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Abstract
Multi-scroll chaotic attractor makes the oscillator become more complex in dynamic behav-

iors. The collective behaviors of coupled oscillators with multi-scroll attractors are investi-

gated in the regular network in two-dimensional array, which the local kinetics is described

by an improved Chua circuit. A feasible scheme of negative feedback with diversity is

imposed on the network to stabilize the spatial patterns. Firstly, the Chua circuit is improved

by replacing the nonlinear term with Sine function to generate infinite aquariums so that

multi-scroll chaotic attractors could be generated under appropriate parameters, which

could be detected by calculating the Lyapunov exponent in the parameter region. Further-

more, negative feedback with different gains (D1, D2) is imposed on the local square center

area A2 and outer area A1 of the network, it is found that spiral wave, target wave could be

developed in the network under appropriate feedback gain with diversity and size of con-

trolled area. Particularly, homogeneous state could be reached after synchronization by

selecting appropriate feedback gain and controlled size in the network. Finally, the distribu-

tion for statistical factors of synchronization is calculated in the two-parameter space to

understand the transition of pattern region. It is found that developed spiral waves, target

waves often are associated with smaller factor of synchronization. These results show that

emergence of sustained spiral wave and continuous target wave could be effective for fur-

ther suppression of spatiotemporal chaos in network by generating stable pacemaker

completely.

Introduction
Patterns formation and control in spatiotemporal systems have been extensively investigated
in the last decades. It is confirmed that various patterns could be observed in physical, chemi-
cal, and biological systems, and it is believed that numerical investigation could be feasible to
explore some main properties of spatial patterns in dynamical systems. Spiral wave is a class
of spatiotemporal pattern, it could be found in the oscillatory and excitable media, such as car-
diac tissue [1] and CO oxidation on Pt(110) surface [2]. It has been confirmed that there are
involvements of spiral waves in both atrial and ventricular [3–5]. The sudden cardiac death
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resulting from ventricular fibrillation is due to the fragment or breakup of the spiral wave and
the potential mechanism for breakup of spiral wave has been detected [6]. Target wave could
be generated by the concentric waves that are periodically emitted from a small central region
[7], and is regarded as the generic for dissipative systems far from equilibrium. Transition of
spiral wave, target wave and broken patterns can be induced in possible schemes [8–10].

In general way, the reaction-diffusion system [11–16], coupled oscillators with array type
[17], network of coupled neurons (Hodgkin-Huxley, Hindmarch-Rose, Morris-Lecar) [18–24]
are suitable for generating spiral wave, target wave and even spatiotemporal chaos in numerical
studies. For example, He et al. [17] reported that the spiral waves could be formed in an inho-
mogeneous excitable medium with small-world connections under an optimal fraction of ran-
dom connections. Wu et al. [18] gave detailed discussion about potential mechanism for
pattern selection in neuronal network. Perc [19] discussed the effect of noise on the pattern for-
mation in the small-world network. Ma et al. [20] detected the stability and transition of spiral
wave of network by changing the probability of long range connection. Qin et al. [21] reported
that target wave and spiral wave could be induced with feedback forcing current on the mem-
brane potential with different certain time-delays and gains. Roxin et al. investigated the self-
sustained wave formation of coupled neurons connected with small-world type. Wang et al.
[23] reported that the time delay enhance the coherence of spiral waves for Hodgkin-Huxley
neuronal with noise. Interestingly, spirals distribution was found in disinhibited mammalian
neocortex [25–27] for experimental evidences, similar to the target wave, these ordered waves
can regulate the collective behaviors of network like a continuous pacemaker. In fact, the for-
mation and development of spatial regularity could be associated with the self-organization
and competition among complex spatiotemporal system. In dynamical view, the developed
states of spatiotemporal system and network depend on the initial states, topology connection
(regular connection or small-world connection type), and bifurcation parameters. Li et al. [26]
reported that the target wave and spiral wave could be induced by a localized inhomogeneity
on spatiotemporal chaotic state, suggested that mechanisms underlying the inhomogeneity
sustained coherent wave patterns seem quite different for oscillatory and stationary inhomoge-
neities. For example, defects block [28] can induce formation of spirals in network, external
forcing with diversity [29], inhomogeneity in medium [30], noise[31–34], electric field depolar-
ization [35–38] can greatly change the dynamics of spiral wave and target waves in the spatio-
temporal system. Gosak et al. [31] studied the spatial dynamics of excitable media under the
subthreshold periodic pacemaker activity and internal noise. Hou et al [32] investigated the
spiral wave induced by the temporal noise, the spatial disorder and spatiotemporal fluctuation
on the formation of spiral waves are discussed in detail. Tang et al. [33] confirmed that optimal
noise could be useful to induce spirals in neuronal network under coherence resonance. Chen
et al.[37] investigated the breakup of spiral wave and consequent patterns under the strong
polarized advective field, the results shown that the symmetry and chirality of the applied
external field are important to form the new-formed patterns. Jiang et al.[38] investigated the
emergence of target waves in a cyclic predator-prey model, the results shown that the pattern
formation resulting from the interplay between local and global dynamics in systems governed
by cyclically competing species. That is to say, pattern formation is often associated with the
collective behaviors of coupled oscillators or nodes. For a review about collective behaviors of
coupled neurons and pattern transition, please refer to Refs.[39,40].

