
The Role of Chromatin Accessibility in cis-Regulatory

Evolution

Pei-Chen Peng1,4, Pierre Khoueiry2,5, Charles Girardot2, James P. Reddington2, David A. Garfield2,6,
Eileen E.M. Furlong2,*, and Saurabh Sinha1,3,*
1Department of Computer Science, University of Illinois at Urbana-Champaign
2European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
3Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign
4Present address: Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles,

CA
5Present address: American University of Beirut (AUB), Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
6Present address: IRI-Life Sciences, Humboldt Universit€at zu Berlin, Berlin, Germany

*Corresponding authors: E-mails: furlong@embl.de; sinhas@illinois.edu.

Accepted: May 13, 2019

Data deposition: Raw sequence data have been deposited at ArrayExpress under the accession E-MTAB-3797 (Drosophila melanogaster and

Drosophila virilis DNAse developmental time courses).

Abstract

Transcription factor (TF) binding is determined by sequence as well as chromatin accessibility. Although the role of accessibility in

shapingTF-binding landscapes iswell recorded, its role inevolutionarydivergenceofTFbinding,which in turncanalter cis-regulatory

activities, is not well understood. In this work, we studied the evolution of genome-wide binding landscapes of five major TFs in the

core network of mesoderm specification, between Drosophila melanogaster and Drosophila virilis, and examined its relationship to

accessibility and sequence-level changes. We generated chromatin accessibility data from three important stages of embryogenesis

in both Drosophila melanogaster and Drosophila virilis and recorded conservation and divergence patterns. We then used multivar-

iable models to correlate accessibility and sequence changes to TF-binding divergence. We found that accessibility changes can in

somecases, forexample, for themaster regulatorTwistandforearlierdevelopmental stages,moreaccuratelypredictbindingchange

than is possible using TF-binding motif changes between orthologous enhancers. Accessibility changes also explain a significant

portionof thecodivergenceof TF pairs. Wenoted that accessibility andmotif changes offer complementary viewsof the evolutionof

TF binding and developed a combined model that captures the evolutionary data much more accurately than either view alone.

Finally, we trained machine learning models to predict enhancer activity from TF binding and used these functional models to argue

that motif and accessibility-based predictors of TF-binding change can substitute for experimentally measured binding change, for

the purpose of predicting evolutionary changes in enhancer activity.

Key words: cis-regulatory evolution, chromatin accessibility, sequence motif, transcription factor binding, enhancer ac-

tivity, interspecies.

Introduction

cis-Regulatory evolution plays an important role in phenotypic

diversity, including morphological (Prud’Homme et al. 2006),

physiological (Siepel and Arbiza 2014), and behavioral (Wray

2007; Saul et al. 2017) evolution. Given its importance, many

studies have examined cross-species changes in various

aspects of gene regulation, including expression (Paris et al.

2013), enhancer activity (Khoueiry et al. 2017), transcription

factor (TF)-DNA binding (Bradley et al. 2010; Stefflova et al.

2013; Carvunis et al. 2015; Wong et al. 2015), TF-binding

motifs (Moses et al. 2006; Bradley et al. 2010; He et al.

2011; Cheng et al. 2014; Naval-S�anchez et al. 2015), DNA

accessibility (Alexandre et al. 2018), and chromatin states

(Lesch et al. 2016). Changes have been observed to differing
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extents in these measurable aspects of gene regulation, lead-

ing to some emerging principles underlying their conservation

and divergence (Cheng et al. 2014). At the same time, it is

challenging to systematically integrate these diverse qualita-

tive observations about cis-regulatory evolution at different

regulatory levels given the different phyla, biological systems,

and technologies.

A number of studies have examined the evolution of DNA

cis-regulatory sequences (Garfield et al. 2012; Wittkopp and

Kalay 2012). Some have noted surprisingly high levels of se-

quence change (Emberly et al. 2003; Doniger and Fay 2007;

Yokoyama et al. 2014), but regulatory function and gene

expression are often conserved despite sequence-level

changes (Ludwig et al. 2000; Arnold et al. 2014; Duque

et al. 2014; Yang et al. 2015; Khoueiry et al. 2017), revealing

considerable flexibility in sequence encoding the same func-

tion (Hare et al. 2008; Kazemian et al. 2014). Further inves-

tigations asked if the observed functional buffering against

sequence divergence happens at the level of TF-DNA binding,

which is the principle molecular event mediating sequence-

expression relationships. ChIP-chip or ChIP-seq assays of the

same TFs were performed in multiple species (Bradley et al.

