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ABSTRACT: The complex modeling accuracy of gas hydrate models
has been recently improved owing to the existence of data for machine
learning tools. In this review, we discuss most of the machine learning
tools used in various hydrate-related areas such as phase behavior
predictions, hydrate kinetics, CO2 capture, and gas hydrate natural
distribution and saturation. The performance comparison between
machine learning and conventional gas hydrate models is also discussed
in detail. This review shows that machine learning methods have
improved hydrate phase property predictions and could be adopted in
current and new gas hydrate simulation software for better and more
accurate results.

1. INTRODUCTION
Gas hydrates are ice-like solid compounds that are formed by
the combination of guest (mostly gas) and water molecules at
high pressures and low-temperature conditions.1−3 The
formation of gas hydrate in oil and gas pipelines is unwanted
due to its ability to plug the flow lines, leading to economic
and operational losses.4 On the other hand, gas hydrate
formation has useful applications in CO2 capture and
sequestration, energy supply, water desalination, and gas
separation and transportation.5 The application of gas hydrate
technologies lies deeply in the understanding of the
experimental thermodynamics and kinetics of gas hydrate
formation. Despite the success of several experimental data
works on gas hydrate, the area of modeling lacks equal success
due to the stochastic nature of hydrate formations.
Several methods and models have been reported in literature

for calculating/predicting the equilibrium conditions of gas
hydrate formation.3,6 Carson and Katz7 established a set of
vapor−solid coefficients to calculate the hydrate stability
conditions for some pure gases. Also, the use of a statistical
thermodynamics approach for the prediction of hydrate phase
behavior conditions was presented by Waals and Platteeuw.8

Such phase behavior models have been modified in literature
to predict the effect of additives on gas hydrate phase
behavior.9−11

Hydrate formation kinetics modeling needs to be studied
just like its thermodynamic behavior. There is extensive
experimental work12−16 available in literature for predicting the
thermodynamic conditions of the hydrate formation with and
without inhibitors. In contrast, there are no sufficient studies

on kinetic gas hydrate models in literature. The existing
hydrate kinetic models are incomplete and have poor
prediction accuracies. This is because gas hydrate nucleation
is probabilistic in nature and depends on the sample water
history and cannot be predicted certainly.17−20 Therefore, the
most available kinetic models and studies related to hydrate
formation focus on the hydrate growth rate. Also, the
prediction of the gas hydrate distribution in natural gas
hydrate sediments has gained much attention owing to its
methane production potential. In such modeling studies, the
hydrate saturation, sediment porosity, permeability, and rock
compressive and tensile strength are predicted.
The recent focus on artificial intelligence methods (AIs) to

solve scientific problems has assisted in improving the
prediction of gas hydrate formation behavior in various areas.
The broad employment of AIs for solving nonlinear complex
problems without prior knowledge gives AIs an advantage over
conventional models for many chemical applications. Apart
from the variety of experimental and modeling studies on
hydrate thermodynamics, kinetics, exploration, and production,
several review papers have focused on providing state-of-the-
art knowledge on hydrate research progress. Such hydrate
modeling reviews have paved the way to fill and improve many
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empirical gas hydrate behavior predictive models such as the
Peng21 and the van der Waals22 models, among others.
However, no review paper in the open literature focuses on

the use of machine learning in gas hydrate behavior modeling
despite the active involvement of machine learning in gas
hydrate applications in recent times. This work therefore
presents a comprehensive review of machine learning
applications in the gas hydrate. Thus, in this work, the
reported literature on gas hydrate application prediction using
machine learning methods is reviewed to provide a clear
understanding of its performance by summarizing all the data
with a detailed discussion of errors and suggesting prospects
for continuous discoveries. The main novelty of this work in
gas hydrate application lies in the ability to use the findings in
this work to develop gas hydrate mitigation or promotional
additives for CO2 capture and storage, desalination, and flow
assurance operations.

2. MACHINE LEARNING MODELS USED FOR
GAS-HYDRATE-RELATED STUDIES

This section provides a basic overview of the machine learning
models in gas hydrate applications. The commonly used
machine learning models in gas hydrate applications are shown
in Figure 1.
The most used machine learning model for gas-hydrate-

related modeling is the artificial neural network (ANN). The
ANN method uses functions to simulate human brain behavior
to predict scientific processes.23 Typically, ANN models
operate under hidden, input, and output layers that are
designed to produce the right results.23 ANN models are able
to solve nonlinear functions with multiple output and input
variables. It also predicts patterns in noisy data with good
accuracy.24 Aside from ANN, the group method of the data
handling (GMDH) neural network has also been used for
hydrate modeling.25 The GMDH is similar to ANN but
designed for nonlinear patterns among data outputs and inputs

using quadratic polynomials.25 GMDH has advantages in
predicting and simulating complex system scenarios.
Vladimir and Alexey in 1964 proposed the support vector

regression (SVR) machine learning model based on statistical
learning theory.26 This method has also found relevance in gas-
hydrate-related modeling techniques. The merits of the SVR in
hydrate modeling reside in its ability to deal with overfitting,
unlike ANN. A modified version of the SVR used in hydrate
modeling is the least square support vector regression
(LSSVR). The LSSVR can model complex systems with
huge data sets and a higher convergence rate than the SVR.
Fuzzy logic (FL) is another method that uses the classical

fuzzy sets mathematical theory.27,28 Fuzzy logic uses member-
ship functions (MFs) to evolve between real-world and fuzzy
models. pimf, zmf, and smf are the common MFs.29 FL has
been used for gas hydrate modeling in different systems. In
nonlinear complex arbitrary functions, the use of FL could
yield good modeling accuracy.
The combination of ANN and Takagi−Sugeno-type fuzzy

systems, known as the adaptive neuro-fuzzy inference system
(ANFIS), is commonly used for hydrate formation behavior
modeling.30 The ANFIS model exhibits good prediction
performance in complicated nonlinear systems.30 This
advantage also encourages its application in gas-hydrate-
based studies. Another used machine learning algorithm in
the hydrate community is random forest (RF). The RF
algorithm predictions result from each tree in the decision
trees.31 Its advantages are based on its simplicity of
implementation in parallel, fast training, and prediction. The
RF and k-nearest neighbors (KNN) have been widely applied
in gas hydrate systems with promising efficiencies.
Some other researchers have used the nonlinear autore-

gressive models with exogenous inputs (NARX neural
network) to predict gas hydrate phase behavior. Though
NARX is known as a good algorithm for time series data,32 its
ability to deal with unilinear data and patterns promotes its