In the case of collective behaviors of coupled oscillators and network, the local kinetics of
node is often supposed under periodical rhythm or chaotic property. Indeed, oscillator with
multi-scroll attractors could show more complex dynamical behavior and the collective behav-
ior of these coupled attractors could become more interesting. In dynamical control, many
effective schemes [41–46] are used to generate multi-scroll attractors and wings in low-
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dimensional chaotic oscillators by replacing the nonlinear term with appropriate piecewise-lin-
ear functions or jerk function. In a feasible way, a type of Sine function is used to replace the
nonlinear term in the Chua circuit so that infinite scroll attractors could be induced [46], and
extensive results are reproduced in PSpice [47]. In this paper, we will study the pattern forma-
tion of coupled Chua circuits with infinite scrolls attractors, which are generalized by replacing
the nonlinear term in classic Chua circuit [46] with a type of Sine function, so infinite equilib-
rium points are generated. Furthermore, a method of gradient negative feedback (feedback
coefficient with diversity) is presented to generate certain ordered patterns. The network is
divided into two regions: local square central region(A2 = n×n) and the rest part of the network
(A1), and then the different negative feedback coefficients are imposed on the two parts respec-
tively. It is found that different kinds of ordered patterns (spiral wave, target wave and breakup
pattern) could be developed under different gradient feedback coefficients and appropriate
sizes of feedback region (A2).

Models, Schemes and Results

Multi-scrolls attractors of Chua circuit
The generalized Chua circuit [45, 46] with nonlinear function is described as follows

_x ¼ aðy � f ðxÞÞ
_y ¼ x � y þ z

_z ¼ �by

ð1Þ

8><
>:

The parameter α = 10.814, β = 14, as reported in Ref.[45,46], the Josephson junction is effec-
tive to generate multi-scrolls attractor in the Jerk and Chua circuits driven by a Sine function.
The underlying mechanism is considered as that the nonlinear system has a group of equilib-
rium points if the nonlinear term is described by a type of Sine function. As a result, we can
replace the nonlinear term in Eq 1 with a similar Sine function, and it reads

f ðxÞ ¼ asinð2pbxÞ ð2Þ

where a, b are parameters in Chua circuit, and then a group of equilibrium points are
approached as (n/2b, 0, −n/2b), n = 0, 1, 2, 3,. . .. The largest Lyapunov exponent spectrum is
calculated to find the parameter region for chaos emergence. As a result, the distribution in Fig
1 for the largest Lyapunov exponent spectrum of Eq 1 is plotted in the two-parameter space of
a and b. The nonlinear system of Eq 1 is in chaotic state, when the largest Lyapunov exponent
is positive.

It is found in Fig 1 that the appropriate parameter could induce the chaotic state in Eq 1.
Furthermore, the phase portraits are shown in Fig 2 to discern the portrait of multi-scroll
attractors. It is confirmed that the number of scrolls increases with calculating time because
more equilibriums are generated driven by Sine function. Extensive results confirmed that
Hamilton energy is decreased with increasing the number of attractors [48] in chaotic
oscillator.

The results in Fig 2 indicated that the number of scrolls depends on the calculating time,
and longer transient period is helpful to generate more scroll attractors in this chaotic oscilla-
tor. In fact, the collective behaviors of coupled multi-scroll attractors could become more com-
plex. For simplicity, 200×200 Chua circuits with infinite-scrolls attractor are distributed in a
two- dimensional lattice network with no-flux boundary condition being considered.

