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INTRODUCTION 
 

Polycystic ovary syndrome (PCOS) is one of the most 

prevalent endocrine and metabolic disorders, affecting 

up to one in five women of childbearing age [1]. Its 

cardinal features are hyperandrogenism, menstrual 

irregularity, and polycystic ovary morphology [2]. 

PCOS is associated with insulin resistance (IR), 

metabolic syndrome, increased risk of endometrial 

cancer, ovulatory dysfunction, infertility, pregnancy 

complications, type 2 diabetes, and cardiovascular 

disease [3–7]. Although the pathogenesis of PCOS is 

complex and remains unclear, there is growing 

scientific consensus in that genetic factors play a key 

role in PCOS occurrence and development. 

 

Long non-coding RNAs (lncRNAs) represent a class of 

non-coding RNA transcripts greater than 200 nucleotides 

in length [8]. Although lncRNAs lack protein-encoding 

capacity, an increasing body of evidence suggests that 

they act a pivotal part in many biological processes, 

including genetic imprinting, X-chromosome in-

activation, transcriptional and post-transcriptional 
regulation, recruitment of epigenetic modifiers, control 

of mRNA decay, organelle biogenesis, and subcellular 

trafficking, among others [9, 10]. Accumulating 
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ABSTRACT 
 

Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder in women of childbearing 
age. Recent studies suggest important roles for lncRNAs in PCOS development. Based on the hypothesis that 
lncRNAs are able to regulate mRNA functions by competitive binding to shared miRNAs, the present work 
sought to construct a PCOS-related lncRNA-mRNA network (PCLMN) to identify key lncRNAs with dysregulated 
expression and potential prognostic and therapeutic relevance. A global background network was constructed 
after retrieving lncRNA-miRNA and miRNA-mRNA pairs from the lncRNASNP2, miRTarBase and StarBase 
databases. Based on gene expression profiles from ovarian granulosa cells from PCOS patients and controls in 
the GEO’s GSE95728 dataset, the PCLMN was then constructed by applying hypergeometric testing. Using 
topological analysis, we identified 3 lncRNAs (LINC00667, AC073172.1 and H19) ranking within the top-ten gene 
lists for all three centrality measures. We then explored their subcellular localization, performed functional 
module analyses, and identified 4 sex hormone-related transcription factors as potential regulators of their 
expression. Significant associations with inflammation, oxidative stress, and apoptosis-related processes and 
pathways were revealed for the key lncRNAs in our PCMLN. Further studies verifying the mRNA/lncRNA 
relationships identified herein are needed to clarify their clinical significance. 
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evidence also suggests that lncRNA dysregulation is 

closely associated with numerous human diseases, 

including PCOS and PCOS-related conditions. For 

instance, results from microarray analyses showed that 

some lncRNAs were abnormally expressed in the 

granulosa cells of PCOS patients, which suggested their 

involvement in PCOS development [10]. Examples 

include HCG26, an lncRNA that participates in the 

regulation of ovarian granulosa cell proliferation and 

steroidogenesis [11], and RP11-151A6.4, which was 

found to be upregulated in granulosa cells from PCOS 

patients and suggested to promote insulin resistance, 

androgen excess, and adipose dysfunction [12]. 

However, only a few lncRNAs have been so far 

verifiably related to PCOS. 

 

The competitive endogenous RNA (ceRNA) hypothesis 

describes a regulatory network involving mutually 

interacting protein-coding (mRNA) and non-coding 

(e.g. lncRNA, miRNA, etc.) transcripts to modulate 

gene and protein expression, A central tenet of the 

ceRNA hypothesis is that lncRNAs can regulate other 

RNA transcripts by competitive binding to miRNAs via 

shared miRNA response elements [13]. ceRNA 

activities have been confirmed to influence the 

development of several diseases, and ceRNA networks 

have been built for lung cancer [14], cardiac 

hypertrophy [15], and implantation failure [16], among 

other conditions. Considering the potential relevance of 

lncRNAs in the regulation of PCOS through the ceRNA 

mechanism, in this study we used bioinformatics tools 

to construct a PCOS-related lncRNA-mRNA network 

(PCLMN) to identify key lncRNAs that might impact 

the development and serve as biomarkers of PCOS. 

