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Spray drying is a standard method for preserving bioactive ingredients and enhancing their storage 
stability. This study aimed to produce entirely plant-based spray-dried powders by using hemp, 
canola, and flax seed proteins, combined with maltodextrin, as wall material, while chokeberry extract 
from wine waste served as core material. We conducted a thorough analysis of the oil-seed proteins, 
examining their nitrogen solubility index, emulsification, and foaming capacities. The encapsulation 
process was evaluated based on its yield and efficiency. The spray-dried powders were further assessed 
through colour analysis, particle morphology and size distribution, hygroscopicity, and storage 
stability measurements. The encapsulation yield with oil-seed proteins ranged from 75.0 ± 6.2 to 
78.5 ± 1.3%, and the efficiency from 58.4 ± 0.8 to 77.5 ± 1.9%. These plant-based spray-dried powders 
exhibited similar colour parameters, morphology, and stability to those of whey protein powders. The 
study highlights the significant potential of oil-seed proteins in producing plant-based spray-dried 
powders.
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Microencapsulation is a widespread technique for facilitating the handling and packaging of bioactive fluidic 
ingredients and protecting the core material from degradation and oxidation1–3.

For the efficient protection of bioactive compounds, the wall material used for encapsulation should form 
emulsions stabilizing the active component during the liquid atomization4,5. The selection of wall material 
is crucial in achieving the desired encapsulation efficiency, protection, and functionality of the encapsulated 
product, and depends on the specific application6. The commonly used component of wall material is 
maltodextrin (MD), derived from rice, wheat, or potato starch7,8. MDs are mixtures of oligo- and polysaccharides 
typically containing 3–20 D-glucose units9. MDs are cheap, highly soluble in water, and exhibit excellent drying 
properties helping to convert liquid formulations into dry powders10. The presence of MD influences the particle 
size and morphology of the spray-dried powder11. MD also acts as a bulking agent, aiding in the formation of 
larger particles and helping to improve powder flowability12. In addition, MDs can improve the sensory quality 
of the encapsulated product13.

However, as MD has no surface-active properties required for the formation of particle walls14, it should 
be combined with other materials, which possess good emulsifying and film-forming properties, like proteins. 
Proteins and MDs form synergistic combinations allowing for better coverage and protection of the core 
material15. Proteins can also provide a barrier that controls the release of the encapsulated substance, regulating 
its diffusion or degradation rate16. Proteins and MDs are generally compatible and form a homogeneous mixture, 
facilitating the encapsulation process. Due to similar solubility, the distribution of the wall material around the 
core material is uniform. MD prevents the aggregation or collapse of the protein matrix during drying. This 
can result in the production of spherical or porous particles with improved powder characteristics but also 
enhanced stability12. The specific interactions between MD and proteins include weak interactions like hydrogen 
bonding and electrostatic interactions. During the spray dry process when proteins and MD are exposed to high 
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temperatures, the Maillard reaction occurs between the amino groups of proteins and the reducing sugars. This 
can lead to the development of brown colour, aroma, and flavour compounds, but also to the deterioration of 
nutritional properties and stability17.

The choice of proteins for spray-drying wall materials is multifaceted, encompassing factors such as protein 
emulsifying properties, encapsulation efficiency, functional and sensory attributes, origin, availability, cost, and 
safety. While whey protein and casein from milk are commonly used, there’s a growing trend of using plant-based 
proteins from soybeans, peas, legumes, oats, rice, and wheat18–20. Several legume proteins have been tested as 
wall material for the microencapsulation of lipophilic compounds as their physicochemical properties including 
hydrophobicity, surface charge, and structure flexibility play an important role in adsorption and retention at 
the oil–water interface21. Chickpea and lentil protein isolates were used in combination with MD for the spray 
drying of flax seed oil22and pea protein isolates were also combined with MD for the microencapsulation of 
triglyceride and α-tocopherol18. In addition, legume proteins have been reported for their efficiency in the 
microencapsulation of hydrophilic compounds such as ascorbic acid spray drying using MD and pea protein 
isolate23, and anthocyanins using soy protein isolate in combination with MD or starch24,25. Oil-seed proteins 
from hemp-, canola- and flaxseed show significant potential for the development of functional foods due to 
excellent functional characteristics like emulsifying and foaming capacity26. These proteins contain an essential 
amount of 11 S globulins with MW 〜300 kDa, like linin (up to 85% of total flaxseed protein)26, edestin (60–
80% of hempseed protein)27, and cruciferin (60% of canola seed protein)28, which are organized into tetramer 
or hexamer forms29. Unlike albumins, globulins are water-insoluble, whereby their solubility is significantly 
improved by the presence of salts26. Compared to whey proteins, 90% of which have a molecular weight below 
20 kDa, oil-seed protein molecules are significantly bigger30,31. A summary of the main characteristics of oil-seed 
proteins is provided in Table 1.