Pattern Selection in Network

PLOS ONE | DOI:10.1371/journal.pone.0154282 April 27, 2016 3 / 26



The network of Chua circuits with infinite-scrolls attractor
The network of the coupled Chua circuits with infinite-scrolls attractor with nearest-neighbor
coupling is described by

_xij ¼ aðyij � asinð2pbxijÞÞ þ k1ðxijþ1 þ xij�1 þ xiþ1j þ xi�1j � 4xijÞ
_yij ¼ xij � yij þ zij þ k2ðyijþ1 þ yij�1 þ yiþ1j þ yi�1j � 4yijÞ
_zij ¼ �byij þ k3ðzijþ1 þ zij�1 þ ziþ1j þ zi�1j � 4zijÞ

ð3Þ

8><
>:

where α = 10.814, β = 14, a = 0.2, b = 0.15, parameter k1, k2, k3 is couple intensity, and all
the Chua circuits in the network are identical. Preliminary numerical simulation found that
regular pattern can’t be formed with single channel coupling (k1 6¼0, k2 = 0, k3 = 0) and two-
channel coupling (k16¼0, k2 6¼0, k3 = 0), but three-channel coupling (k16¼0, k2 6¼0, k36¼0) is help-
ful to induce spatiotemporal patterns. That is to say, one-channel or two-channel coupling

Fig 1. Distribution for the largest Lyapunov exponent for Eq 1 in the two-parameter space. The snapshots are plotted in color scale at α = 10.814, β =
14.

doi:10.1371/journal.pone.0154282.g001
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can’t support regular spatial patterns but induce broken segments or spatiotemporal chaos in
the network. To investigate the transition of spatial patterns, three-channel coupling is applied
to induce regular patterns in the network. However, the developed patterns induced by three-
channel coupling is not stable, it is changed with increasing time, and stable ordered patterns
could not be induced with special initial values, the results are plotted in Fig 3.

The results in Fig 3 confirmed that the developed spatial patterns keep unstable and multi-
stability states coexist with the increasing of number of scroll-attractors. Therefore, it is impor-
tant to find feasible ways to stabilize these unstable patterns. Some general methods are
checked to produce ordered pattern in the network described by Eq 3, such as: (i)Special initial
values, (ii)Inhomogeneity medium, (iii)Periodic external forcing signal on the border or central
region of the networks, (iv) Phase space compression. Unfortunately, extensive numerical
results show that the stable ordered pattern can’t be developed under these conditions. Fortu-
nately, gradient negative feedback is presented to induce the ordered pattern, and the results
found the emergence of spiral wave, target wave and breakup pattern under appropriate
conditions.

Fig 2. Multi-scrolls attractors are generated within different simulation time. For (a) t = 50 time units, for (b) = 200 time units, for (c) t = 300 time units, for
(d) t = 500 time units, α = 10.814, β = 14, a = 0.2, b = 0.15.

doi:10.1371/journal.pone.0154282.g002
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Gradient Negative Feedback for the network
The method of gradient negative feedback is realized by dividing the network into two parts:
central square area(A2 = n×n) (6×6, 11×11, 16×16, . . .,) and outer area of the network(A1), and
then different values of negative coupling coefficients(D1 and D2) are imposed on the two areas
(A1 and A2) of the network, respectively. For showing the method clearly, the schematic dia-
gram is shown in Fig 4.

For simplicity, makes k1 = k2 = k3 = k, and the network driven by gradient feedback is
described by

_xij ¼ aðyij � asinð2pbxijÞÞ þ kðxijþ1 þ xij�1 þ xiþ1j þ xi�1j � 4xijÞ � Dxij

_yij ¼ xij � yij þ zij þ kðyijþ1 þ yij�1 þ yiþ1j þ yi�1j � 4yijÞ � Dyij

_zij ¼ �byij þ kðzijþ1 þ zij�1 þ ziþ1j þ zi�1j � 4zijÞ � Dzij

D ¼ D1 for area A1; D ¼ D2 for area A2

ð4Þ

8>>>><
>>>>:

Fig 3. Attractors and spatial patterns. (a-b) the 4-scroll attractors for node (5,5) and 5-scroll attractor for node(50,50), respectively; The developed spatial
pattern, for t = 40 (c), t = 1000 (d) time units. The coupling intensity is selected as k1 = k2 = k3 = 5.5.

doi:10.1371/journal.pone.0154282.g003
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As a result, negative feedback is generated on the network by selecting negative feedback
coefficients, D1 and D2. Indeed, the effect of negative feedback scheme mainly depends on
three effective parameters D1, D2 and A2. In Eq 4, parameters α = 10.814, β = 14, a = 0.2,
b = 0.15, k = 5.5, 200 ×200 oscillators are used in the two-dimensional array. It is found that
spiral wave, target wave and breakup of patterns cam be observed under appropriate selection
for parameters A2, D2, D1, and some results are shown in Fig 5.

The results in Fig 5 confirmed that the developed pattern selection much depends on the
parameters in diversity as D1, D2, and A2.

As a result, it is interesting to explore the potential mechanism for this kind of wave forma-
tion by checking the time series and dynamical properties of the controlled area, and detailed
numerical results could refer to Figs 6 to 15.

Firstly, the effect of factor D1 on the formation of ordered pattern is investigated. For sim-
plicity, the value of D1 is selected from 0.1 to 0.5, and the values of D2, A2 are fixed certain val-
ues. Detailed results are calculated when A2 area is set as 6×6, 11×11, 16×16, respectively, and
the results are plotted in Figs 6–8.