 

RESULTS 
 

Identification of differentially expressed lncRNAs 

and mRNAs 

 

LncRNA and mRNA expression profiles from 

granulosa cells from seven PCOS patients and seven 

controls were retrieved from the GSE95728 dataset 

available on the NCBI-GEO repository. Based on FC > 

2 and adjusted P < 0.05, 86 differentially expressed 

lncRNAs (DELs) and 112 differentially expressed 

mRNAs (DEMs) were identified. 

 

Construction of a global lncRNA-miRNA-mRNA 

triple network 

 

A total of 50,2653 miRNA-mRNA interaction pairs 

were downloaded from miRTarBase and starBase. 

Subsequently, the lncRNASNP2 tool was applied to 

select candidate miRNAs targeting the 86 DELs 

identified in the GSE95728 dataset. DELs’ sequences 

were obtained from UCSC Genome Browser, and 

miRNA/lncRNA associations with a prediction score > 

160 and binding energy < -20 were selected. A total of 

66,059 miRNA-lncRNA interaction pairs were thus 

obtained. All selected miRNA-mRNA and miRNA-

lncRNA pairs were then merged to construct a global 

triple network which was used as a background network 

to construct the PCLMN. 

 

Construction of the PCOS-related lncRNA-mRNA 

network 

 

After mapping all the DELs and DEMs into the global 

triple network, a hypergeometric test was performed to 

extract 334 lncRNA-miRNA-mRNA triplets. From 

these, 41 lncRNAs and 41mRNAs, linked by 203 edges, 

were chosen to construct the PCLMN (Figure 1B). 

 

Hierarchical clustering and functional 

characteristics of the PCLMN 

 

The 82 differentially expressed genes (DEGs) included 

in the PCLMN were grouped by unsupervised 

hierarchical clustering, suggesting distinct gene 

expression profiles for control and PCOS (Figure 1A). 

We next performed GO classification and KEGG 

pathway analysis on the DELs and DEMs in the 

PCLMN. GO analysis results indicated significant 

enrichment in 27 GO terms (P≤0.05, Benjamini-

Hochberg-corrected) as listed in Figure 1C and Table 1. 

Meanwhile, as shown in Figure 2 and Table 2, 13 

pathways were found to be enriched (P≤0.05) in the 

target genes. 

 

Topological characteristics of the PCLMN and 

subcellular localization of key lncRNAs 

 

The degree distribution of the PCLMN was examined 

and all the nodes were found to conform to a power-law 

distribution (R2 = 0.80), indicating that the network was 

scale-free (Figure 3A). Next, we analyzed the 

topological characteristics of the PCLMN to predict the 

biological functions of the network’s lncRNAs. 

Centralization metrics of degree, betweenness, and 

closeness were calculated. The top ten hits for each 

topological parameter were then selected, and three 

lncRNAs, i.e. LINC00667, AC073172.1, and H19, were 

found to intersect across the three features (Figure 3B). 

 

The subcellular localization of lncRNAs provides 

important clues about their potential functions. To 

explore the subcellular localization of the key lncRNAs 

identified in the PCLMN, we accessed two online 
platforms, i.e. LncLocator and RNAlocate, and verified 

the results against iLoc-lncRNA, a sequence-based 

subcellular localization prediction tool. Summary 
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analysis results for LINC00667, AC073172.1, and H19 

are displayed in Figures 4–6, respectively. LINC00667 

showed a predominant cytosolic localization, confirmed 

also by iLoc-LncRNA (probability score = 0.853 for 

‘cytosol/cytoplasm’) (Figure 4A). As shown in Figure 

4B, there were 13 nearest mRNA neighbors for 

LINC00667 in the PCLMN. GO analysis indicated 

significant associations of LINC00667 with 4 GO terms 

under Biological Process (BP), one term under 

Molecular Function (MF), and one term under Cellular 

Component (CC) (Figure 4C). Meanwhile, 10 KEGG 

pathways showed significant enrichment in LINC00667 

(Figure 4D). 

