were developed with fewer side effects.  

Lenalidomide 

Lenalidomide has been found in vitro to be as much as 2000 times more potent than thalidomide. 
Importantly, clinically it is much better tolerated with only rare neuropathy and reversible 
myelosuppression. Lenalidomide has also been studied in phase II trials as a single agent and in 
combination with dexamethasone for relapsed/refractory disease[215,216] as well as newly diagnosed 
disease[217]. Two large phase III trials of lenalidomide in combination with dexamethasone vs. 
dexamethasone alone in patients with relapsed/refractory myeloma have been recently presented at the 
American Society of Hematology annual meeting (2005) by Dimopoulos and colleagues[218]. Two large 
phase III trials of lenalidomide in combination with dexamethasone versus dexamethasone alone in 
patients with relapsed/refractory myeloma have been recently presented at the American Society of 
Hematology annual meeting (2005) by Dimopoulos and colleagues [219] and Clinical Trial number 
NCT00098475 [220].These have demonstrated significant activity of the lenalidomide dexamethasone 
arm with 58% response rate as compared to 22% in the dexamethasone arm. Based on these data, 
lenalidomide was recently approved in 2006 for use in patients who have received prior therapy. In 
addition, current clinical trials of a combination of lenalidomide with bortezomib in the upfront or 
relapsed setting are underway. 
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Bortezomib 

Bortezomib has seen a remarkable transition from bench to bedside. The SUMMIT trial (Study of 
Uncontrolled Multiple Myeloma managed with proteasome Inhibition Therapy), a large, multicenter 
phase II study in 2003, revealed a 35% response rate[220]. The CREST (Clinical Response and Efficacy 
Study of bortezomib in the Treatment of myeloma) trial, another phase II study randomizing patients to 
higher (1.3 mg/m3) or lower (1.0 mg/m3) doses of bortezomib in combination with dexamethasone, 
revealed positive response rates (33% with low-dose bortezomib alone, 44% with low-dose 
bortezomib/dex, 50% with high-dose bortezomib, and 62% with high-dose bortezomib/dex)[221]. Based 
on the results from these trials, bortezomib was FDA approved for treatment of relapsed and refractory 
myeloma in 2003. Subsequently, during interim analysis of an international, randomized, phase III trial of 
bortezomib vs. high-dose dexamethasone (APEX), bortezomib was found to be clearly superior in terms 
of overall survival and time to progression, and FDA approval was extended to include relapsed 
myeloma[222].  

Currently, numerous phase I/II trials are underway to examine the effects of bortezomib as first-line 
therapy and in combination with other agents. Preliminary data from interim analysis in these trials are 
highly promising for an even greater role of bortezomib in the treatment of myeloma. In 
relapsed/refractory myeloma, bortezomib is being evaluated in combination with pegylated liposomal 
doxorubicin[223], melphalan[224], doxorubicin/thalidomide/dexamethasone[225], pegylated liposomal 
dox/low-dose dex[226], thalidomide and dex[227,228]. As a first-line agent, it is being evaluated in the 
phase III VISTA trial (Velcade as Initial Standard Therapy in multiple myeloma: Assessment with 
melphalan and prednisone), with dexamethasone[229], doxorubicin/dexamethasone (PAD)[230], and 
thalidomide and dexamethasone[231]. Other trials include the bortezomib/lenalidomide trial in newly 
diagnosed patients with MM. 

FUTURE DIRECTIONS: NOVEL DRUG COMBINATIONS 

Treatments for MM have come a long way since therapeutic bleeding and leeches. Though myeloma 
remains an incurable disease, the recent decade has marked a renaissance in how myeloma is being 
studied and how new therapies are being developed. There has been a shift towards developing an arsenal 
of rationally designed, specific agents, each designed at targeting a small aspect of the complex disease. 
However, despite the advances observed in the treatment of myeloma, many patients still succumb to 
their disease. In addition, many agents that were exciting and promising in preclinical trials, fail to 
demonstrate similarly promising clinical activity as single agents in clinical trials. As such, one of the 
major challenges on the road towards improved survival and, perhaps, a cure, lies in the identification of 
not just promising agents, but combinations of agents. There is an urgent need for future clinical trials 
designed to combine novel agents rationally in order to achieve a higher response rate and longer 
remissions.  

To date, there are already a vast number of in vitro and in vivo studies that hint at the myriad of 
pathways that can be targeted for a synergistic, multihit approach. Identifying these areas of molecular 
synergism depends on close collaboration between basic researchers at the bench and clinicians at the 
bedside, and will surely help to overcome drug resistance, extend patient survival, and improve quality of 
life. 
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