The choice of wall material components is important for achieving the expected performance of the core 
material. The combined use of polysaccharides and proteins for encapsulation has a stabilizing effect for 
anthocyanins, polyphenolic compounds that present promising health effects, but have poor stability limiting 
their application in the food industry32. The stability of anthocyanins can be improved by glycosylation and/or 
acylation caused by sugars at different pH values33, and by the interaction of different protein structures with 
anthocyanin molecules34. Furthermore, wall material has an impact on the morphology of microparticles and 
the stability of the encapsulated core material. The morphology of spray-dried microparticles (roughness of the 
surface, presence of hollow particles, presence of aggregates) and particle size distribution affect the powder 
characteristics, influencing its potential applications12,35.

The current study aimed to explore the utilization of oil-seed proteins recovered from the hemp, canola, 
and flax oil-seed cakes, combined with maltodextrin (MD) as wall material for the microencapsulation of black 
chokeberry extracts based on the hypothesis that whey protein can be replaced by oil-seed proteins to obtain 
100% plant-based spray-dried powders. These powders can be used both as dry powders in instant products 
to provide the retention of encapsulated compounds36, or after reconstitution in water to achieve the desired 
texture and functionality37. They ensure the effectiveness of bioactive components38, potentially fortify foods 
with bioactive compounds39, and are natural preservatives due to their antimicrobial properties extending 
the shelf life of food products40. The obtained powders were characterized by their key physicochemical and 
functional properties, such as microparticle size and morphology, hygroscopicity, encapsulation efficiency, 
colour, and storage stability.

The black chokeberry (Aronia melanocarpa (Michx.) Elliott) has been appreciated as raw material for beverage 
production for decades, it is widely cultivated in Estonia and its popularity is still increasing41. Therefore, the 
extract, known for its exceptionally high anthocyanin content42,43, and possessing high antioxidant activity44, 
was chosen as the core material for encapsulation. Anthocyanins are water-soluble pigments existing in various 

Protein MW (kDa)
Content (% of total 
protein) Structure Solubility in water Reference

Hemp seed

Edestin (11 S globulin) 310 60–80 6 subunits, each subunit contains 2 
polypeptides (35 and 20 kDa) -

[27]2 S albumin 14–15 13 +

7 S Vicilin-like protein 47 5 poor

Canola (rape) 
seed

Cruciferin (11 S globulin) 300 60 6 subunits, each subunit contains 2 
polypeptides (40 and 20 kDa) - [28]

Napin (1.7-2 albumin) 14 20 2 polypeptide chains of 4 and 9 kDa + [32]

Flax seed
Linin (11–12 S globulin) 252–298 64–85 4 subunits: 36, 46, 50, 55 kDa -

[26]
Colinin (1.6–2 S albumin) 16–17 40 the single polypeptide chain of 169 AA +

Whey protein 
isolate

β-lactoglobulin 18.3 40–55 +

[30]

α-lactoalbumin 14 11–20 +

Immunoglobulins 1 to 15 8–11 +

Bovine serum albumin (BSA) 69 4–12 +

Lactoferrin 77 1 +

Lactoperoxydase 77.5 1 +

Table 1. The composition and solubility of oil-seed and whey proteins.
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forms depending on pH. They predominantly exist as red flavylium cations in acidic conditions, while in slightly 
acidic to neutral conditions they form colourless hemiketals and blue quinoidal bases45. Extracted anthocyanins 
can be used as natural colorants in food products, offering an eco-friendly alternative to synthetic dyes. They 
also exhibit high antioxidant activity, which can be beneficial in food preservation and health applications46–48. 
Additionally, anthocyanins can be incorporated into edible films and coatings, providing pH-sensitive packaging 
solutions47.

The study underscores the importance of valorizing agri-food waste and by-products for sustainable food 
production. By-products from fruit processing, including berries, are a rich source of bioactive compounds, 
often found in higher concentrations than in the edible or processed parts of the fruit49. In this context, the 
anthocyanin-rich extract used in the present study was prepared from chokeberry pressing residue, a by-product 
of chokeberry wine production, obtained from a local wine industry.

Materials and methods
 Materials
The chokeberry extract was prepared from chokeberry wine waste obtained from Rüüp OÜ (Ala-Juusa farm, 
Kanepi Parish, Estonia, 58o01’N 26o40’E) in Sept. 2021. The berries were smashed and fermented with Enartis 
Red Fruit wine yeast for five days. After juice removal, the residues were air-dried and stored at − 18 oC. Air 
drying was chosen because it is a more scalable and affordable technology compared to freeze-drying for local 
producers. For the preparation of extracts, the material was thawed at room temperature and ground.

The oil-seed protein concentrates Hempein (hemp protein), Canolein (canola protein), and Flaxein (flax 
protein) were procured from Vegetein AS (Estonia); the whey protein concentrate WHEY100 was from SportLife 
Nutrition®, Finland, (Table 2).