2010; Stefflova et al. 2013; Carvunis et al. 2015; Khoueiry

et al. 2017) and while genome-wide TF-binding landscapes

were noted to be conserved overall, many large qualitative as

well as quantitative differences in binding were also reported

(Bradley et al. 2010). The evolution of binding landscapes thus

emerged as an intriguing aspect of molecular evolution, and

researchers sought to identify its main determinants.

Loss and gain of TF ChIP peaks are correlated with

changes in the presence of the TF’s DNA binding motif

(Moses et al. 2006; Bradley et al. 2010; He et al. 2011;

Cheng et al. 2014; Naval-S�anchez et al. 2015), but this re-

lationship, though significant in its extent, was far from a

satisfactory explanation for TF-binding differences. For in-

stance, many peaks are lost though the motif is conserved,

and conversely, peaks are often conserved despite motif

loss. Some studies noted the influence of cobinding TFs at

or near the peak (Stefflova et al. 2013), suggesting roles for

cooperative (Duque et al. 2014) and “TF collective” modes

of occupancy (Khoueiry et al. 2017).

On the other hand, Bradley et al. (2010) observed a corre-

lation between evolutionary changes of occupancy among

multiple TFs and interpreted this as evidence for TF-

independent influences such as differences in local chromatin

accessibility. Indeed, DNA accessibility is known to be a major

correlate of TF-DNA binding in individual species (Li et al.

2011; Cheng et al. 2013) and may therefore underlie evolu-

tionary changes in TF binding. For instance, Paris et al. (2013)

noted that binding divergence is correlated with changes in

binding sites for the pioneer factor Zelda, which indirectly

implicates accessibility changes. Genome-wide accessibility

landscapes are generally evolutionarily conserved (Connelly

et al. 2014; Vierstra et al. 2014), but accessibility changes

between orthologous genomic elements are also observed

and raise the question: How often do they underlie evolution-

ary changes in TF binding? Surprisingly, there is no direct anal-

ysis of this question. In related work, Connelly et al. (2014)

reported evidence that much of accessibility divergence (be-

tween two yeast species) may be inconsequential for gene

expression. Alexandre et al. (2018) not only made similar

observations for different ecotypes of Arabidopsis thaliana

but also noted that loci with high sequence variation and ac-

cessibility changes were significantly linked to expression

changes. However, the extent to which accessibility changes

are predictive of TF-binding changes between species remains

unknown. Is this relationship comparable in extent to the

documented relationship between motif change and TF-bind-

ing divergence? Do changes in accessibility and motif presence

carry complementary information related to observed changes

in TF ChIP peaks? How often is accessibility conserved, yet a

TF’s occupancy diverged due to motif turnover, and how com-

monly do changes in accessibility result in loss or gain of TF

ChIP peaks despite conservation of motif presence? These are

not mutually exclusive possibilities and teasing apart their rel-

ative contributions and potential causal influence requires a

formal, quantitative analysis. Insights emerging from such

analyses may also fuel discussions of cause-versus-effect in

the relationship between TF binding and accessibility (Li

et al. 2011; Guertin and Lis 2013). In addition to advancing

our basic understanding of cis-regulatory evolution, answering

these questions may also allow us to predict changes in TF

binding using computational models that incorporate data on

sequence and accessibility changes, bypassing the need for

expensive ChIP profiling of TFs across species and individuals.

Any investigation of these aspects of cis-regulatory evolu-

tion must also consider promiscuous occupancy of TFs (Li et al.

2008) and that a large number of ChIP peaks may have no

functional impact on gene expression (Cusanovich et al.

2014), or be functionally redundant. Evolutionary compari-

sons have strongly suggested that expression changes are

poorly explained by TF-binding changes (Paris et al. 2013),

underscoring the need to examine evolutionary questions

about TF binding in a functional context. It is difficult to gen-

erally predict whether a TF ChIP peak is functional, but there

are a few well-characterized regulatory systems where de-

tailed prior knowledge of the regulatory network permits

such an exercise. One of these systems is the mesoderm spec-

ification network in Drosophila melanogaster, where exten-

sive prior work has established the role of a small set of TFs in

determining spatio-temporal expression patterns of a large

number of genes (Azpiazu and Frasch 1993; Baylies and

Bate 1996; Yin et al. 1997; Yin and Frasch 1998; Zaffran

et al. 2001; Sandmann et al. 2006, 2007; Jakobsen et al.