The results in Fig 6 indicated that spiral wave, target wave, homogeneous state could be
developed in the network with increasing the value of D1 from 0.1 to 0.5. Compared the por-
traits in the first and second panel in Fig 6, it is found that regular spatial distribution could be
supported and thus stable spatial patterns could be developed only when the periodicity of the
sampled series from area A2 is approached. Homogeneous state is reached when the center
area driven by negative feedback is decreased to stable state. The potential mechanism could
be that negative feedback in the center area decrease the chaotic state to periodic or quasi-

Fig 4. The schematic diagram for gradient negative feedback for network composed of 200×200
identical Chua circuits with infinite-scrolls attractor. A2 is the size of central square area (red area), and
D2 is the feedback coefficient in the red A2 area; A1 is size of the rest area of network (white area), and D1 is
the feedback coefficient in the white A1 area.

doi:10.1371/journal.pone.0154282.g004
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periodical state even stable state by fixing appropriate feedback coefficients. As a result, a con-
tinuous periodic driving emitted from the center areas as a pacemaker thus the collective
behaviors of the network could be regulated; finally, stable spatiotemporal patterns could be
developed completely. Furthermore, the size of A2 area is increased to 11×11 and 16×16, and
the results are plotted in Figs 7 and 8.

It is found that dynamic properties of sampled series from the same node presented differ-
ent behaviors when negative feedback on the center area is increased in size, and the collective
behaviors and spatial patterns are changed greatly. Surely, negative feedback with stronger
intensity just stabilizes the oscillators and the network thus homogeneous states are reached.

By further increasing the center area driven by negative feedback, it is found that stable tar-
get wave could be developed under smaller feedback gain in area A1 and breakup of spatial pat-
terns are also induced by further increasing the feedback gain in center area A1. Indeed, the
sampled series from nodes in area A1 keep irregular even chaotic and the collective disordered
behaviors can’t be suppressed even the center control area is enlarged. The results in Figs 6, 7
and 8 confirmed that the developed state and dynamical behaviors of network just depends on
the diversity between D1 and D2 thus gradient driving could be induced to emit continuous
forcing like pacemaker, and the size of center controlled area A2 also played important role in
changing the developed states of the network. In this way, further investigations were carried
out thus the effect of feedback gain D2 and area size could be understood. For simplicity, the
feedback gain D2 in center area A2 (6×6 nodes) is changed at fixed D1 = 0.1, 0.2, and the forma-
tion of spatial pattern in calculated in Figs 9 and 10. In Figs 11 and 12, different feedback gains

Fig 5. Formation of spatial patterns. (a-d) The developed spatial states with different conditions being used
at t = 1000 time units; (a) stable target wave at D1 = 0.2, D2 = 0.5, A2 = 11×11(90�i, j�100); (b) broken
patterns at D1 = 0.2, D2 = 0.5, A2 = 15×15; (c) stable target wave at D1 = 0.1, D2 = 0.4, A2 = 15×15; (d) spiral
wave at D1 = 0.2, D2 = 0.5, A2 = 16×16 (90�i, j�105).

doi:10.1371/journal.pone.0154282.g005
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D2 are used in the center control area A2 (11×11 nodes) by fixing the feedback gain D1 = 0.1,
0.2 in the outer area A1. Furthermore, the center area is increased to A2 (16×16 nodes) at fixed
D1 = 0.1, 0.2 when different feedback gains D2 is used in the center control area A2, respectively,
and the results are plotted in Figs 13 and 14.

It is confirmed in Fig 9 that spiral waves could be developed in the network for D1 = 0.1 that
appropriate diversity in feedback gain is critical to induce continuous travelling waves, which
encounter breakup close to the boundary between the two control area of network. Unfortu-
nately, the developed spiral wave just covers certain area of the network and failed to grow up
in the network completely. As a result, the phase portraits for the sampled oscillators or nodes
often present chaotic attractor instead of periodical periodicity. That is to say, the coexistence
between periodic attractors and multi-scroll attractors makes the spiral wave occupy the net-
work in certain size instead of the full area completely.