All chemicals used were of laboratory grade and purchased from Sigma-Aldrich (Steinheim, Germany).

 Preparation of extracts for encapsulation
Anthocyanin-rich chokeberry extracts were obtained via ultrasound-assisted extraction from ground, dried 
berry residues. Extraction was performed using a UP 400St ultrasonic processor (⍉18  mm titanium horn; 
Hielscher Ultrasonics GmbH, Germany). Dry powder (10 g) was mixed with ethanol–water solution (70:30, v/v, 
250 mL). The extraction was performed at 30% amplitude (power 56 W) for 15 min. The extracts were separated 
from the residual material by vacuum filtration, and ethanol was removed by vacuum rotary evaporation at 
40 °C. The concentrated aqueous extracts served as the core material for encapsulation.

 Determination of protein functional properties
For the determination of Nitrogen Solubility Index (NSI), protein aqueous dispersion (100 mL, 1 g/100 mL, pH 
7.00) was prepared and mixed for 2 h at 150 rpm, and 35 mL of solution was transferred to a 50-mL centrifuge 
tube and centrifuged 10 min at 3000 x g at room temperature. The supernatant was collected, filtered through 
Whatman paper filter no.1, and nitrogen content was determined by the Kjeldahl method according to the 
Association of Official Analytical Chemists (AOAC) method 2001.11, SFS EN ISO 20483:2013 and EN ISO5983-
2. The nitrogen content of the remaining protein dispersion before centrifugation was also determined by the 
Kjeldahl method. The correction factor of 6.25 was used in protein content calculations50. The NSI was calculated 
as follows:

 
NSI (%) =

Nitrogen content in% of the supernatant

Nitrogen content in% of the total dispersion
× 100 (1)

 

Emulsification capacity was determined by measuring the amount of oil (g) emulsified by protein concentrate 
dispersed in water until the emulsion turned from oil-in-water to water-in-oil emulsion. The turning point of 
the emulsion was detected by the increase in the emulsion’s resistance monitored using an ohmmeter (Digital 
Multimeter, Fluke Corporation, Washington, USA). The protein concentrate dispersion (50 mL, 0.01 g protein 
contained in the concentrate/100 mL, pH7.0) was poured into the reaction cylinder and mixed using Ultra-
Turrax homogenizer (IKA®-Werke GmbH & Co., Staufen, Germany) at 13,000 rpm and canola oil was gradually 
pumped to the solution (25 mL/min). When the emulsion’s resistance increased over the detection limit of the 
ohmmeter the oil pump was stopped and the amount of added oil was determined. Emulsification capacity was 
calculated as follows:

 

 
Emulsification capacity(g oil/mg) =

Amount of oil added (g)

Solution protein content (mg)
 (2)

 

Protein Fat Water Sugars Dietary fiber Nutritional value, kcal

Hempein 70 1.7 7.0* 5.6 17.0 352

Canolein 50 0.5 6.5* 8.8 25.1 315

Flaxein 47 0.2 7.4* 7.6 32.0 298

WHEY 100 77 5.0 7.5* < 1 N/A 381

Table 2. The nutritional composition of protein concentrates (%). * determined experimentally in this study.
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Foaming capacity was determined by measuring the volume of foam obtained after whipping of protein solution. 
Briefly, 150 mL of protein concentrate dispersion (4.5 g protein contained in the concentrate /100 mL, pH 7.0) 
was whipped using Hobart equipment on full power for 5 min. The volume of the foam was recorded and the 
foaming capacity was calculated as follows:

 
Foaming capacity (%) =

Foam volume min (mL)− initial dispersion volume (mL)

Initial dispersion volume (mL)
× 100 (3)

 

Preparation of encapsulation wall material
Protein concentrate dispersions were prepared by mixing 30 g protein concentrate powder with 300 mL Milli-Q 
water (w/w 1:10), and the mixture was stirred overnight at room temperature. Soluble protein extracts were 
separated from the insoluble residue by vacuum filtration. For flax-seed protein extract separation, we used 
centrifugation (3000 x g; 15 min.) as the presence of mucilage in the solution resulted in filters clogging. The dry 
matter content in 100 mL extract was as follows: hemp 1.20 ± 0.04 g, canola 4.12 ± 0.09 g, and flax 3.10 ± 0.10 g. 
For whey protein solution, 2.5 g of whey protein concentrate powder was solubilized in 100 mL Milli-Q water. 
Maltodextrin (3 g) was added to 80 mL protein extract and mixed.

 Conducting and evaluating the spray-drying process
The formulation (140 mL, including 80 mL protein extract, 60 mL chokeberry extract, and 3  g MD) was 
converted into powders using a Büchi Mini Spray Dryer B-290 (Switzerland). The spray –dry feed composition 
is detailed in Table 3.