 

H19 localized also mainly to the cytoplasm (Figure 5A), 

with iLoc-LncRNA yielding a probability score of 

0.603 for the ‘cytosol/cytoplasm’ term. Meanwhile, 13 

mRNAs were identified as nearest mRNA neighbors of 

H19 in the PCLMN (Figure 5B). GO classification 

detected enrichment by H19 in 3 terms under BP and 

one term under CC (Figure 5C). H19 was also enriched 

in 7 KEGG pathways, as shown in Figure 5D. 

 

AC073172.1 showed also a predominant cytoplasmic 

localization (Figure 6A), with the iLoc-LncRNA tool 

indicating a probability score of 0.868 for the 

‘cytosol/cytoplasm’ category. Seventeen mRNAs were 

detected as the nearest mRNA neighbors of H19 in the 

PCLMN (Figure 6B). Upon GO classification, 4 BP and 

2 MF terms were found to be enriched in H19 (Figure 

6C). In turn, 4 enriched KEGG pathways were 

identified for this lncRNA (Figure 6D). 

 

Identification of putative transcription factors 

regulating key lncRNAs in the PCLMN 

 

Promoter sequence-based prediction of candidate 

regulatory TFs of the key lncRNAs was carried  

out using PROMO software with maximum matrix 

dissimilarity rate < 3. A total of 27 common TFs 

 

 
 

Figure 1. Clustering and enrichment analysis of the PCOS-related lncRNA-mRNA network (PCLMN). (A) Unsupervised clustering 

of PCLMN genes. (B) PCLMN visualization. Light-blue arrowheads indicate lncRNAs and blue squares indicate mRNAs. Grey edges indicate 
lncRNA-mRNA interactions. (C) Network map of enriched GO terms in the PCLMN. (D) Network map of enriched KEGG pathways in the 
PCLMN. 
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Table 1. Enriched GO terms in the PCLMN. 

GO term P-value Associated genes (%) 

regulation of receptor binding 2.67E-05 10.71 

T cell selection 1.64E-04 5.88 

positive T cell selection 6.78E-05 7.89 

T cell differentiation in thymus 2.20E-05 5.06 

granulocyte chemotaxis 4.15E-07 4.32 

neutrophil migration 2.80E-07 4.62 

neutrophil chemotaxis 1.09E-07 5.41 

interleukin-12 production 3.23E-04 4.69 

regulation of interleukin-12 production 2.94E-04 4.84 

somatic diversification of immune receptors 4.75E-04 4.11 

somatic cell DNA recombination 4.75E-04 4.11 

chemokine production 4.93E-05 4.12 

regulation of cytokine production involved in immune response 5.56E-05 4.00 

regulation of chemokine production 4.01E-05 4.35 

regulation of leukocyte apoptotic process 4.01E-05 4.35 

regulation of lymphocyte apoptotic process 2.67E-04 5.00 

heterotypic cell-cell adhesion 3.38E-04 4.62 

chemokine production 4.93E-05 4.12 

regulation of lipid catabolic process 3.38E-04 4.62 

leukocyte aggregation 3.03E-06 21.43 

regulation of reactive oxygen species biosynthetic process 5.56E-05 4.00 

negative regulation of reactive oxygen species metabolic process 3.53E-04 4.55 

regulation of cytokine production involved in immune response 5.56E-05 4.00 

regulation of chemokine production 4.01E-05 4.35 

regulation of heterotypic cell-cell adhesion 2.39E-05 11.11 

negative regulation of reactive oxygen species biosynthetic process 4.42E-05 9.09 

positive regulation of cytokine production involved in immune response 3.69E-04 4.48 

positive regulation of chemokine production 4.03E-04 4.35 

positive regulation of heterotypic cell-cell adhesion 4.65E-06 18.75 

unsaturated fatty acid biosynthetic process 3.38E-04 4.62 

regulation of lymphocyte apoptotic process 2.67E-04 5.00 

 

targeting the promoters of the 3 key lncRNAs were 

identified (Figure 7A). Of these, 4 TFs, including ER-

alpha, PRA, PRB, and AR (marked in red in Figure 

7A), had been previously associated with PCOS. 