By further increasing the feedback gain in area A1 that the diversity in feedback is decreased,
it is found in Fig 10 that target wave could be developed because the gradient diversity can’t

Fig 6. Stabilization of attractors and patterns driven by negative feedback. A2 = 6×6(A2 = 95�i, j�100), (a-e) the attractors for the node (98, 98) in A2

area; (f-j) the attractors for node (5, 5) in A1 area; (k-o) the snapshots for pattern of the network. (a, f, k) D1 = 0.1, D2 = 0.5, t = 4000 time units; (b, g, l) D1 =
0.2, D2 = 0.5, t = 1000; (c, h, m) D1 = 0.3, D2 = 0.5, t = 1000 time units; (d, i, n) D1 = 0.4, D2 = 0.5, t = 1000; (e, j, o) D1 = 0.5, D2 = 0.6, t = 1000 time units.

doi:10.1371/journal.pone.0154282.g006
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break the target waves emitted from the center area. Particularly, limit circle was observed
from the sampled series of monitored nodes, and it indicated distinct periodicity is detected
thus continuous target waves are developed in the network. Unfortunately, broken spatial pat-
terns are formed by increasing the center control area A2 (11×11 nodes), and the results are cal-
culated in Fig 11.

Similar to the results in Fig 9, spiral segments were observed in local area and most of the
network was covered by broken segments, and the phase portraits for the sampled nodes pre-
sented multi-scroll or chaotic attractors. It indicated that diversity in feedback gain between
the two control areas is not effective to induce stable travelling waves. Furthermore, the diver-
sity between feedback gains from the two areas is decreased, and stable target waves could be
developed in Fig 12.

The sampled series from the monitored nodes presented distinct periodicity and limit circles
are detected when the center controlled area is increased in size under appropriate diversity in

Fig 7. Stabilization of attractors and patterns driven by negative feedback. A2 = 11×11(A2 = 90�i, j�100), (a-e) the attractors for the node (98,98) in A2

area; (f-j) the attractors for node(5,5) in A1 area; (k-o) the snapshot for pattern (a, f, k)D1 = 0.1, D2 = 0.5, t = 4000; (b, g, l) D1 = 0.2, D2 = 0.5, t = 1000;(c, h, m)
D1 = 0.3, D2 = 0.5, t = 1000;(d, i, n) D1 = 0.4, D2 = 0.5, t = 1000; (e, j, o) D1 = 0.5, D2 = 0.6, t = 1000 time units.

doi:10.1371/journal.pone.0154282.g007
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feedback gains, and stable target wave began to occupy the network completely. Furthermore,
the center controlled area is increased and appropriate feedback gain with diversity is selected
to generate perfect spiral wave so that the collective behaviors of network could be regulated by
the self-sustained spiral waves, and the results are plotted in Fig 13.

It is interesting to find perfect spiral wave and/or target wave could be developed to occupy
the network completely. It was confirmed that appropriate diversity in feedback gain and size
of the controlled area are effective to support spiral wave and target wave as well.

Above all, most of cases have been investigated when the feedback gain in the center area A2

was selected with larger value than the outer area A1 (D2 >D1). To further verify the effect of
diversity between feedback gain, it is interesting to investigate some cases under D2 <D1 that
similar diversity in feedback gain could be generated, and some results are plotted in Figs 14
and 15 to understand the effect of feedback gain and control area in the formation of spatial
patterns.

Fig 8. Stabilization of attractors and patterns driven by negative feedback. A2 = 16×16(A2 = 90�i, j�105), (a-e) the attractors for the node (98, 98) in A2

area; (f-j) the attractors for node (5,5) in A1 area; (k-o) the snapshot for pattern of the network. (a, f, k) D1 = 0.1, D2 = 0.4, t = 1000; (b, g, l) D1 = 0.2, D2 = 0.4,
t = 1000; (c, h, m) D1 = 0.3, D2 = 0.4, t = 1000; (d, i, n) D1 = 0.4, D2 = 0.6, t = 1000; (e, j, o) D1 = 0.5, D2 = 0.6, t = 1000 time units.

doi:10.1371/journal.pone.0154282.g008
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In the case of D1 = 0.1, the target wave or spiral wave could be induced by setting appropri-
ate value for D2 and A2. However, for the case D1 = 0.2, the target wave is only stable with A2 �
16×16 and D2 �0.3, otherwise, breakup of patterns occurs.

Finally, it is interesting to discern some statistical properties of the network during the for-
mation of spatial patterns. Based on the mean filed theory, a statistical factor of synchroniza-
tion [49] is redefined in the two parameter space [20, 21] to study the robustness of the pattern.
The factors of synchronization R is calculated as follows

F ¼ 1
N2

XN
j¼1

XN
i¼1

xij ¼< xij>s ð5Þ

R ¼ hF2i � hFi2
1
N2

XN

j¼1

XN

i¼1
ðhx2iji � hxiji2Þ

ð6Þ

Fig 9. Stabilization of attractors and patterns driven by negative feedback. D1 = 0.1, A2 = 6×6(95�i, j�100), (a-d), (f-i), (k-n) the attractors for nodes
(5,5), (10,10), (92,92), (98,98) respectively; (e), (j),(o) the snapshot for the developed states, respectively; (a-e) D2 = 0.2, t = 4000; (f-j) D2 = 0.5, t = 4000; (k-
o) D2 = 2.0, t = 4000 time units.