The total dry matter content in the feed was kept below 10% due to the low dry matter content in the 
chokeberry extract, which we couldn’t evaporate further to avoid the degradation of anthocyanins51. In 
addition, a lower dry matter content helps to preserve the bioactivity of the anthocyanin-rich extracts during 
spray-drying processes52. The parameters of the spray-drying process were as follows: spray nozzle tip diameter 
0.5 mm; atomization pressure 5.0 bar; inlet temperature 190 oC; material feed rate 3.8 ± 0.2 mL/min; aspirator 
50%. All processes were carried out in triplicate, and the powders obtained were kept in closed vessels at room 
temperature until analysis on the same day.

The process yield, indicating process performance, was calculated as follows:

 
Process yield (%) =

Weight of spray − dried powder (g)
Total solid mass in the feed solution

× 100 (4)
 

The encapsulation efficiency, the percentage of active core material (anthocyanins for chokeberry extract) 
encapsulated, was calculated as follows:

 
Encapsulation efficiency (%) =

Total bioactive compounds content − Surface bioactive compounds
Total bioactive compounds content

× 100 (5)
 

Determination of total anthocyanins: spray-dried powder sample (100 mg) was dispersed in 2 mL methanol/
acetic acid/water solution (50:8:42 v/v/v), homogenized using a vortex mixer for 1  min, and incubated for 
20 min in sonication bath. After sonication, samples were centrifuged at 12,000 rpm for 15 min.

Determination of surface anthocyanins: spray-dried powder sample (100 mg) was dispersed in 2 mL methanol/
ethanol mixture (1:1 v/v), homogenized using a vortex mixer for 1 min, and then centrifuged at 12,000 rpm for 
5 min.

After centrifugation, the supernatant was recovered to measure total and surface anthocyanins content using 
the pH differential method53. The supernatant was pipetted into two different 4 ml spectrophotometric cuvettes, 
where two different buffer solutions, pH 1.0 (potassium chloride, 0.025 M) and pH 4.5 (sodium acetate, 0.4 M) 
were added respectively. The mixtures were left for 20–50 min in dark at room temperature, and after that the 
samples were measured using Shimadzu UV 1200 spectrophotometer at two different wavelengths, 520 and 
700 nm. Calculation of anthocyanin pigment concentration, expressed as cyanidin-3-glucoside equivalents, was 
as follows:

 
Anthocyanin concentration (mg/L) =

A× MW × DF × 103

ϵ × l
 (6)

 

Wall material Core material

Wall/Core material 
ratio

Feed total 
dry matter 
content 
(g/100 
mL)

Soluble Protein Extract
(g dry matter) MD (g) Protein /MD ratio

Chokeberry extract (g 
dry matter)

Hemp protein concentrate 1.0 3.0 0.3 : 1:0 1.3 3.0 : 1.0 5.3

Canola protein concentrate 3.3 3.0 1.1 : 1.0 1.3 4.8 : 1.0 7.6

Flax protein concentrate 2.5 3.0 0.8 : 1.0 1.3 4.2 : 1.0 6.8

Whey protein concentrate 2.0 3.0 0.7 : 1.0 1.3 3.8 : 1.0 6.3

Table 3. Spray-dry feed composition.
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where: A= (A520nm – A700nm)pH1.0 – (A520nm – A700nm)pH 4.5; MW (molecular weight) = 449.2 g/mol for cyanidin-
3-glucoside (cyd-3-glu); DF = dilution factor; l = path length in cm; ε = 26 900 molar extinction coefficient in 
L×mol–1×cm–1 for cyd-3-glu; and 103 = factor for conversion from g to mg.

 Spray-dried powder analyses
Particle Morphology Study: The particle morphology was examined using a scanning electron microscope 
system EVO LS15 (Zeiss, Germany). Before the examination, powder specimens were fixed on specimen stab 
with adhesive double-sided carbon tape and sputter-coated with Au using a modified vacuum chamber. Images 
were taken in back-scattered electron (BSE) mode at a working distance of 9 mm, and an accelerating voltage 
of 4.45 kV.