 

Identification of functional modules in the PCLMN 
 

We performed functional module prediction on the 

PCLMN using the MCODE clustering algorithm 

implemented in Cytoscape. A functional module 

containing H19, LINC00667, and two protein-coding 

genes, namely MYH11 (which encodes the smooth muscle 

myosin heavy chain) and BCL11B (which encodes a zinc 

finger protein TF) was thus identified (Figure 7B). 

 

DISCUSSION 
 

PCOS represents a prevalent disorder of follicular 

development characterized by excessive early follicular 

growth, arrested growth of antral follicles, and disrupted 

dominant follicle selection. In this study we performed 

a network-based computational analysis to identify and 

characterize lncRNAs potentially influencing PCOS. 

RNA/RNA interaction data from starBase, 

lncRNASNP2, and miRTarBase databases were used to 

construct a global lncRNA-miRNA-mRNA network 

based on the ceRNA theory. Then, a PCOS-related 

lncRNA-mRNA network (PCLMN) containing 41 

mRNA nodes, 41 lncRNA nodes, and 203 edges was 

extracted by mapping DEGs in the GSE95728 dataset 

into the global triple network. The resulting PCLMN 

was then analyzed to identify putative functional 

biomarkers for PCOS. 

 

GO classification and KEGG pathway analysis showed 

that many inflammation-related sub-categories, 

including ‘cytokines and inflammatory response’, 
‘chemokine production’, ‘neutrophil chemotaxis’, 

‘leukocyte aggregation’, ‘interleukin-10 signaling 

pathway’, and ‘IL-17 signaling pathway’ were enriched 
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Figure 2. Study workflow. First, we constructed a global background network based on predicted lncRNA-miRNA and miRNA-mRNA pairs. 

Second, we applied a hypergeometric test to construct the PCLMN and performed network topology analysis to determine the lncRNAs with 
the highest centroid variability. Lastly, we explored the subcellular localization of the key lncRNAs thus identified, performed functional 
module analyses, and identified putative transcription factors regulating the expression of the candidate lncRNAs. 
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Table 2. Enriched KEGG pathways in the PCLMN. 

GO term P-value Associated genes% 

Hematopoietic cell lineage 2.09E-04 4.04 

IL-17 signaling pathway 8.26E-06 5.32 

Intestinal immune network for IgA production 9.35E-03 4.08 

Chagas disease (American trypanosomiasis) 5.22E-07 5.88 

African trypanosomiasis 5.42E-03 5.41 

Malaria 1.42E-05 8.00 

Bladder cancer 2.43E-04 7.32 

Asthma 3.82E-03 6.45 

Allograft rejection 5.71E-03 5.26 

Primary immunodeficiency 5.71E-03 5.26 

Phosphorylation of CD3 and TCR zeta chains 1.93E-03 9.09 

Translocation of ZAP-70 to Immunological synapse 1.44E-03 10.53 

Generation of second messenger molecules 4.59E-03 5.88 

PD-1 signaling 2.11E-03 8.70 

Interleukin-10 signaling 1.11E-05 8.51 

FCGR3A-mediated IL10 synthesis 7.26E-03 4.65 

Nucleotide-binding Oligomerization Domain (NOD) pathway 6.62E-03 4.88 

Allograft Rejection 1.44E-04 4.44 

Bladder Cancer 2.43E-04 7.32 

IL-3 Signaling Pathway 9.35E-03 4.08 

IL1 and megakaryocytes in obesity 2.50E-03 8.00 

Photodynamic therapy-induced NF-kB survival signaling 5.56E-08 14.29 

Lung fibrosis 8.64E-04 4.76 

Hepatitis C and Hepatocellular Carcinoma 9.72E-03 4.00 

T-Cell antigen Receptor pathway during Staphylococcus aureus infection 8.25E-04 4.84 