doi:10.1371/journal.pone.0154282.g009
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The variable F is the spatial average value of the detected variables for each node in the net-
work,<�> indicates the average for calculating time or period. N2 is the number of nodes in
the network, the factor of synchronization R is calculated to detect the transition and stability
of developed patterns. It is confirmed that a smaller value R is associated to an ordered state
and non-perfect synchronization. Complete perfect synchronization is approached when the
factor of synchronization R is much close to 1. As mentioned above, the developed states (spiral
wave, target wave, homogeneous state) depend on the selection for feedback gains (D1, D2) and
the size of center controlled areas A2. For simplicity, we calculated the distribution of factor of
synchronization in the two-parameter space (D2 vs.A2) at fixed feedback gain D1 = 0.1 and
D1 = 0.2, respectively. Furthermore, the pattern region is also calculated in the two-parameter
space by detecting the developed states at t = 1000 time units. For simplicity, (1) if the pattern
could not be induced within 1000 time unites, it is marked as number 0; (2) if target wave is
formed within 1000 time unites, it is labeled as 1; if the pattern is breakup, be labeled as 2; (3) if
spiral wave is developed, it is labeled as 3, these results are plotted in Fig 15.

Fig 10. Stabilization of attractors and patterns driven by negative feedback. D1 = 0.2, A2 = 6×6(95�i, j�100), (a-d),(f-i),(k-n) the attractors for nodes
(5,5), (10,10), (92,92), (98,98) respectively; (e),(j),(o) the snapshot for the developed states, respectively; (a-e) D2 = 0.3, t = 1000; (f-j) D2 = 0.5, t = 1000;
(k-o) D2 = 2.0, t = 1000 time units.

doi:10.1371/journal.pone.0154282.g010
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According to the distribution region in Fig 15, it is confirmed that the developed states and
pattern formation are greatly dependent on the selection of feedback gain and the size of the
center controlled area as well. Appropriate selection for feedback gain with diversity and size of
controlled area can generate appropriate spiral wave, target wave, homogeneous states in the
network. The network or the media can show distinct periodicity when spiral wave and/or tar-
get wave is developed to occupy the network, and the sampled time series from monitored
nodes can present distinct periodicity, and limit circle could also be observed in phase portrait.
Surely, network of coupled periodic oscillators even chaotic oscillators can support the emer-
gence of target wave and spiral wave, however, network composed of multi-scroll chaotic
oscillators could be passive to support stable ordered waves because its complex dynamical
properties in each node that multi-scroll attractors are associated with calculation time. Indeed,
spatiotemporal chaos or broken segments in the network could be further suppressed by gener-
ating continuous spiral wave or target wave played as a powerful pacemaker.

Fig 11. Stabilization of attractors and patterns driven by negative feedback. D1 = 0.1, A2 = 11×11(90�i, j�100), (a-d),(f-i), (k-n) the attractors for nodes
(5,5), (10,10), (85,85), (98,98), respectively; (e),(j),(o) the snapshot for the developed states, respectively; (a-e) D2 = 0.2, t = 4000; (f-j) D2 = 0.5, t = 4000; (k-
o) D2 = 2.0, t = 4000 time units.

doi:10.1371/journal.pone.0154282.g011
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As mentioned above, statistical factor of synchronization is effective to measure the phase
transition and synchronization degree of the collective behaviors of network. Indeed, it is also
important to study the synchronization stability of the isolate circuit or node of the network by
using the master function approach [50, 51], and the basin area is calculated to discern the
dependence of states on selection of initial values, furthermore, bifurcation analysis is also
supplied.

The stability of synchronization of the system under multi-variables
(channels) coupling
The previous works confirmed that spatial patterns could be selected due to three-channels
coupling. To clarify this problem, the dependence of stability of the synchronization on the
number of variables coupling is studied by the master stability function. The Eq 3 are written

Fig 12. Stabilization of attractors and patterns driven by negative feedback. D1 = 0.2, A2 = 11×11(90�i, j�100), (a-d),(f-i),(k-n) the attractors for nodes
(5, 5), (10,10), (85, 85), (98, 98), respectively; (e),(j),(o) the snapshot for the developed states, respectively; (a-e) D2 = 0.3, t = 1000; (f-j) D2 = 0.8, t = 1000;
(k-o) D2 = 2.0, t = 1000 time units.

doi:10.1371/journal.pone.0154282.g012
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as follows

_xi ¼ aðyi � f ðxiÞÞ þ k1
XN
j¼1

Aijðxj � xiÞ

_yi ¼ xi � yi þ zi þ k2
XN
j¼1

Aijðyj � yiÞ

_zi ¼ �byi þ k3
XN
j¼1

Aijðzj � ziÞ

ð7Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

where matrix Aij is coupling matrix, according to the master stability function formalism, the