Particle size distribution: The particle size distribution of spray-dried powders was determined using a 
Malvern Mastersizer 3000 analyzer (Malvern Instruments Ltd., Malvern, UK). About 0.1 mL of sample was 
suspended with 1 mL of Milli-Q water (conductivity 0.055 µS/cm) in 2 mL Eppendorf tubes and briefly vortexed 
before transfer into the particle size distribution analyzer’s dispersion tank containing the same quality water. 
The material (cellulose, refractive index 1.47) and dispersant (water, refractive index 1.33) were selected 
as proposed by Mastersizer software, and the speed of the stirrer was 2,000 rpm. The size distribution of the 
extracts was measured after adding a sufficient amount of sample to achieve an obscuration of 5 to 8%. Size by 
volume distribution–-based percentiles (Dv10 as the first decile, Dv50 as the median, Dv90 as the last decile) 
and D3,4(volume moment mean) were derived from Mastersizer software. D3,4 was defined as follows:

 
D [4,3] =

∑
Nid

4
i∑

Nid3i
 (7)

 

where Ni is the number of particles in a size class of di.
Colour values: Colour values (L, a, b) were determined using a Minolta colourimeter CR-400 (Konica 

Minolta, Germany). The samples were packed into the granular sample attachment CR-A50 for measurement. 
The L value, ranging from 0 to 100, is the indicator of the degree of lightness; a value stands for the red (a > 0) 
and green (a < 0) colours; b value measures yellow (b > 0) and blue (b < 0) colours. The overall colour difference 
ΔE*abwas calculated according to the CIE 1976 formula54,55:

 

 ∆E∗
ab =

√
(L∗

2 − L∗
1)

2 + (a∗2 − a∗1)
2 + (b∗2 − b∗1)

2 (8)
 

where L*1, a*1, and b*1 characterize the average of reference sample, in our experiment the powder prepared with 
whey protein. Five measurements per sample were taken.

Hygroscopicity Determination: To determine the hygroscopicity of spray-dried powders, 0.25 g of powder 
was weighted onto plastic plates, which were placed into a Climacell 707 (MMM Medcenter Einrichtungen 
GmbH; MMM Group) at 23 oC at 70% humidity for 24 h. Afterward, the samples were reweighted, and the 
hygroscopicity was expressed as the mass of water absorbed per 100 g of sample dry weight.

Storage Stability Test: To test the storage stability of spray-dried powders and non-encapsulated extract, 
approximately 1.2 g of sample was weighed into 50 ml transparent white plastic screw cap cups and stored in 
darkness at room temperature or + 50 °C, as elevated temperatures help to simulate long-term storage conditions 
in a shorter period56. The total anthocyanin content was measured every two weeks as described in Sect. 2.5.

 Data analyses
Spray drying using different proteins as wall material was performed in duplicates and further analyses were in 
triplicates. Results are expressed as mean ± standard deviation. The statistical analysis was conducted using Prism 
5 (GraphPad Software, San Diego, CA, USA). Data were analyzed by one-way analysis of variance (ANOVA), 
followed by Tukey’s test.

Results and discussion
 Functional properties of oil-seed proteins
Surface-active properties are vital for selecting proteins as wall materials for microencapsulation, as they allow 
for improved encapsulation efficiency and stability when combined with polysaccharides such as maltodextrin or 
starch57. The functional properties most relevant to encapsulation, including nitrogen solubility, emulsification 
capacity and foaming capacity of the studied oilseed proteins, are shown in Table 4.

Emulsification capacity is known to play an important role in the encapsulation efficiency of lipophilic 
compounds by stabilizing the oil/water interface, while in the case of hydrophilic compounds such as 
anthocyanins the emulsifying properties of proteins play an important role in enhancing the film-forming 
capacity of MD and enhance the encapsulation efficiency25. The addition of MD as wall material offers good 
protection for the core material against oxidation, thus improving the powder stability58. The protein foaming 
capacity potentially affects encapsulation efficiency preventing bubble coalescence and guaranteeing the stability 
of the encapsulated products.

Hemp protein concentrate displayed the lowest solubility with only 9.44 ± 0.79% of total nitrogen soluble, 
while canola and flax protein concentrates exhibited 3 to 5-fold higher solubility, with 32.95 ± 5.3% and 
54.31 ± 4.2%, respectively. Malomo et al.. also described the low solubility of hemp protein isolate at pH 7.0 
(< 10%) which is explained by the aggregation of hemp seed major protein edestin below pH 7.059. A previous 
study on protein solubility of defatted meals from different species of oilseed canola reported a somewhat higher 
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solubility ranging between 45.9 and 60.6% at pH 7.060. Kaushik et al.. reported similar results regarding the 
solubility of flax protein isolate with 57% of total nitrogen soluble at pH 7.061.

All oil-seed proteins exhibited good emulsifying capacity ranging between 14.68 and 67.76 g oil/mg protein 
contained in protein concentrate, with flax protein showing the highest capacity followed by hemp protein 
and canola protein. A previous study on whey protein isolate (WPI) emulsifying properties reported that WPI 
emulsifying capacity at pH 6.8 was 145 mL oil/100 mg protein62, which is equivalent to 1.33 g oil/ mg protein. 
Other studies also reported that plant proteins exhibit a higher emulsifying activity index compared to whey 
protein including hemp and flax protein isolates61,63. Emulsifying properties of proteins are affected by their 
solubility and surface hydrophobicity63, which play a crucial role in the migration and adsorption of protein 
molecules on the oil-water interface due to the increased hydrophobic interaction of the molecular surface with 
oil droplets. Increased surface hydrophobicity, attributed to the high degree of exposure of hydrophobic amino 
acids on the surface of the molecule, promotes the formation of a viscoelastic film surrounding oil droplets, 
preventing their agglomeration.