Figure 1. Gas hydrate empirical and machine learning models.
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application in gas hydrate studies. Deep neural network
techniques such as the feedforward neural networks have been
used for gas hydrate modeling in our modeling framework. The
hybrid of the artificial neural network (HFGA) and the extra
trees approach have also been proven as good algorithms for
predicting the hydrate dissociation pressure with and without
inhibitors.
2.1. Mathematics Fundamentals of Gas Hydrate

Machine Learning Techniques. 2.1.1. Support Vector
Regression (SVR). Support vector regression (SVR) is a robust
mathematical tool used to solve nonprobabilistic problems
ranging from nonlinear function approximation to pattern
classification.33 Basically, SVR attempts to nonlinearly project
the input spectra to a higher/infinite dimension by further
locating the optimum hyperplane with a minimum distance
from actual data. Due to the algorithm’s limitation to small
data, an upgraded version of the model (LSSVR) was
developed.
A typical SVR algorithm for nonlinear regression models for

a given data set {(xi yi), i = 1, 2, ..., N}, is expressed as:

f x w x b( ) ,= + (1)

The structural risk function used in SVR is
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By substituting eq 3 into eq 2 and introducing relaxation
variables ξ and ξ*, the objective function can be obtained as:
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Equation 4 introduces the Lagrange function. Dual processing
is performed, which yields the following.

x x

y

minimize
1
2

( )( )( , )

( ) ( )

i j

N

i i j j i j

i

N

i i
i

N

i i i

, 1

1 1

= * *

+ * + *

=

= = (6)

C

C

i j N

s.t.

( ) 0

0

0

, 1, 2, ...,

i

N

i i

i

i

1

l

m

ooooooooooooo

n

ooooooooooooo

* =

*

=

=

(7)

Using eqs 6 and 7, the SVR model can be obtained.

f x x x b( ) ( ) ,i i i= * + (8)

For the inner-product problem, there are four types of
common kernel functions: linear kernel function, polynomial
kernel function, radial basis function (RBF) kernel function,
and sigmoid kernel function. Among them, the RBF kernel
function has better performance and more applications.34

Therefore, in this paper, the internal product problem is
replaced by the RBF function, whose expression is as follows:

K x x x x( , ) exp( , ), ( 0)i j i j= > (9)

Eventually, the SVR model becomes the following.

f x K x x b( ) ( ) ( , )i i i= * + (10)

where ε is the loss factor; ξ and ξ* are the relaxation variables;
C denotes the penalty factor; αi − αi* are the Lagrange
multiplier pairs for each sample; and γ is the width parameter
of the kernel function.
2.1.2. ANN. Among all the ANN models, the multilayer

perceptron and the radial basis function network are used in
gas-hydrate-related machine learning models. In this section,
we will focus more on the mathematical formulation of these
models.35,36

2.1.2.1. Multilayer Perceptron (MLP). This is a feed-forward
artificial neural network model. In the feed-forward neural
networks, the movement is only possible in the forward
direction.37 A typical MLP consists of many layers of nodes in
a directed graph, with each layer connected to the next one,
which can be represented mathematically as:

y w w w w w w x...i n n0 1 1 2 2= + + + + (11)

The equation is the transfer function in a neural network. This
linear weight sum would be a threshold at some value, so that
the output of the neuron would be either 1 or 0. The
multilayer perceptron networks are suitable for the discovery of
complex nonlinear models. On the possibility of approximating
any regular function with a sum of sigmoid, it is power-based.
MLP utilizes a supervised learning technique called back-
propagation for training the network. This requires a known
desired output for each input value to calculate the loss
function gradient.
2.1.2.2. Radial Basis Function Network. RBFs are

developed on the basis of localized basis functions and an
iterative function approximation. In RBF networks, the
supervised training algorithm is utilized.38 The primary
advantage of the RBF network over other FFNNs is its easy
design. This is due to the fact that the RBF network has only
three layers, namely, the input layer, the hidden layer, and the
output layer. Considering x as the input vector, the output of
RBF ANN, ϕ, can be expressed by:
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x a x c( ) ( )
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in which N and ai stand for the number of hidden neurons and
the weight of neuron i in the output neuron; ci denotes the
center vector for neuron i; and ρ(∥x − ci∥) is the RBF. A
typical neuron i could be represented by the following
equations:

r w x b( )i
j

N

ij j i
1

= +
= (13)

y f r( )i i= (14)

where xj and wij denote the input signals and the neuron’s
synaptic weights, respectively, and ri, bi, yi, and f are the linear
combiner output, bias term, output signal of the neuron, and
activation function, respectively. The authors of refs 38 and 39
used the back-propagation algorithm to minimize the mean
squared error (MSE) of the input and output variables. Also
depending on the type of model development, the RBFs might
need several hidden layers and a transfer function.
2.1.3. ANFIS. The fuzzy set theory was introduced in 1965.