Fig 13. Stabilization of attractors and patterns driven by negative feedback. D1 = 0.1, A2 = 16×16 (90�i,j�105), (a-d),(f-i),(k-n) the attractors for nodes
(5,5), (10,10), (85,85), (98,98), respectively; (e),(j),(o) the snapshot for the developed states, respectively; (a-e) D2 = 0.2, t = 4000; (f-j) D2 = 0.4, t = 1000; (k-
o) D2 = 0.5, t = 1000 time units.

doi:10.1371/journal.pone.0154282.g013

Pattern Selection in Network

PLOS ONE | DOI:10.1371/journal.pone.0154282 April 27, 2016 16 / 26



Eq 7 are described by

~wi ¼ Fð~wiÞ � k1
XN
i¼1

Lx
ijHðxiÞ � k2

XN
i¼1

Ly
ijHðyiÞ � k3

XN
i¼1

Lz
ijHðziÞ

¼ Fð~wiÞ � k
XN
i¼1

LijHð~wiÞ
ð8Þ

where Fð~wÞ is dynamical function for the system, Laplacian matrix is selected as the same
Lx
ij; L

y
ij; L

z
ij ¼ Lij. H(x), H(y), H(z), H(w) are coupling functions. According to the master stabil-

ity function presented by Pecora and Carroll [50, 51], the Lyapunov exponents can be deter-
mined from a single function that is independent of the network. Therefore, the master

Fig 14. Stabilization of attractors and patterns driven by negative feedback. D1 = 0.2, A2 = 16×16(90�i,j�105), (a-d), (f-i), (k-n) the attractors for nodes
(5,5), (10,10), (85,85), (98,98), respectively; (e),(j),(o) the snapshot for the developed states, respectively; (a-e) D2 = 0.1, t = 1000; (f-j) D2 = 0.3, t = 1000; (k-
o)D2 = 0.4, t = 1000 time units.

doi:10.1371/journal.pone.0154282.g014
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stability function for the Eq 8 could be written

d _w ¼ ðDF � εDHÞdw ð9Þ

DF ¼
�a2pabcosð2pbx0Þ a 0

1 �1 1

0 �b 0

0
B@

1
CA ð10Þ

where DF and DH are the Jacobian matrices of functions F and H respectively, and ε = kλk, λk
is the eigenvalue of the Laplacian matrix, x0 is the equilibrium point, and x0 = n/(2b). As
reported in Ref [52], the stability of the synchronization of the system could be affected by the
multi-variables coupling. For simplicity, we will analyze the stability of synchronization of the

Fig 15. Distribution of factor of synchronization. (a) D1 = 0.1, the distribution of factor of synchronization R in the two-parameter space A2 and D2; (b) D1 =
0.2 the distribution of factor of synchronization R in the two-parameter space A2 and D2; (c) D1 = 0.1, the distribution of different patterns in the two-parameter
space A2 and D2; (d) D1 = 0.2, the distribution of different patterns in the two-parameter space A2 and D2. (unstable pattern for 0-navy blue; target wave for
1-sky blue; broken patterns for 2-yellow; spiral wave for 3-red).

doi:10.1371/journal.pone.0154282.g015
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system with only one, two or three variables coupling by Master stability function, respectively.
Here the Jacobian matrices for coupling function H(w) with different numbers of variables
coupling is described by.

DHx ¼ ε

1 0 0

0 0 0

0 0 0

0
B@

1
CA;DHx;y ¼ ε

1 0 0

0 1 0

0 0 0

0
B@

1
CA;DHx;y;z ¼ ε

1 0 0

0 1 0

0 0 1

0
B@

1
CA ð11Þ

where DHx, DHx,y, DHx,y,z is the Jacobian matrix for x variable, two variables(x,y) and there
variables coupling(x,y,z), respectively. The maximum Lyapunov exponents of Eq 9 as a func-
tion of ε are calculated with the three kinds of coupling, respectively. The results are shown in
Fig 16.

The results in Fig 16 indicate that the synchronization stability is enhanced with increasing
the coupling channels or variables. The stability of synchronizability of the system under three-
variables coupling is better than case for two-variables coupling, and two-variables coupling is
better than single-variable coupling. Therefore, the synchronizability of the system could be
enhanced by multi-variables coupling. As a result, we mainly discussed the pattern selection

Fig 16. The master stability function MSF(ε) as a function of parameter ε. (a) x variable couple, (b) two variables coupling (x,y), (c)three variables
coupling(x,y,z), (d) the results for three kinds of cases are plotted in one figure.

doi:10.1371/journal.pone.0154282.g016
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and control when nodes are coupled under three-channels. Indeed, the coupling between
nodes imposed possible feedback on each node, and it is interesting to the stability of node or
circuit under negative feedback.