2007; Zinzen et al. 2009; Jin et al. 2013; Khoueiry et al.

2017). This has previously led to the cataloging of thousands

of putative enhancers responsible for such patterning (Zinzen

et al. 2009; Khoueiry et al. 2017), with hundreds of them
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being experimentally validated through reporter assays in

transgenic embryos. The mesoderm network with its richness

of prior knowledge and cis-regulatory data sets thus provides

a uniquely suited system to investigate cross-species evolution

of TF binding and its determinants (Khoueiry et al. 2017).

In this work, we studied the evolution of genome-wide

binding landscapes of five essential TFs in the mesoderm spec-

ification network, between two drosophilids D. melanogaster

and Drosophila virilis, species separated by 40 Myr (Paris et al.

2013) (1.4 substitutions per neutral site [Stark et al. 2007]). We

generated DNase I hypersensitive sites (DHS) data to measure

chromatin accessibility at three different temporal stages dur-

ing early embryonic development in both D. melanogaster and

D. virilis and recorded conservation and divergence patterns.

We built predictive models that use either motif change or

accessibility change to predict stage-specific binding diver-

gence of all five TFs, using our previously reported interspecies

ChIPdata (Zinzenetal. 2009;Khoueiryetal. 2017).Using these

models and focusing on a large set of previously characterized

mesoderm enhancers (Zinzen et al. 2009; Khoueiry et al. 2017)

to increase functional relevance, we found that accessibility

and TF-binding motif changes have comparable predictive re-

lationship with changes in TF binding. We also noted that they

bear complementary information and showed that a model

using both accessibility and motif information can predict TF-

binding divergence with significantly greater accuracy than

models using either type of information alone. All of these

analyses were conducted separately for each TF. In a final anal-

ysis, we used machine learning models to examine changes in

TF binding of multiple factors simultaneously, in terms of their

combinatorial effectsongene expression. We found that motif

and accessibility-based predictors of TF-binding change can

substitute for experimentally measured binding change, for

the purpose of predicting divergence in gene expression.

Materials and Methods

ChIP Data and Enhancers

We collected TF-ChIP data on five developmental TFs across

five stages of embryogenesis, in the form of ChIP-chip in D.

melanogaster (Zinzen et al. 2009) and ChIP-seq in D. virilis

(Khoueiry et al. 2017), from previous studies. The five TFs

examined were Twist (Twi), Myocyte enhancer factor-2

(Mef2), Tinman (Tin), Bagpipe (Bap), and Biniou (Bin)

(fig. 1A). A total of 14 TF-time point pairs, “TF:TP con-

ditions” or simply “conditions,” were analyzed in this study

(fig. 1B). ChIP peaks in close proximity across all TF:TP con-

ditions were clustered to define 8,008 putative ChIP

enhancers in D. melanogaster (Zinzen et al. 2009) and

10,532 putative ChIP enhancers in D. virilis (Khoueiry et al.

2017). A ChIP score was then assigned to each enhancer, for

each TF:TP condition, by extracting the mean ChIP signal

(using library size normalized bigwig files) over the enhancer

boundaries (performed in Galaxy [Afgan et al. 2016] using

the “Compute mean/min/max of intervals” tool version

1.0.0). To make ChIP scores comparable across stages and

species, we applied the following normalization on ChIP

scores for each TF:TP condition: We set lþ 3r as the max-

imum ChIP score, where l and r are the mean and standard

deviation across all putative enhancers, replaced all ChIP

scores greater than this maximum with lþ 3r, and finally

applied min–max normalization to set all ChIP scores in a

range between 0 and 1.

Orthologous enhancer pairs were defined in our previous

study (Khoueiry et al. 2017). Briefly speaking, we translated D.

virilis enhancer coordinates into D. melanogaster coordinates,

overlapped the 10,532 D. virilis enhancers with the 8,008 D.

melanogaster enhancers, and finally obtained a set of 2,754

orthologous enhancer pairs. This set of orthologous

enhancers served as the subjects of analysis in this study.