ANFIS used fuzzy logic theory to formulate the mapping of the
input and output layers. Neural networks are used to regulate
the mapping parameters by leaning functions.40 A fuzzy set A
in X which is referred to as the universe of discourse is defined
as a set of ordered pairs:

A x x x X( , ( ))A= { | } (15)

where μA(x) is called membership function (MF) for the fuzzy
set A which ranges between 0 and 1.
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where Rj is the rule label; Aji is the antecedent fuzzy set; y =
f j(X) is a crisp function which is usually a polynomial function
of input variables; and N is the total number of fuzzy if−then
rules. When f(X) is a first-order polynomial, it is called a first-
order Sugeno fuzzy model and is defined as:

f X c c x c x c x( ) ...j
j j j
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j
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The output of each rule is a linear combination of input
variables plus a constant term, and the weighted average of
each rule output produces the final output given by:
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where Wj is the firing strength of Rj, defined as:

W T x( )j k
n

A k1 jk
= = (19)

where T denotes a T-norm operator of minimum or product.
The fuzzy reasoning is solved by using a rule based on
Sugeno’s type fuzzy. However, some authors30,41 use fuzzy
rules in Takagi−Sugeno systems.
2.1.4. XGBoost (eXtreme Gradient Boosting) Boosting.

Boosting is a type of additive modeling that employs a series of
several learning models as one powerful model. By adding
these models together, a stronger predictive model is formed.42

The XGBoost algorithm employs the first and second
derivatives of the loss function to quickly converge to global
optimality quickly. It also improves the performance of the
model. The objective function minimized by XGBoost is as
follows:

l y y fobj( ) ( , ) ( )
i

i i
k

k= +
(20)

f T w( )
1
2k

2= +
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where f k is the kth tree and l is a differentiable convex loss
function that measures the difference between the prediction ŷi
and target yi. The second term Ω reduces overfitting by
penalizing the complexity of the model in terms of the number
of leaves in tree T and the vector of scores on leaves w. λ′ is a
regularized parameter, and γ′ is the learning rate, whose values
lie between 0 and 1. Since a tree ensemble model includes
functions as parameters, it cannot be optimized using
traditional optimization methods in Euclidean space and is
therefore trained in an additive manner. The objective function
to be minimized is then given by:
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where ŷit is the prediction of the ith instance at the tth iteration,
and k is the total number of predictions. Therefore, the loss
function is represented as the sum of the loss functions for the
prediction until the t-1st iteration and a tree structure that,
when added at the tth iteration, most improves the model as
per eq 22. Accordingly, the objective function can be
optimized by using the second-order Taylor approximation
of the loss function (instead of first-order in general gradient
boosting) which is given by:
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sent the first and second derivatives of each sample. The sum
of loss values determines the loss function in eq 23 for each
data sample corresponding to every leaf node. Assuming that
the loss function is the mean square error function for
regression problems and removing the constants, the objective
function can be written for regression tree-based problems as:
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where Ij represents all the data samples in the leaf node. During
the process of building a tree, a particular node split will be
carried out only if there is an improvement in the performance
of the model as evaluated by this objective function.
2.1.5. Random Forest (RF). Random forest was proposed by

Breiman43 as a bagging algorithm in ensemble learning. RF is
similar to a decision tree but differs from the standard trees. In
the RF model, there is a random selection of a part of the data
from the original data set and construction of a subdata set of
the same length and size as the original data set. However, the
data in the subdata set can be repeated. After that, the subdata
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set can be used to build a subdecision tree; a part of the result
features obtained can be selected by each decision tree; and
finally the optimal result features can be selected from the
randomly selected part of the result features.
The RF for regression is formed by growing trees depending

on a random vector, and its predictor is formed by taking the
average over k of the growing trees. The mathematical model
of RF is as follows:

G x
m

g x( )
1

( )
i

m

i
1

=
= (25)

where gi(x) represents the value of each base learner. The
model is not determined by specific eigenvalues or
combinations of features, and the final prediction results are
averaged, giving the overall model results in generalization
performance and decreasing the average error of the model
results.
2.1.6. Group Method of Data Handling. The relationship

between the inputs and the output of a multiple-input single-
output network can be estimated by the Volterra−Kolmogor-
ov−Gabor (VKG) polynomial.
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where X = (x1, x2, ..., xM) is the vector of input variables; a is
the vector of weight coefficients; and ŷn is the predicted output.
The general equation in the form of VKG can be simplified to
a partial quadratic polynomial consisting of only two variables:

y a a x a x a x x a x a xn in jn in jn in jn0 1 2 3 4
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In order to determine the “best fit” values, the value e should
be minimized, or in other words, the partial derivatives of eq
28 with respect to each constant ai are taken and set to zero:

e
a

0
i

=
(29)

Solving eq 29 leads to a system of equations that are solved by
a training set of data:

Y x x x x x x1 i j i j i j
2 2= [ ] (30)

X Y YT= (31)

X

x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

1 i j i j i j

i i i j i j i i j

j i j j i j i j j

i j i j i j i j i j i j

i i i j i j i i j

j i j j i j i j j

2 2

2 2 3 2

2 2 2 3

2 2 2 2 3 3

2 3 2 3 4 2 2

2 2 2 3 2 2 4

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

=

(32)

a a a a a a a0 1 2 3 4 5= [ ] (33)

b yY( )T= (34)

aX b
n

N

n

N

1 1

=
= = (35)

2.1.7. Deep Neural Networks. The DNN framework is one
of the machine learning methods used for gas hydrate phase
behavior prediction. A DNN is a collection of nested
compositional functions. The algorithm recursively performs
linear transformations to the inputs and output layers as well as
nonlinear transformations to the hidden layers. DNN can
accurately learn without any rules. Also, DNN models can
determine flaws in data training and accurately correct them.
The feed forward neural network is mostly adopted for
prediction.44,45