Development and heterogeneity of the ILC family 4.07E-03 6.25 

Platelet-mediated interactions with vascular and circulating cells 1.15E-03 11.76 

LTF danger signal response pathway 2.71E-05 15.00 

Cancer immunotherapy by PD-1 blockade 2.30E-03 8.33 

Pathogenesis of SARS-CoV-2 Mediated by nsp9/nsp10 Complex 1.93E-03 9.09 

COVID-19 AOP 9.07E-08 26.67 

Cytokines and Inflammatory Response 2.91E-03 7.41 

Type II interferon signaling (IFNG) 5.42E-03 5.41 

 

in the PCLMN. Previous studies underscored the 

contribution of chronic, low-grade inflammation to the 

occurrence of IR, hyperandrogenemia, and metabolic 

syndrome in PCOS [17, 18]. IR is highly prevalent in 

women with POCS and may be induced by pro-

inflammatory cytokines acting directly on insulin-like 

receptor molecules [19]. A study found that increased 

serum CRP and IL-6 levels correlated with elevated 

insulin levels and higher insulin resistance index 

(HOMA-IR) scores, further suggesting that 

inflammatory factors are closely related to IR [20]. 

Along these lines, it was reported that inflammatory 

factor-mediated signaling inhibits the tyrosine kinase 

activity of the insulin receptor and interferes with insulin 

substrate 1 (IRS-1) synthesis, thus leading to IR by 

blocking insulin-dependent signaling [21]. In this regard, 

it was reported that α-trinositol (D-myo-inositol-1,2,6-

trisphosphate), a synthetic inositol phosphate analog 

with significant anti-inflammatory properties [22] 

showed good safety and efficacy in decreasing IR in 

PCOS patients by acting as an insulin-sensitizer [23–26]. 

 

’Regulation of reactive oxygen species biosynthetic 

process’ was another GO term enriched in our PCLMN. 

Common features of oxidative stress in PCOS patients 

include increased lipid peroxidation and protein 

hydroxyl content and decreased antioxidant capacity 

[27]. These changes, paralleled and induced by 

exacerbated cellular production of reactive oxygen 

species, contribute to a proinflammatory state 

conducive to IR and hyperandrogenism [28]. 

 

Several immune-related biological processes and 

pathways, including ‘T cell selection’, ‘T cell 
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differentiation in thymus’, ‘regulation of cytokine 

production involved in immune response’, ‘regulation 

of lymphocyte apoptotic process’, and ‘IL1 and 

megakaryocytes in obesity’ were also enriched in the 

PCLMN. Ovulation disorder is one of the common 

clinical manifestations and the main cause of infertility 

in women affected by PCOS. Several leukocyte subsets 

participate in the regulation of follicle growth and

 

 
 

Figure 3. Topology features of the PCLMN. (A) Degree distributions of the network. All degrees followed a power-law distribution. (B) 
Identification of 3 lncRNA genes simultaneously ranking within the top-10 lists across degree, betweenness, and closeness. 

 

 
 

Figure 4. LINC00667-related ceRNA sub-network analysis. (A) Subcellular location analysis for LINC00667. (B) ceRNA network of 
LINC00667. (C) GO biological process enrichment results for LINC00667. (D) KEGG pathways enriched in LINC00667. 
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maturation. Lymphocytes have a promoting role on 

follicle growth, ovulation, and luteinization; however, 

abnormal inflammatory conditions can cause lympho-

cytes to oversecrete pro-inflammatory factors that trigger 

cytotoxicity and induce follicular apoptosis. This in turn 

leads to phagocytosis by macrophages, follicular 

development stagnation, and ovulation failure [29]. 

 

We further performed network topology analysis and 

run the MCODE clustering algorithm to identify crucial 

lncRNAs with central topology features in the PCLMN. 