The foaming capacity of a protein is measured as the volume increases (% overrun) resulting from the 
entrapment of air in the continuous liquid phase after whipping of protein suspension64. Hemp and flax protein 
concentrates exhibited low foaming capacity with 113% and 167% overrun respectively. A recent study reported 
that the foaming capacity of hemp protein isolates from different hemp cultivars ranged between 52.9% and 84.9% 
for 1% protein solution at pH 7.0, this difference between different cultivars was correlated with the difference 
in their protein composition (content of edestin) which affected protein solubility65. Lan et al.. examined the 
foaming capacity of flax protein concentrate and flax protein isolate, which were 92% and 170% respectively66. 
On the other hand, canola protein concentrate exhibited 9 to 10-fold higher foaming capacity compared to 
hemp and flax protein. These results align with recent studies highlighting the exceptional foaming properties of 
rapeseed (canola) protein and its two main components, napin and cruciferin67,68. Isolated cruciferin and napin 
displayed high foaming capacity with 320% and 410% overrun, respectively. The mixtures at different ratios of 
both proteins displayed a similar foaming capacity as napin, between 400% and 420%. Their results also showed 
that due to its smaller particle size, napin exhibited higher foamability, while cruciferin displayed higher foam 
stability as it formed a stiff and solid-like film in the air-water interface. Whey protein isolate (WPI) has also high 
foamability: e.g. 6.5 g/100 mL WPI solution displayed 1300% overrun at pH 6.862.

 Process yield and encapsulation efficiency
Figure  1 shows the yield and efficiency of the microencapsulation process of chokeberry extract using the 
mixture of different oil-seed proteins with MD as wall material.

The process yield varied between 71.7 ± 8.6 and 78.5 ± 1.3% (Fig. 1). The difference in process yield between 
different wall materials was not statistically significant. Previous studies on microencapsulation of anthocyanin-
rich extracts have reported a process yield of 58.9% for purple potato extract encapsulated with MD, while the 
process yield of chokeberry extract with a mixture of MD and skim milk powder was 31.9%, and 39.9% with a 

Fig. 1. Encapsulation yield and efficiency of anthocyanin-rich chokeberry extract using hemp, canola, flax, 
and whey proteins added to maltodextrin as wall material. (A) Encapsulation yield based on dry matter 
content and (B) Anthocyanins encapsulation efficiency. All values are means ± standard deviation, n = 3. Means 
with different letters differ significantly at p < 0.05.

 

Protein content*
(g/100 g)

Nitrogen solubility index
(%)

Emulsification capacity
(g oil/mg protein)

Foaming capacity
(% overrun)

Hemp protein concentrate 70 9.4 ± 0.8 c 30.7 ± 1.6 b 113 ± 14c

Canola protein concentrate 50 33.0 ± 5.3 b 14.7 ± 1.0 c 1067 ± 27a

Flax protein concentrate 47 54.3 ± 4.2 a 67.8 ± 0.9 a 167 ± 0 b

Table 4. Functional properties of oil-seed protein concentrates. *Values according to the manufacturer. All 
values are means ± standard deviation, n = 3–4. Means with different letters (a-c) within the same column differ 
significantly at p < 0.05.
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mixture of MD and whey protein69,70, which is considerably lower compared to the present study and can be 
attributed to different encapsulation conditions.

Total and surface anthocyanin content in spray-dried powders was determined using the pH differential 
method. Total anthocyanin content values were 7.6 ± 0.7, 5.4 ± 0.2, 6.1 ± 0.2, and 6.3 ± 0.2 µg/mg of powder for 
samples spray-dried with hemp, canola, flax, and whey protein concentrates, respectively. Surface anthocyanin 
content values were 2.1 ± 0.2, 2.22 ± 0.1, 1.3 ± 0.1, and 2.4 ± 0.2 µg/mg of powder for samples spray-dried with 
hemp, canola, flax, and whey protein concentrates, respectively. The highest encapsulation efficiency 77.5 ± 1.9 
and 71.5 ± 1.0% was obtained when flax and hemp protein concentrates were added to MD, respectively. 
Encapsulation with canola and whey protein concentrates exhibited lower efficiency with 58.4 ± 0.8 and 
60.1 ± 3.6%, respectively. These results correlate with the proteins’ emulsifying properties of protein concentrates 
(Table 4) as flax and hemp protein concentrates exhibited significantly higher emulsification capacity compared 
to canola protein concentrate as well as whey protein according to the data available in the literature62. The 
encapsulation efficiency is influenced by the interaction of anthocyanins with the wall material through hydrogen 
bonds and/or electrostatic interactions69. In addition, proteins with higher emulsifying properties exhibit better 
encapsulation efficiency as their surface-active properties result in enhanced film-forming ability71. Patel et al. 
reported that increasing the emulsifier content in wall material resulted in an increased encapsulation efficiency 
of anthocyanins while the emulsifier concentration did not have a significant effect on anthocyanin content 
in the spray-dried powder25. In the study by Tzatsi and Goula, the encapsulation efficiency of chokeberry 
extract was 99.57% for MD/Skim milk powder and 96.77% for MD/whey protein concentrate70. The higher 
encapsulation efficiency compared to our results is likely related to the wall/core material ratio (9/1 vs. 3–4.8/1 
in the present study as shown in Table 3). The authors also indicated that encapsulation efficiency increases by 
increasing the wall/core material ratio, which is partly explained by the increase of the solution viscosity that 
hinders anthocyanin diffusion to the particle surface.