The analysis of isolated system with negative feedback
The isolated system under negative feedback is described by

_x ¼ aðy � asinð2pbxÞÞ � D1x

_y ¼ x � y þ z � D2y

_z ¼ �by � D3z

ð12Þ

8><
>:

where the feedback gains are selected by D1 = D2 = D3 = D. Three-channel feedback is consid-
ered that three variables (x,y,z) are feedbacked into the isolate circuit, the attractors of the con-
trolled system and bifurcation diagram with different feedback gains are calculated under
random initial values in Fig 17.

Fig 17. The attractors of the systemwith different feedback gains. For (a)D = 0.0, (b)D = 0.1, (c)D = 0.3, (d)D = 0.4.

doi:10.1371/journal.pone.0154282.g017
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The results in Fig 17 confirmed that three-channel feedback on the chaotic circuit makes
the system decrease the number of attractors and it even can be stabilized completely. It is also
found that multi-channel or multi-variable feedback can control and stabilize the chaotic sys-
tem effectively than the case for single-channel (or single-variable feedback) and the threshold
for feedback intensity can be decreased. Furthermore, the bifurcation diagram for three-chan-
nel(or three-variable) feedback is calculated in Fig 18.

The results in Figs 17 and 18 found that the developed state is much dependent on the selec-
tion of feedback gain and thus the multi-stability could be adjusted. In a summary, multi-
channel or multi-variable feedback, and also multi-channel coupling can be more effective to
stabilize the chaotic attractors than single-channel or single-variable feedback or coupling, thus
complex spatial patterns could be selected. Therefore, it is also interesting to investigate process
of the annihilation of multistability of the system [52,53,54], the basins for an isolated system
under different feedback gains are calculated.

Fig 18. Bifurcation diagram. The bifurcation diagram for the system as a function of feedback gains D with three variables (x,y,z) feedback, the random
initial values are chosen in the simulation.

doi:10.1371/journal.pone.0154282.g018
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To quantify the state for the system at every node in the basin, the region for the multi-scroll
attractor in plane (x, y) is calculated, the scroll area is defined by

Area size ¼ xlength� ylength ð13Þ

where xlength = xmax−xmin, ylength = ymax−ymin, xmax(ymax) and xmin(ymin) stand for the maxi-
mum and minimum value of the variable x(y), respectively. The results in Fig 9(a) show the
attractor for the system within 300 time units, and Area size is associated with the scroll num-
ber and also the state of the system. During the calculating area size, time series for output vari-
ables are used from t = 200 to 300 time units. Different initial values are chosen uniformly in
the x-y plane box x2[−20,20], y2[−2,2], z = 0.03. The basin for the system with no feedback is
calculated in Fig 19(b).

The distribution of basin in Fig 19 confirmed that the developed states are much dependent
on the selection of initial values. Furthermore, it is interesting to investigate the transition of
basin and states by applying appropriate feedback gains, and the results are plotted in Fig 20.

The results in Fig 20 show that the multistability is gradually annihilated with increasing
feedback gains D. In the case of network, the collective behaviors are dependent on the
dynamics of each node which can be changed by setting appropriate feedback gain (or cou-
pling intensity). The switch of basin area can induce phase transition of spatial pattern thus

Fig 19. Multi-scroll attractors and basion. (a) The chaotic attractor is developed at t = 300 time units, and D = 0.0. (b) The basin for the system with D = 0.0,
initial values of variable x, y are chosen uniformly in the x-y plane box, x2[−20,20], y2[−2,2], z = 0.03.

doi:10.1371/journal.pone.0154282.g019
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different patterns could be formed in the network under appropriate initial values and cou-
pling intensity.

Conclusions
In this paper, network of coupled multi-scroll attractors is designed to investigate the stability
of spatial patterns. It is found that stable spatial pattern can’t be formed in regular connection
type. By applying negative feedback with diversity, spiral wave, target wave and homogeneous
states could be observed in the network. It indicates that spatial patterns could be stabilized
and selected under appropriate feedback gain in diversity and controlled area, the factor of syn-
chronization is calculated to discern the effect of diversity in feedback gain and controlled area.
It could present a new challengeable problem and useful guidance for network of multi-scroll
attractors.

Supporting Information
S1 File. Supporting data for Fig 20a at D = 0.1.
(DAT)

Fig 20. The basin for the systemwith different feedback gainsD. For (a) D = 0.1, (b) D = 0.2, (c) D = 0.3, (d) D = 0.4, the variables x and y are selected
uniformly in the box [−20,20] and [−2,2].

doi:10.1371/journal.pone.0154282.g020
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