We identified 3 lncRNAs (LINC00667, AC073172.1, 

and H19) with potentially crucial roles in regulating key 

pathways in PCOS. The NF-kappa B signaling pathway 

was enriched in the ceRNA sub-network of 

LINC00667. NF-kB is an important TF that initiates 

and regulates the expression of various inflammatory 

mediators, modulates the development of inflammatory 

responses, and is also closely involved in IR [30, 31]. 

Suggesting yet another link between PCOS and chronic 

inflammation, increased serum NF-κB levels have been 

reported in PCOS patients [32]. Indeed, the main 

functional module identified in our PCLMN contained, 

along with LINC00667 and H19, BCL11B, a TF 

expressed by all T-cell subsets that was shown to 

enhance TCR/CD28-triggered NF-kB activation [33]. 

 

Another biological process enriched in PCLMN genes 

was ‘negative regulation of apoptotic process’. 

Apoptosis is the mechanism responsible for follicular 

atresia and the basis for the cyclical growth and 

regression of human ovarian follicles [34]. Abnormal 

regulation of apoptosis has been suggested as a central 

mechanism of implantation failure by a previous 

ceRNA network analysis [35]. A recent study suggested 

also that reduced serum levels of caspase 9, an apoptotic 

marker, might be correlated to the pathogenesis of 

PCOS [36]. Moreover, compared with normally 

ovulating women, reduced expression of caspases 3, 8, 

and 9 and overexpression of the anti-apoptotic 

regulators cIAP-2 and Hsp27 were detected in oocytes 

of women with PCOS [37, 38]. 

 

The GO term ’negative regulation of tumor necrosis 

factor production’ was enriched in the ceRNA sub-

network of H19. Tumor necrosis factor-α (TNF-α) is a

 

 
 

Figure 5. H19-related ceRNA sub-network. (A) Subcellular location analysis for H19. (B) ceRNA network of H19. (C) GO biological process 

enrichment for H19. (D) KEGG pathways enriched in H19. 
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Figure 6. AC073172.1-related ceRNA sub-network. (A) Subcellular location analysis for AC073172.1. (B) ceRNA network of AC073172.1. 
(C) GO biological process enrichment analysis for AC073172.1. (D) KEGG pathways enriched in AC073172.1. 

 

 
 

Figure 7. Identification of putative transcription factors and module analysis. (A) Venn diagram of predicted transcription 
factors (TFs) regulating the expression of the three key lncRNAs in the PCMLN. Among 27 TFs associated with all three lncRNAs, four 
(marked in red) are known regulators of the expression of sexual hormones. (B) Representation of the functional module identified 
in the PCLMN. 
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crucial mediator of IR through its capacity to weaken 

the tyrosine kinase activity of the insulin receptor [19]. 

Expression levels of both TNF-α and TNF-α receptor 2 

are upregulated during obesity and correlate with 

hyperinsulinemia [39]. Indeed, serum levels of TNF-α 

were found to be significantly elevated in PCOS 

patients with BMI > 27, compared to matched healthy 

controls [40]. 

 

The BP GO terms ‘cellular response to lipo-

polysaccharide’, and ‘Toll-like receptor signaling 

pathway’ were enriched in the ceRNA sub-network of 

AC073172.1. Lipopolysaccharide (LPS) is the main 

pathogenic component of gram-negative bacteria and a 

powerful inducer of inflammatory responses. LPS binds 

to Toll-like receptor 4 (TLR4) to activate NF-kB, 

promoting the transcription of TNF-α, IL-1β, and IL-6 

[41]. Notably, saturated fatty acids can also activate 

TLR2 and TLR4 signaling and lead to IR [42]. In this 

regard, a recent study found that lipid-induced LPS-

mediated inflammation through TLR4 is associated with 

obesity and worsened by PCOS [43]. On the other hand, 

recent studies suggested that single-nucleotide 

polymorphisms identified in TLR2 and TLR4 genes in 

PCOS patients might influence metabolic variables and 

increase susceptibility to PCOS [44, 45]. 