Suppose N x( ):L d din out is an l layer of NN or an l − 1
hidden layer NN, with Nl neurons in the lth layer (No = din, NL
= dout). Let us denote the weight matrix and bias vector in the
lth layer by W Nl N

l 1
l and bl Nl, respectively. Given a

nonlinear activation function σ, which is applied element-wise,
the FNN is recursively defined as follows;
Input layer:

N xx
d

( )
0 in= (36)

Hidden layers:

N W N x b l L( ( ) ) , 1 1x
L l l l N

( )
1 l= + (37)

Output layer:

N W N x b( )x
L L L L d

( )
1 out= + (38)

Because there is no universal rule for selecting the most
suitable activation function, researchers mostly use a trial-and-
error strategy. The commonly used activation functions, such
as the logistic sigmoid, tanh, relu, Leaky relu, elu, and selu,
were for studying gas hydrate systems. The training process
requires a search for good weights and biases through the
minimization of the loss function. The loss function is defined
as the sum of error squares and is written as follows:

y x y xLoss ( ) ( )
i

N

j j
1

in in 2= [ ]
= (39)

For hydrate-related studies, the RMSprop algorithm is one of
the five methods adopted for predictions. This algorithm was
introduced by Geoff Hinton and uses an adaptive learning rate
framework. Adadelta and RMSprop were independently
developed for about the same period but independently to
resolve issues relating to rapidly declining learning rates. A
closer look at the initial updating vector between RMSprop
and Adadelta conclusively shows similarities in their initial
updating vector. Mathematically, the RMSprop algorithm can
be written as follows:

E g g g0.9 0.1t t t
2 2

1
2[ ] = [ ] + (40)

E g
gt t

t
t1 2

=
[ ] +

+
(41)

The second algorithm used for hydrate-related studies is
Adagrad. Adagrad is a gradient-based optimization algorithm
that can adapt the learning rate alongside the parameters.46

This algorithm performs a small update with low learning rates,
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whereas a high learning rate will have much larger updates.
These updates are associated with infrequent features. This
algorithm is ideal for working with sparse data. The algorithm
is expressed mathematically as:

g Jt i, ( )t i,
= (42)

G
gt i t i

t i
t i1, ,

,
,=+

+ (43)

Adadelta, which is the third algorithm adopted for hydrate-
related studies, is a modification that slows down the aggressive
nature of the Adagrad algorithm. This monotonically
decreased the learning rate. Adadelta simply restricts the
window of accumulated past gradients to a specific size instead
of gathering all past squared gradients:47

E E g(1 )t t t
2 2

1
2[ ] = [ ] + (44)

ERMS t t
2[ ] = [ ] + (45)

g
RMS

RMSt
t

t
t

1= [ ]
[ ] (46)

t t t1 = ++ (47)

The adaptive moment estimation (Adam) algorithm is another
approach for computing adaptive learning rates for parameters.
Adam has also been used in hydrate-related studies. Adam
preserves an exponentially decaying average of past squared
gradients (vt) similar to Adadelta and RMSprop. This method
utilizes some properties of the momentum algorithm by
preserving the exponential decay of past gradients. The
method prefers the use of the minima error on a flat surface.48

Mathematically, Adam can be written as follows:

m m g(1 )t t t1 1 1= + (48)

v v g(1 )t t t2 1 2
2= + (49)

mt and vt are estimates of the gradients’ first (mean) and
second (uncentered) moments, respectively.
The biases can be corrected in the first and second estimates

of the moments with the following formulas:

m
m

1t
t

t
1

=
(50)

v
v

1t
t

t
2

=
(51)

Then these corrections are employed to update the parameters

v
mt t

t
t1 =

++
(52)

For all of the algorithms, the loss functions will be determined
by the values of w and input variables. The weights are
represented by the w vector, and the input vectors are
represented by the x vector. The losses for all of the training
data were calculated, and the total losses are used for the
predictions.

3. GAS-HYDRATE-RELATED MACHINE LEARNING
DATA PROCESSING

The quality of data and its processing or treatment process are
very important to any machine learning model. Most often
poor machine learning predictions are a result of poor data
representation, lack of enough data, and incorrect or an
absence of data processing. The data used in gas-hydrate-
related machine learning modeling are mostly gathered from
experimental articles in literature,49 field flow assurance data,50

field reservoir rock properties data,51 and experimental

Figure 2. Gas hydrate application machine learning modeling input and output variables.
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procedures by others.50,52 Data from literature is commonly
used for the prediction of gas hydrate phase behavior
conditions. This is because such data are easy to correlate
from different data or experimental sources, thus allowing
hydrate phase behavior prediction using machine learning
techniques. However, there is little work done on predicting
hydrate phase behavior in the presence of additives due to a
lack of experimental data in the literature. Recently, Bavoh et
al.53 developed a deep learning model for predicting the
methane hydrate phase boundary behavior in ionic liquids. Gas
hydrate kinetics behavior is poorly modeled using machine
learning using poor data. Also, the lack of experimental data
and access to field data is a challenging fact that hinders the
modeling of other gas hydrate applications using machine
learning methods.
From all the data sources, the input and output variables

used to well represent hydrate modeling are shown in Figure 2.
Hydrate equilibrium pressure and temperature are the output
variables predicted using machine learning models for phase
behavior studies. When the prediction output variable is
pressure, temperature becomes one of the input variables, and
vice versa. For the pure gas phase, the gas composition,
molecular weight of the gas molecules, or specific gravity of the
gas molecules are considered input variables. Since hydrate
phase behavior could be affected by the type of hydrate
structure formed, the gas composition data could be further
clustered or grouped to cover the hydrate study form. For
example, methane and ethane composition would be summed
up as one variable since they both form sI hydrates. In systems
with an oil phase, the gas−oil ratio or oil gravity is also
considered input variables. Similarly, systems with inhibitors or
promoters also include the inhibitor type (molecular weight,
density, or chemical details) and concentration in the water
phase as input variables. The number of input variables for
predicting hydrate properties is decided by the researchers but
has to be as well minimized as possible and has a direct
relationship to the output variable.30,41,50,53