 Microparticle morphology
The particle morphology is an important parameter of spray-dried powder that affects the powder’s application 
behavior, particularly flowability72. The particle morphology itself is in turn influenced by the feed composition. 
It is proposed that powders with higher MD/whey protein ratios include more wrinkled particles, while the 
increase in protein content leads to more hollow particles12.

In the current study, the protein/MD ratio was between 0.3 and 1.1 / 1 (Table 3), and the morphology of the 
spray-dried powders was studied using scanning electron microscopy (SEM). All powders, prepared using oil-
seed or whey proteins as wall material, consisted mainly of spheroidal structures. Most particles had non-smooth 
wrinkled surfaces, but there were also bigger smooth ball-shaped particles, especially when canola protein was 
used as a wall material component (Fig. 2). With flax protein in wall material, a few bigger structures (> 20 μm) 
were detected in the powder indicating the potential presence of agglomerates. Some larger wall cavities may be 
attributed to air bubbles entrained during homogenization or atomization or being a result of foaming during 
vacuole formation.

 Particle size analyses of spray-dried powders
The chokeberry extract and all spray-dried powders exhibited particle size distributions with two sub-
distributions (smaller around 0.5 μm and larger around 10 μm) (Fig. 3). Larger sub-distributions dominated 
in all samples, except for the chokeberry whey encapsulation, where both sub-distributions had similar shares. 
Smaller particles suggest a thinner encapsulation coating when the amount of added encapsulation material 
remains constant (smaller particles, larger surface area).

The largest volume mean particle size was observed when canola protein was used for encapsulation, followed 
by hemp, flax, and whey protein (D3,4 = 11.44, 8.52, 5.14, and 4.28 μm, respectively) (Table 5).

The volume mean particle size (D3,4) increases with a smaller percentage of hollow particles12. Our results 
show that the value of D3,4 was higher if hemp and canola proteins were used (Table 5). Therefore, for applications 
where smaller particle sizes are desirable, flax may be the preferred encapsulation material when maintaining a 
consistent amount of encapsulation material.

Colour analyses
Colour analysis provides valuable information about the composition and quality of a powder, as particle size 
and surface geometry have influence on reflectance resulting in differences in colour. In the CIELAB colour 

Fig. 2. SEM micrographs of chokeberry extract spray-dried powders, produced with hemp, canola, flax, and 
whey proteins and maltodextrin at 4000-fold magnification. Scale bar indicates 10 µm.
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space73, the minimal colour difference perceived is defined as ∆E*ab=1, while a distinguishable difference is 
proposed to be around 2.355. The colorimetric analyses revealed some colour variations between the powders 
with different proteins (Fig. 4).

The whey protein, used as standard, resulted in the powders with the highest L* values (55.21 ± 0.03) and the 
lowest a* and b* values (21.33 ± 0.24 and − 5.28 ± 0.04, respectively, Table 6). Powders with hemp protein, on 
the contrary, had the lowest L* value (46.76 ± 0.18), and highest a* and b*values (27.12 ± 0.23 and − 2.95 ± 0.07, 
respectively), while the colour space values for spray-dried powders with canola and flax proteins remained 
between these limits (Table 6). Tukey’s Multiple Comparison Test indicated no statistically significant colour 
difference between different spray-dried powders (p < 0.05).

Fig. 4. Colour analysis of chokeberry extract spray-dried powders, produced with hemp, canola, flax, and 
whey proteins and maltodextrin in the CIELAB colour space. All values are means ± standard deviation, n = 10.