 

Finally, we identified several TFs that might regulate 

the expression of the 3 key lncRNAs identified in our 

PCMLN. Four TFs (ER-alpha, PRA, PRB, and AR) 

involved in sex steroid functions were predicted to have 

high binding affinity to transcriptional control elements 

in the DNA sequences of the 3 lncRNAs. Sex steroid 

hormones play a fundamental role in fertility by 

regulating reproductive function in the ovary through 

specific nuclear receptors. Several studies indicated that 

lncRNAs can synergize with TFs to regulate sex steroid 

functions. For example, a regulatory circuit composed 

of androgen receptors and PlncRNA-1 was shown to 

promote prostate cancer [46]. Another lncRNA, 

HOTAIR, is a direct target of ER-mediated trans-

criptional repression and its upregulation promotes 

ligand-independent ER activities [47]. Estrogens act by 

binding to estrogen receptor-alpha (ERα) and beta 

(ERβ) [48], both of which are expressed in the human 

ovary [49]. Studies in mice showed that ERα knockout 

leads to a PCOS phenotype defined by the presence of 

polycystic ovaries and increased luteinizing hormone 

(LH) levels, present impaired glucose tolerance, and 

eventually develop IR [50, 51]. In these mice, such 

condition was aggravated by accumulation of bioactive 

lipid intermediates and inflammation became more 

severe upon high-fat feeding, suggesting that ERα is 
also essential to protect against tissue inflammation 

[52]. The progesterone receptor (PR) and the androgen 

receptor (AR) belong to the nuclear hormone receptor 

family, which are associated with the regulation of 

eukaryotic gene expression and influence cellular 

proliferation and differentiation in target tissues. A 

previous developmental study on PRA- and PRB-

knockout mice suggested that PRA is necessary for 

ovulation [53]. PRA and PRB are expressed in human 

granulosa cells and were found to be significantly 

downregulated in PCOS patients [54]. Human in vitro 

and in vivo studies found that the number of CAG 

repeats, which encode for an amino-acid sequence in 

the receptor’s transactivation domain, associates 

inversely the AR activity [55]. It was reported that short 

CAG repeats were more frequent in PCOS, possibly 

eliciting androgenic effects, while longer CAG repeats 

were more recurrent in the control group, involving 

probably a protective effect [56]. 

 

In summary, our study unmasked a regulatory network 

involving novel interactions between lncRNAs, sex 

steroids, and TFs with potential influence in the 

occurrence and development of PCOS. Further 

functional studies are warranted to validate the present 

findings and to explore their therapeutic implications. 

 

MATERIALS AND METHODS 
 

miRNA-lncRNA and miRNA-mRNA interaction 

data 

 

Predicted lncRNA-miRNA pairs were obtained from 

starBase V3.0 [57] and lncRNASNP2 [58] databases. 

The latter was also used for predicting potential 

miRNAs targeted by DELs. Predicted miRNA-mRNA 

pairs were in turn obtained from miRTarBase [59] and 

starbase V3.0. Next, the global triple network was 

constructed as the background network to identify gene 

interactions. 

 

Gene expression profile 

 

Gene expression data from the GSE95728 dataset, 

based on the GPL16956 platform (Agilent-045997 

Arraystar human lncRNA microarray V3), was 

downloaded from the Gene Expression Omnibus (GEO) 

database. GSE95728 included lncRNA and mRNA 

expression profiles from granulosa cells from seven 

PCOS patients and seven controls (women with normal 

ovarian reserve). 

 

Differential gene expression analysis and probe re-

annotation 

 

Expression data was imported into R-studio 

(https://rstudio.com) and normalized with the RMA 

algorithm [60]. Bioconductor’s limma package was 

applied to identify DEGs between control and PCOS 

https://rstudio.com/
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samples, based on |log2(fold change)| > 2 and adjusted 

P <0.05. Probe annotation data provided by Agilent 

were aligned to both human long non-coding and 

protein-coding transcript sequences retrieved from the 

GENCODE database by running the SeqMap program 

[61]. Alignment results were filtered as follows: 1) 

probes matched to one transcript were retained, 

whereas probes simultaneously matched to protein-

coding and long non-coding transcripts were deleted. 