DNase-Seq Sample Processing

Accessibility data in D. virilis and D. melanogaster were

obtained using DNase-seq from whole embryos at develop-

mental stages 5–7, 10–11, and 13–15, referred to as TP1,

TP3, and TP5. The developmental stages of timed collections

were determined exactly as described in Khoueiry et al. (2017).

Raw paired-end reads were aligned using BWA (Li and Durbin

2009) on Flybase-R1.2 assembly version for D. virilis and on

Flybase Assembly 5 (dm3) for D. melanogaster. Reads were

filtered for optical and polymerase chain reaction replicates

using samtools (Li et al. 2009). For peak calling, we used

MACS2 (–to-large with -g 1.2E8 for D. melanogaster and

1.9E-8 for D. virilis and -p 1E-3 as requested for the

Irreproducibility Discovery Rate analysis, or IDR [Landt et al.

2012]). We derived peaks using 1% IDR threshold leading to

a unique highly confident and consistent peak sets for biolog-

ical replicates. For visualization and generation of bigwig score

files, reads from BAM files were extended to the average

length of the genomic fragments for the corresponding time

point, merged and scaled to Read Per Million using deeptools

(Ram�ırez et al. 2014). Each enhancer (in either species) was

assigned an “accessibility score” by extracting the mean

DNase signal (abovementioned bigwig files) over the enhancer

boundaries (performed in Galaxy [Afgan et al. 2016] using the

“Compute mean/min/max of intervals” tool version 1.0.0). To

make accessibility scores comparable across stages, for each

time point, we performed the same normalization as we did

for ChIP scores, that is, replacing accessibility scores greater

than lþ 3r with lþ 3r, where l and r are the mean and

standard deviation, and then applying min–max normalization.

Support Vector Regression Models to Predict Changes of
ChIP Scores

For every TF:TP condition, we trained Support Vector

Regression (SVR) models, using the R package “e1071”

Accessibility and TF-Binding Evolution GBE

Genome Biol. Evol. 11(1):1813–1828 doi:10.1093/gbe/evz103 Advance Access publication May 22, 2019 1815



(Meyer et al. 2015), to predict the interspecies differences in

ChIP scores, defined as DChIP ¼ ChIPDmel � ChIPDvir for each

enhancer. We used the set of 2,754 orthologous putative

enhancer pairs to train and evaluate models. For each orthol-

ogous pair, two kinds of input features were used to predict

DChIP: 1) D. melanogaster accessibility score and interspecies

accessibility score changes (DAcc¼ AccDmel� AccDvir) for the

appropriate time point and 2) D. melanogaster Sequence To

Affinity Prediction (STAP) score and interspecies change in

STAP scores (DSTAP¼ STAPDmel� STAPDvir) for the appropri-

ate TF:TP condition. STAP scores represent motif-based pre-

diction of TF occupancy in a segment of sequence and have a

free parameter representing TF concentration, trained on

ChIP data for the TF:TP condition (see subsection below for

FIG. 1.—Examining evolutionary changes in TF binding and accessibility across developmental time points. (A) Regulatory network of five key TFs in

mesoderm specification, Source: Khoueiry et al. (2017). (B) Data from Drosophila melanogaster and Drosophila virilis TF ChIP and DNase I hypersensitivity

assays were collected; D. virilis DHS data were generated for this study. Colored boxes indicate time points (TP1–5) for which each type of genomic profile is

available. Orthologous developmental stages between species were mapped according to hours of development in each species, after egg laying (AEL). (C, D)

Pairwise Pearson correlations of interspecies ChIP changes, sorted by TF (C) or by time points (D). (E) Normalized accessibility scores of orthologous enhancers

for three time points (TP1, 3, and 5). Colors indicate point density, with warmer colors denoting greater density. Pearson correlations between D.

melanogaster TF ChIP and D. virilis TF ChIP are also shown. (F) Pairwise Pearson correlations of interspecies accessibility changes. Data and analysis shown

in (C–E) pertain to over 2,500 pairs of putative orthologous enhancers involved in mesoderm specification as defined in text.
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details). Separate models were trained, that used 1) only ac-

cessibility features (“accessibility-based model”), 2) only motif

features (“motif-based model”), or 3) both types of features

(“combined model”). To have a direct comparisons between

motif-based and accessibility-based predictors of DChIP scores

for every TF:TP condition (fig. 3), we modified the accessibility-

based SVR models by using data from all three time points

simultaneously. Similarly, features of the combined SVR

model included D. melanogaster STAP and DSTAP at the

matching TF:TP condition, as well as D. melanogaster Acc

and DAcc for all three time points. SVR models were trained

with default parameters. Performance was measured by

Pearson correlation coefficient (PCC) between measured

and model-predicted DChIP scores, using 5-fold cross-

validation.