In kinetics prediction systems, the hydrate growth rate is
predicted as output variables with temperature, pressure, and
inhibitor concentration as input variables. In practical systems,

other kinetics factors such as moles consumed, reactor size,
volume, and stirring speed could be considered to give better
prediction representation and accuracy. Hydrate rock proper-
ties such as water saturation, hydrate saturation, rock tensile
strength, pore size, acoustic velocity, and resistivity are also
used as input variables for predicting the gas hydrate
distribution in hydrate sediments.
Getting data sources and relevant variable representation of

output value prediction is not enough for an accurate machine
learning prediction. Aside from these features, having adequate
data size is very important for accurate machine learning
performances. The data size used by most researchers in
developing machine learning models in the gas hydrate
applications is summarized in Figure 3. As shown in Figure
3, 45% of the authors used a data size below 500, while 13%
used a data size between 500 and 1000 and about 42% data
above 1000. In terms of model performance by data size, about
42% of the models developed using data above 1000 points
show an acceptable representation. It is evident that about 45%
of the machine learning models developed in the field of gas
hydrates are biased or limited in data size acceptability.
Data processing for machine learning mode development

data normalization is very important to prevent truncation
errors. As shown in literature, data normalization is not often
conducted by all authors. Some authors have stayed silent
about their data normalization process. However, normal-
ization according to Yarveicy et al.38 is conducted for all the
model variables between −1.0 and +1.0. This has proven to
yield an equivariance for each input and output.54 Also, outlier
detection is mostly conducted to treat or fine-tune the data set
for accurate model development. Outlier detection further
helps to identify data that far differ from the primary
population data. This also helps to minimize the models and
deal with possible experimental errors that might have
occurred during the hydrate studies’ experimentation. The
Leverage method with a William plot statistical approach is
adopted by researchers to remove outliers from hydrate data
used for machine learning model development.43,49,55 Bavoh et
al.53 proved that the Mahalanobis distances, Jackknife
distances, and T2 outliers’ analysis methods can effectively

Figure 3. Data size used by researchers for developing machine learning models in gas hydrate applications.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c04825
ACS Omega 2024, 9, 4210−4228

4216

https://pubs.acs.org/doi/10.1021/acsomega.3c04825?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04825?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04825?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04825?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c04825?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


improve data quality. On the other hand, the absence of outlier
detection or analysis in a hydrate-based machine learning
model is potentially suspected to have reliability issues. Some
authors are either silent on their outlier detection method or
do not even undertake it. Mohammadi et al.56 agreed that
when the average absolute relative deviation (AARD%) of the
experimental data is less than 3% outlier detection analysis
could be neglected.
The choice of optimization algorithm and activation

function is key to achieving an improved machine learning
prediction.57 Ideally, the choice of algorithms and activation
function for gas hydrate application machine learning modeling
is supposed to be done based on convincing reasons such as
the type and nature of the data.53 Contrarily, the choice of
machine learning models for hydrate property predictions is
based on a trial-and-error method. The models or algorithms
are selected randomly and tested with the data to confirm that
the models fit better with the data. Although there are other
models that are modifications of existing ones, these modified
models are also not developed based on the hydrate data type
and nature. They are developed as novel models used to fit the
hydrate data.
The data used to develop the models are usually divided into

training, validation, and testing. In a broader context, the
validation and testing data are considered together. The
training data sets are mostly a percentage of the data set used
to train the model, and the remaining percentage of data is
used for validation and testing. The percentage of data used for
training the models in gas-hydrate-related machine-learning
models is dependent on the data size. As shown in Figure 4,
about 50% to 98% of the data are used to train the machine
learning models for gas hydrate properties predictions. When a
huge size is used, the training percentages are higher than
models built with smaller data sizes. About 38% of the authors
used 80−85% of their data for training, while 33% used 70−
75% and 20% used 90−98%. However, 14% of authors used
50−58% and 60−69% data for training their models (Figure

4). However, using data percentages above 70% is highly
recommended for an effective model performance.

4. MACHINE LEARNING IN GAS HYDRATE
APPLICATIONS

The application of machine learning in gas-hydrate-related
fields is mainly focused on hydrate phase behavior equilibrium
data predictions. Though current empirical models have
proven to be very effective in predicting the hydrate phase
behavior conditions, they fail in systems involving high
pressure and mixed gases. However, the use of the machine
learning approach has been proven to be effective in such
difficult systems. Very few studies have used machine learning
to predict the kinetics of hydrate formation. This could be due
to the complex nature of hydrate kinetics due to its
probabilistic behavior. The current phase behavior studies
mainly focus on the hydrate inhibition effect in various systems
such as salts, alcohol, and ionic liquids. The use of machine
learning in predicting hydrate formation risk for a practical
field operation has also been tested in the literature with some
success and challenges. Studies on hydrate promotional effects
in CO2 have also been studied using machine learning
approaches. However, the prediction of the hydrate phase
behavior of natural gas systems with additives is also well
explored to cover several relevant hydrate formers. Some
authors have also used machine learning approaches in
methane hydrate sediment studies to aid in hydrate reserve
estimations, exploration, and production. Particular attention is
mostly given to the predictions of the hydrate saturation with
the sediments. The use of machine learning to predict
methanol concentration has also been studied to prevent
overuse and ensure the correct and needed dosage for field
problems. The following subsections discuss in detail all of the
gas-hydrate-related areas where machine learning methods
have been used or applied.
4.1. Hydrate Phase Behavior Prediction. The pre-

diction of hydrate phase behavior without additives using
machine learning methods is very promising and has shown