 

Protein added to MD D [4;3] (µm) Dx (10) (µm) Dx (50) (µm) Dx (90) (µm)

Hemp 8.5 ± 2.7a 1.8 ± 1.4a 6.9 ± 1.6a 16.3 ± 4.7a

Canola 11.4 ± 1.7b 2.8 ± 0.3a 8.0 ± 1.1a 21.8 ± 3.2b

Flax 5.1 ± 1.4c 0.3 ± 0.1b 4.0 ± 1.1b 10.7 ± 1.6c

Whey 4.3 ± 2.0c 0.7 ± 0.9b 2.4 ± 2.0b 10.0 ± 2.4c

Table 5. Particle size distribution characteristics of chokeberry extract spray-dried powders, produced with 
oil-seed and whey protein and maltodextrin: first decile Dx (10), median Dx (50), last decile Dx (90) and 
volume mean particle size D3,4. All values are means ± standard deviation, n = 3. Means with different letters 
(a-c) within the same column differ significantly at p < 0.05.

 

Fig. 3. Particle size distribution in selected chokeberry extract spray-dried powders, produced with oil-seed 
and whey proteins protein and maltodextrin. The hemp, canola, flax and whey powders are indicated in blue, 
green, red, and purple lines, respectively.
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Hygroscopicity
The hygroscopicity of different samples was characterized, as this attribute impacts the powders’ stability, storage, 
and other technical properties. Powders with lower hygroscopicity are easier to handle74,75. Spray-dried powders 
prepared using oil-seed proteins as wall material had somewhat higher hygroscopicity than powders prepared 
with whey protein, particularly if hemp protein was used (Fig.  5). However, all powders can be considered 
as only slightly hygroscopic, as the hygroscopicity was ≤ 20% for all samples. This low hygroscopicity is also 
achieved due to the relatively low protein/MD ratio because compared to proteins, MD is less hygroscopic76.

Storage stability
We studied the stability of spray-dried powders produced with different proteins both at room temperature and 
at 50 oC. Figure 6 shows the evolution of anthocyanin content (as % of initial anthocyanin concentration) during 
storage at different temperatures for non-encapsulated chokeberry extract and encapsulated extracts with MD 
and different proteins.

The initial anthocyanin concentrations in spray-dried powders were 7.6 ± 0.7, 5.4 ± 0.2, 6.1 ± 0.2, and 
6.3 ± 0.2 µg/mg of powder for samples encapsulated with hemp, canola, flax, and whey protein concentrates, 
respectively. After 90 days, all spray-dried powders retained 90.0 ± 3.5 to 97.3 ± 3.7% of their initial anthocyanins 
content at room temperature and 80.9 ± 2.8 to 89.2 ± 4.2% at 50 °C. Statistically, there was no difference between 
the stability of spray-dried powders produced using oil-seed or whey proteins. In contrast, the non-encapsulated 
extract initially containing 780.3 ± 3.8 µg/mL lost approximately 60% of its anthocyanins content after 90 days 
at room temperature and underwent complete degradation after 34 days at 50 °C, losing about 85% of its initial 
content after 8 days. Anthocyanins are known to have low stability, which is influenced by environmental factors 

Fig. 5.  Hygroscopicity (absorbed water (g)/100 g powder) of spray-dried chokeberry extract powders 
encapsulated with hemp, canola, flax, and whey proteins added to maltodextrin as wall material. All values are 
means ± standard deviation, n = 3. Means with different letters differ significantly at p < 0.05. 

 

Protein added to MD L* a* b* ΔE*ab

Hemp 46.76 ± 0.18 27.16 ± 0.23 -2.95 ± 0.07 10.56 ± 0.05

Canola 51.95 ± 0.11 20.63 ± 0.37 -5.58 ± 0.07 3.37 ± 0.04

Flax 50.46 ± 0.36 23.24 ± 0.47 -4.54 ± 0.08 5.21 ± 0.49

Whey 55.21 ± 0.03 21.33 ± 0.24 -5.28 ± 0.04 N/A

Table 6. The colour values of chokeberry extract spray-dried powders, produced with oil-seed and whey 
protein and maltodextrin. All values are means ± standard deviation, n = 10. Tukey’s multiple comparison test 
did not indicate significant colour difference (p < 0.05) between different powders.
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including pH, temperature, oxygen, and light. The fast degradation of anthocyanins limits their effectiveness as 
bioactive food ingredients77. The rapid degradation of anthocyanins in liquid extract underscores the importance 
of encapsulation to stabilize and preserve their bioactivity.

Conclusions
This study evaluated hemp, canola, and flax seed proteins as encapsulating agents in microencapsulation. The 
proteins exhibited distinct functional properties, with flax and hemp proteins showing higher encapsulation 
efficiency than canola protein. The oil-seed protein spray-dried powders, comparable in colour and particle 
morphology to whey protein powders, retained a significant portion of their anthocyanin content after 90 days. 
The obtained results regarding the physicochemical and functional properties of oil-seed proteins underscore 
their significant potential in producing 100% plant-based spray-dried powders of anthocyanins from wine waste.

Data availability
Data that support the findings of this study are available via Estonian University of Life Sciences online data 
repository: http://hdl.handle.net/10492/8811.
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