Two sets of probes-transcripts pairs were finally 

obtained; 2) for each probe–transcript pair, probes 

matched to more than one transcript were removed; 3) 

transcripts were finally selected if they matched at 

least three probes. 

 

Construction of the PCOS-related lncRNA-mRNA 

network 

 

To construct the PCLMN, we mapped all the DELs and 

DEMs into the global triple network. Then, lncRNA-

miRNA-mRNA interactions were extracted by 

hypergeometric test with P < 0.01. The p-value was 

measured as: 
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where m represents the total number of miRNAs in 

miRTarBase and starbase V3.0, t denotes the number of 

miRNAs interacting with an mRNA, n indicates the 

number of miRNAs interacting with a lncRNA, and r 

represents the number of miRNAs shared between the 

mRNA/lncRNA pair. 

 

Hierarchical clustering 

 

Genes with comparable expression profiles were 

grouped by unsupervised hierarchical clustering using 

Multiple Experiment Viewer (MeV V4.9) software. The 

data were normalized and processed using Pearson’s 

correlation as distance metric and average linkage 

clustering algorithm. 

 

Enrichment analysis 

 

Functional analysis of DEGs in the PCLMN and in the 

ceRNA sub-networks was performed using Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analyses using DAVID 

V6.8 and Cytoscape V3.8.0 with the ClueGo V2.3.7 

plug-in. P values were calculated by two-sided hyper-

geometric test and Benjamini-Hochberg adjustment. GO 

terms and KEGG pathways with p <0.05 were 

considered statistically significant. Results were 

visualized with Cytoscape. 

 

Topological analysis and selection of key lncRNAs 

 

We performed topological analysis of DELs DEMs to 

identify the central nodes of the PCLMN network. 

Topological parameters, including closeness, 

betweenness, and degree, were assessed using 

Cytoscape with the CentiScaPe V2.2 plug-in. The top 

10 genes ranked by each measure were compared and 

those overlapping across all three topological para-

meters were chosen as key genes for further ceRNA 

analysis. 

 

Subcellular localization analysis 

 

We predicted the subcellular localization of key lncRNAs 

via LncLocator [62], a public platform based on a stacked 

ensemble classifier. The lncRNA subcellular localization 

information used in LncLocator, backed by experimental 

evidence, was extracted from RNAlocate database 

(http://www.rnasociety.org/rnalocate). Furthermore, we 

used iLoc-lncRNA, a sequence-based tool for subcellular 

localization prediction, to validate the above results [63]. 

The sequences of the key lncRNAs were downloaded 

from UCSC Genome Browser database. 

 

Construction of ceRNA sub-networks 

 

We extracted all the key lncRNAs and their nearest 

mRNA neighbors from transcript clusters in the 

PCLMN. miRNAs associated with lncRNA/mRNA 

pairs were also extracted from the global triple network 

and used to identify candidate lncRNA-miRNA-mRNA 

triplets. Then we constructed the ceRNA networks 

based on the ceRNA theory and visualized them with 

Cytoscape software. 

 

Identification of putative transcription factors 

 

Transcription factors (TFs) can bind to the DNA 

regulatory elements of lncRNAs to activate or inhibit 

their expression. To assess potential linkages between 

the key lncRNAs, we identified the TFs that might 

regulate them. Promoters were defined as DNA regions 

within 2 kb upstream of lncRNA transcriptional start 

sites. We used PROMO V3.0.2 software with maximum 

matrix dissimilarity rate < 3 to scan the predicted TFs 

[64, 65], and then used a Venn diagram to identify 

overlapping TFs targeting all the key lncRNAs. 

 

Identification of functional modules in the PCLMN 

 

LncRNAs participate in biological processes as 

members of functional modules encompassing other 

http://www.rnasociety.org/rnalocate
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genes. To explore lncRNA-related functional modules 

in our network, we run Cytoscape with the MCODE 

plug-in applying the “Haircut,” “Fluff,” and Node Score 

Cutoff: 0.2 options. 
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