Figure 4. Percentage of data used for training the models in gas-hydrate-related machine learning models.
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much improvement for complex natural gas systems containing
H2S and CO2. Table 1 shows the machine learning-assisted
hydrate phase behavior predicted systems. The prediction of
hydrate phase behaviors is mostly focused on natural gas
systems with high H2S and CO2 content and a few mixed
gases. Generally, the use of empirical models to predict the
hydrate formation conditions of pure gas systems such as CO2,
CH4, C2H6, etc., is very accurate. This is the main reason most
studies are focused on natural gas systems with high levels of
H2S and CO2.
A study by Yarveicy38 shows that ANFIS, LSSVM, and RBF

ANN models show good prediction, with LSSVM exhibiting
the best. In their study, the RMSE of the LSSVM model was
about 50% less than ANFIS and 5% less than the RBF ANN
model. This indicates that the LSSVM model efficiently
predicts natural gas hydrate formation conditions without sour
constituents and the presence of inhibitors. Contrarily,
Suresh58 showed that GPR provides better predictions than
LSSVM and ANN models for pure hydrates of CH4 and CO2
systems. The performance of the LSSVM model in predicting
natural gas hydrate formation conditions decreases 3−15 times
in the presence of inhibitors, CO2, and H2S based on AARD
evaluation.59,60 For the same inhibitors and natural gas
systems, the use of the extra trees model works better with
about 50% error reduction compared with the LSSVM
model.59 Using the findings of Yarveicy38 as the basis,
LSSVM model performance in predicting CO2 hydrate phase
behavior in porous media has an increasing error margin of
12−20 times for silica gel and mesoporous silica, and 52−113
times in porous glass systems. The high error margins,
especially in porous media, were due to the use of fewer
data points in the model training and testing.56

The predictions of natural gas phase behavior with ANN
have been reported to depend on the input variables, the
algorithm, and the transfer function used. The use of ANN
with the Levenberg−Marquardt algorithm and tangent sigmoid
predicts natural gas hydrate phase behavior (both sweet and
sour gas systems) with RMSE of 0.6065 and AARD of
0.2137%.61 ANN also predicts hydrate formation on average
well with both single and multiple inputs. This implies that the
use of critical input variables will perform very well in ANN
prediction. This is highly recommended compared to using
more variables that have a weak impact on the hydrate
formation conditions.62 ANN with the hyperbolic tangent
sigmoid function predicts hydrate phase boundary conditions
in the same range as ANFIS (Gaussian MF).63 However, in the
CO2 gas hydrate system ANFIS performs better than ANN.64

Mehrizadeh65 also confirms the performance of ANFIS over
ANN. In his models, the Levenberg−Marguardt algorithm was
used for the ANN, and the first-order Takagi-Sugeno inference
system was used for the ANFIS model. In natural gas systems
with inhibitors, the ANN model performance reduces.
According to Qin,50 the performance of ANN in predicting
hydrate formation conditions is 0.92 based on R2 evaluations,
while Soroush61 reported 0.998. Also, in the mixed gas
systems, ANFIS (with tirmf, gaussmf, and gbellmf algorithms)
shows better prediction performance than ANN (with the
Bayesian regulation backpropagation algorithm) with a tangent
sigmoid transfer function.66 In sour natural gas systems, the use
of ANN with Levenberg−Marquardt algorithms performs
better in predicting the hydrate phase boundary conditions
compared with the gradient descent with momentum, scaled
conjugate gradient, and one-step secant backpropagation

algorithms. The model prediction performance of ANN with
Levenberg−Marquardt algorithms reduces by 24, 42, and 40
times, respectively, for the scaled conjugate gradient, gradient
descent with momentum, and one-step secant backpropagation
algorithms.67 The choice of the algorithm and transfer function
affects the model performance. These algorithms and transfer
function selections must be selected carefully by considering
the type of data and variable inputs for the phase behavior
prediction.
Aside from the LSSVM and ANN, several machine learning

models are able to hydrate phase boundary conditions
efficiently. SVC with RBF kernel predicts formation conditions
efficiently compared with ANN.50 AdaBoost-CART provides
more reliable HDT prediction than ANFIS and ANN. The
hydrate phase behavior prediction error of ANFIS and ANN
decreases by 5 times when replaced with AdaBoost-CART.63

GA-LSSVM model is a modification of the LSSVM and has
been used for hydrate phase boundary prediction using gas
gravity and pressure as inputs.68 Its predictions are relatively
good, with an AARD of about 0.5%. However, the model
performance is relatively poor in N2 + THF, CH4 + 1,4-
dioxane, and H2 + acetone clathrate hydrates systems.