STAP Models to Predict TF Occupancy Based on Motif
Presence

STAP program (He et al. 2009) is a thermodynamics-based

model that integrates one or more strong as well as weak

binding sites, using a given motif, to predict net TF occupancy

within a DNA segment. For each TF:TP condition in each spe-

cies, we trained a STAP model, following the procedures we

used previously in Cheng et al. (2013). We chose the top

1,000 ChIP peaks as the positive training set and 1,000 ran-

dom windows of the same length as the negative training set,

along with their respective normalized ChIP scores. ChIP

peaks overlapped with the orthologous enhancers were ex-

cluded in training set. The binding motif (position weight ma-

trix, PWM) for each TF was based on the best performing

PWMs discovered from D. melanogaster and D. virilis ChIP

data (Khoueiry et al. 2017) (supplementary fig. 1,

Supplementary Material online). A single free parameter of

STAP was learned based on this training set.

To assess the performance of STAP model on each of the

28 ChIP data sets in the given TF, time point, and species

combination, we applied 4-fold cross-validation on the

2,000 DNA segments training set. Each fold used 1,500

DNA segments to train the single free parameter in STAP,

and 500 DNA segments to score. The resulting 2,000 STAP

scores, aggregated from each fold, were compared with re-

spective ChIP scores, by PCC. These 28 STAP models, previ-

ously reported in (Khoueiry et al. 2017), fit the ChIP data well,

and showed an average PCC of 0.51. We also checked the

single parameter of STAP learned in each fold, and observed

similar values across 4-fold.

Once the STAP model was trained for every TF, time

point, species combination, we used the STAP model to

score each enhancer for motif presence. STAP scores were

further normalized in the same way as ChIP scores, that is,

capping outliers at lþ 3r, where l and r are the mean

and standard deviation, and then applying min–max

normalization.

Experimentally Characterized Enhancers

To build a training set for the enhancer activity classifier, we

collected known mesoderm enhancers from our previously

built CRM Activity Database (Zinzen et al. 2009), activity in-

formation of active tiles from Kvon et al. (2014), and a set of

new entries from RedFly database (Gallo et al. 2011). Three

activity classes were considered: mesoderm (Meso), visceral

musculature (VM), and somatic musculature (SM).

Enhancers that drive expression in more than one classes

(e.g., Meso and SM or VM and SM) were excluded. We

then overlapped the annotated enhancers with our 2,754

orthologous putative ChIP enhancers in D. melanogaster.

This led to a final training set of 233 enhancers, with 102

expressed in Meso, 65 in VM, and 66 in SM.

XGBoost Models to Predict Enhancer Activities

XGBoost (Chen and Guestrin 2016) is a supervised machine

learning method that uses training data with multiple fea-

tures to predict a target variable. For each activity class “C,”

an XGBoost classifier AC was trained by using the R package

“xgboost” (Chen et al. 2016) to discriminate between mem-

bers and nonmember of the class. Thus, for the Meso class,

the positive set includes enhancers with Meso annotation,

whereas the negative set includes enhancers with VM or SM

annotations. The input features for each enhancer were a

14-dimensional vector of ChIP scores of that enhancer per-

taining to the 14 TF:TP conditions. To adjust for the imbal-

anced distribution of training data set, we used the Synthetic

Minority Oversampling Technique (Chawla et al. 2002), from

R package “DMwR” (Torgo 2016), to oversample the mi-

nority class. We trained the XGBoost classifiers in the mode

of “logistic regression for binary classification (bina-

ry:logistic).” Parameters were set as below: “eta” ¼ 0.2,

“nrounds” ¼ 50, “max_depth” ¼ 4, “subsample” ¼ 0.9,

and “colsample_bytree” ¼ 0.8, by following the guidelines

from XGBoost documentation. Once we trained the activity

classifier AC, leave-one-out cross-validation was applied to

measure the performance.