69 The
use of ANN and ANFIS still outperforms some hybrid machine
learning algorithms such as TOKM and HFGA.64 GBR gives
the best prediction for predicting the methane hydrate phase
boundary conditions than MLP, k-NN, SVR, and RF
algorithms.70 A study by Suresh58 also confirmed that GPR
has good hydrate phase behavior prediction accuracy than
ANN and LSSVM. RF and ET have similar prediction
accuracy, but XGBoost outperforms both RF and ET in
hydrate phase behavior prediction.42 The use of PNN, DNN,
with ReLU activation function and NNARX has also proven
efficient in predicting gas hydrate phase boundary con-
ditions.54,55,71

The use of machine learning in hydrate phase behavior
predictions is used as an algorithm to optimize or assist the
prediction accuracy of the existing hydrate thermodynamic
models. Among the machine learning models, ANN has
proven to improve the prediction accuracy of the van der
Waals−Platteeuw thermodynamic model.72 Such practices are
good and recommended since they can be empirically
explained in terms of hydrate structural and molecular level
inclusive perspective. This is very useful for the statistical
modeling of complex gas hydrate guest molecules and inhibitor
systems.
4.2. Hydrate Kinetics Prediction. The prediction of gas

hydrate kinetics is a complex phenomenon to determine due to
the stochastic nature of hydrate formation. Empirically, hydrate
kinetics modeling is still not well established; in addition, the
existing kinetics models are limited with high errors. Hence,
the use of artificial intelligence might provide a better
prediction accuracy. With the increase in the use of AI and
machine learning techniques in gas hydrate applications, very
few studies have been conducted on the kinetics of hydrate
formation. Table 2 summarizes the details of machine learning
techniques on gas hydrate kinetics. ANN and ANFIS models
have been used to predict the kinetics of pure methane
hydrates and natural gas hydrates. ANFIS prediction of the
interfacial tension of SDS surfactant-based systems near the
ethylene hydrate formation region was conducted by Zare.80

The study showed that the prediction of the SDS interfacial
tension was relatively good, with an AARD of 1.2%. Also,
Foroozesh79 predicted the methane hydrate formation rate
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using the ANN model. The model prediction was relatively
poor with about 13.86% AARD. The poor performance of the
model could be due to the limited number of data used in the
model training and testing. The core parameters of gas hydrate
formation kinetics are the induction time, rate, and moles of
guest uptake. Out of these, only one attempt has been made so
far on the rate of the hydrate formation, with none reported in
the open literature on hydrate formation induction time and
guest molecule uptake. The main challenges faced with the
hydrate kinetics machine learning modeling is the availability
of data. Gas hydrate kinetics are reactor dependent, and thus
using different data for different reactors will result in wrong
comparison and data standardization. Aside from the need for
large data sets, the use of stochastic machine learning
algorithms could prove better prediction accuracy. Also,
machine learning algorithms can be employed as tools to
optimize, assist, and/or enhance the prediction accuracies of
the existing gas hydrate empirical kinetic models.
4.3. Natural Gas Hydrate and CO2 Capture. Natural gas

hydrates are a potential source of energy that could replace
fossil fuels. The use of machine learning methods in natural
methane hydrates is focused on natural gas hydrate saturation
distribution, tensile and shear strength, and hydrate morphol-
ogy (see Table 3). The use of new NN and CNN was used to
predict the tensile and shear strength of gas hydrate stability.51

The proposed new NN reduced the error of the CNN by 38
times. A gas hydrate morphology and saturation prediction
behavior were proposed by You.81 Their findings suggest that
machine learning techniques using the LSTM method perform
better than LSF in the predictions of the shear wave velocity
and hydrate morphologies. Li82 demonstrated the performance
of using RNN with the Adam transfer function to predict gas
hydrate saturation. In a distinguishing attempt, Kim83

suggested that RF outperforms CNN and SVR in predicting
water, gas, and GH saturation hydrate saturation reservoirs.
These studies are geologically related and need many images or
logging data to increase their performance. The use of machine
learning in hydrate saturation prediction can be used to
estimate hydrate reserves, deposition, and production tech-
nologies.
In the area of hydrate-based carbon capture, the application

of machine learning is much less. Ahmadi64 used ANFIS,
TOKM, ANN, and HFGA to predict the phase behavior of
different porous media systems in the presence of inhibitors.
The porous media that the models covered were silica gel,
porous glass, and mesoporous silica. ANFIS was the best in
determining the hydrate formation conditions of CO2 hydrates
in porous media. Data scarcity for porous media system
variability is a main challenge for conducting effective machine
learning related studies in hydrate-based CO2 capture
technologies. However, it is recommended that the best
machine learning models be evaluated for such applications.

5. MACHINE LEARNING IN HYDRATE FIELD DATA
PREDICTION

The emergence of the fourth world industrialization (Industry
4.0) has increased the use of machines in the oil and gas
industries. Though most hydrate-related studies are based on
empirical or laboratory data, the main goal is to achieve a
machine learning algorithm that can be applied to practical
field activities. In this section, the use of gas hydrate field data
for machine learning models is discussed to provide state-of-
the-art knowledge and advance machine learning in gas hydrateT
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applications. For hydrate predictions, just like other predictive
models in drilling, fracturing, and shale studies, ANN models
are mostly used.84−88 An ANN and SVR machine learning
model was developed by Qin50 using field data from a dry tree
facility in the Gulf of Mexico. The models were programmed
to predict or detect gas hydrate formation plugs and the
formation conditions. The use of machine learning was argued
as a good tool that could serve as a roadmap to hydrate risk
detection and management systems. However, there are no
findings in the literature to confirm if these models are
currently used in the field during pipeline operations. GHBS
samples from the Nankai Trough of Japan were used to
develop a machine learning model for the estimation of
hydrate reservoirs’ tensile and shear strength.51 GHBS data
from the Korean East Sea region, Shenhu area, South China
Sea (SH7), and Alaminos Canyon (Block 21) are practical
field data used to develop machine learning models for
predicting hydrate sediments, gas hydrate saturation, and
morphologies.81−83 In areas such as Ulleung Basin, Korea,
Mackenzie Delta (Canada), and on the Alaska north slope
(USA), reservoir data have been used to develop machine
learning models to characterize gas hydrate reservoirs and
determine and estimate the hydrate rocks’ mineral composi-
tions.43

6. COMPARISON BETWEEN CONVENTIONAL AND
MACHINE LEARNING MODELS

The performance of machine learning models is best proven
when compared to that of existing hydrate models. In this
context, the comparison of machine learning models’ perform-
ance to conventional models is solely limited to gas hydrate
thermodynamics. The other aspect of gas hydrate application is
lacking in machine learning studies, and thus their comparison
with existing models is rare in the literature. Generally, most of
the machine learning models show better predictions and
could supplant traditional models and correlations in terms of
thermodynamic predictions. Most of the conventional models
used for comparison are mostly Bahadori and Vuthaluru89

correlation; Berge90 correlation; Motiee91 correlation; Towler
and Mokhatab92 correlation; Hammerschmidt93 correlation;
and Sun and Chen,94 Baillie and Wichert,95 and van der
Waals22 methods. Aside from the van der Waals−Platteeuw
(vdWP) method, which is more accurate but rarely used, the
other correlations are very old, though they have been used in
gas hydrate simulation software (Hydrate Plus software).
A machine learning multilayer perceptron neural network

that uses the ReLU activation function reduced errors of
hydrate phase behavior predictions of multiphase and
CSMHYD software by 50%.71 The comparison of LSSVM to
traditional correlations shows the great capability of LSSVM.68

Specifically for the modeling of gas systems containing H2S,
LSSVM performed better than the Berg correlation, Motiee
correlation, Towler and Mokhatab correlation, and the Baillie

and Wichert models.75 The hybrid group method of data
handling (GMDH), ANFIS, and ANN also outperforms these
same traditional correlations.55,61,80,96 Contrarily, van der
Waals−Platteeuw (vdWP) models and HFGA are in the
same range of performance for CO2 hydrate systems with
promoters such as acetone, TBAB, and TBAC. However, the
van der Waals−Platteeuw (vdWP) EOS model outperforms
ANN and Ordinary Kriging models by 112% and 215%,
respectively, but the adaptive neuro-fuzzy interference system
(ANFIS) performs better than the thermodynamics-based
approach of van der Waals−Platteeuw (vdWP) by 26%.64 The
machine learning performance with conventional hydrate
models suggests that the incorporation of machine learning
models into commercial simulation software will reduce the
calculation stress while maintaining accuracy.

7. RECOMMENDATIONS AND PROSPECTS
An emphasis has been placed on ensuring that the developed
model can successfully predict multicomponent equilibria.
Machine learning models could be used to develop novel gas
hydrate additives for application in gas hydrate research areas
such as flow assurance, CO2 capture, desalination, etc., where
the search for novel additives is needed, especially in the areas
of finding the best deep eutectic solvent or ionic liquid cation
and anion combinations. Future studies should focus on
generating suitable kinetics and natural gas hydrate reservoir
data efficiently and proper machine learning modeling. The
efficient machine learning models should be incorporated into
existing gas-hydrate-related software for accurate predictions.
The use of gas hydrate application field data for machine
learning models will provide suitable and practical results for
industrial use. Also, machine learning algorithms should be
used for optimizing the modeling parameters of the existing
empirical models for improved accuracy. Machine learning
models for predicting gas hydrate kinetics and thermodynamic
behavior in the presence of novel additives are highly
recommended. Classification models for differentiating the
various hydrate structures and textures and predicting the guest
molecules are needed for an in-depth scientific knowledge of
hydrate detection. The use of AI in methane hydrate
production and exploration is at an early stage and needs
further research to guide its production processes and
environmental impact.
The generalization of machine learning models for gas

hydrate applications is an important area that needs research
attention. The existing models in the literature are focused on
specific systems or components. Such models must have the
ability to predict several hydrate properties from different gas
systems, chemical additives, and kinetic systems. Also, the
developing hydrate-based machine learning models with
engineering features will provide safe hydrate plug-free flow
assurance operations. Such inclusions could consider engineer-
ing features that enhance, promote, or necessitate hydrate

Table 2. Summary of Machine Learning Techniques Used for Gas Hydrate Kinetics Studies

Gas

Machine
learning
model Inputs Outputs R2 AARD % RMSE Remarks ref

Methane ANN T and P Rhg NS 13.86 NS ANN modeled hydrate growth rate with high sensitivity to temperature
difference driving force

79

Natural
gasa

ANFIS P, T, and
Ic

ST 0.9977 1.1998 NS ANFIS prediction of the interfacial tension of SDS surfactant-based
systems near the ethylene hydrate formation region was accurate

80

a(SDS/ethylene).
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formation. Such models could be accomplished by developing
semisupervised and reinforced learning in gas hydrate
application predictions.

8. CONCLUSIONS
In this study, the use of machine learning models in gas
hydrate applications has been reviewed to establish the
successes and state-of-the-art knowledge of its progress. The
main contribution of this work lies in outlining critical areas
where machine learning models could help make gas hydrate
technology achievable. The use of machine learning models to
predict the hydrate phase behavior conditions (with and
without inhibitors) is the most applied and successful
breakthrough in the use of machine learning in gas hydrates.
Both hybrid and traditional models have been proven to
effectively predict hydrate properties for both classification and
regression analysis. The use of machine learning models to
improve the predictions of existing gas hydrate models is a
novel innovation that could be adopted and incorporated into
current gas hydrate software for efficient predictions. The
successful machine learning models in gas hydrate applications
are rigorous and relatively well validated to show positive
improvement in hydrate phase behavior prediction. Despite
the relevance of machine learning in gas hydrate applications,
several green gas hydrate areas have received little attention in
terms of AI applications. Such areas are the kinetics of gas
hydrates, hydrate separation methods, desalination, additive
development, and hydrate-bearing sediment applications.
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