We trained AC on 223 experimentally characterized

enhancers (Zinzen et al. 2009; Gallo et al. 2011; Kvon et al.

2014) associated with the three expression classes and noted

balanced accuracy values around 0.8 in leave-one-out cross-

validation for each class (table 1). When estimating accuracy

for any class, enhancers of that class were treated as positives,

and enhancers of the other two classes were considered as

negatives. For each classifier, the specificity is �0.9 and sen-

sitivity is �0.7. We also assessed the accuracy of the trained

functions on held-out transgenic reporter assays of D. mela-

nogaster and D. virilis enhancers (Zinzen et al. 2009; Khoueiry

et al. 2017). Among 35 experimentally tested enhancers, the

predictions of 23 were correct (drove expression in the pre-

dicted domain), 3 were partially correct (one of the active

tissues was predicted), whereas 9 predictions failed (did not
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drive any expression in the predicted domain) (supplementary

table S2, Supplementary Material online). The experimental

assays composed of enhancers in both species, and the accu-

racy noted in these evaluations justified our assumption that

classifiers trained in D. melanogaster can be used to predict

the activities of D. virilis enhancers as well (though in a

D. melanogaster context).

We noted that similar enhancer activity predictors had

been presented in Zinzen et al. (2009), where Support

Vector Machines trained from ChIP scores were shown to

accurately predict enhancer activities in D. melanogaster.

We rebuilt the classifiers here mainly because our desired

tradeoff between sensitivity and specificity was different;

in particular, we sought to achieve high values of balanced

accuracy when evaluating classifiers on imbalanced data sets

(in our case, there are more negative samples than positive

samples); see supplementary table S3, Supplementary

Material online, for comparison of balanced accuracy mea-

surement of Support Vector Machine predictions. In addi-

tion, ChIP data for Tin at TP1, an input feature for

D. melanogaster activity classifiers reported in Zinzen et al.

2009, were not available for D. virilis (Khoueiry et al. 2017),

further necessitating rebuilding of classifiers.

NGS Data and Code Availability

Raw sequence data have been deposited in ArrayExpress un-

der accession numbers E-MTAB-3797 (D. melanogaster and

D. virilis DNAse developmental time courses). The STAP model

code can be downloaded from http://systemsbio.ucsd.edu/

STAP/ last accessed June 15, 2019, and R script for XGBoost

model is at https://github.com/UIUCSinhaLab/Enhancer-

Activity-Predictor /last accessed June 15, 2019.

Results

Evolutionary Changes in TF-DNA Binding and DNA
Accessibility in the Context of a Well-Characterized
Regulatory Network

To understand how evolutionary changes of sequence and

accessibility affect TF binding and enhancer activities, we fo-

cused our study on an extensively studied regulatory network

where prior knowledge of essential regulators and functional

enhancers can effectively guide us to functional TF-DNA bind-

ing events. We analyzed TF occupancy data for five TFs that

form the core of a regulatory network essential for mesoderm

development in Drosophila (Wilczynski and Furlong 2010):

Twist (Twi), Myocyte enhancer factor-2 (Mef2), Tinman

(Tin), Bagpipe (Bap), and Biniou (Bin) (fig. 1A). We obtained

genome-wide TF-DNA binding information on these five TFs

across five stages of embryonic development (henceforth,

“time points” or “TP”s), in the form of ChIP-chip and ChIP-

seq assays in D. melanogaster (Zinzen et al. 2009) and D. virilis

(Khoueiry et al. 2017), respectively. A total of 14 TF-time point

pairs (fig. 1B), henceforth called “TF:TP conditions” or simply

“conditions,” were represented in the data, originally

reported in our previous work (Khoueiry et al. 2017). To sup-

plement these data, we also collected stage-matched DNase-

Seq libraries from both D. virilis and D. melanogaster in three

of the five time points, that is, TP1, TP3, and TP5 (fig. 1B; see

Materials and Methods). Over 2,500 pairs of putative orthol-

ogous enhancers involved in mesoderm specification were

identified in our previous study (Khoueiry et al. 2017), based

on presence of ChIP peaks for the core TFs, and served as the

targets of our computational analyses in this work. Each en-

hancer (in either species) was assigned a ChIP score for each

TF:TP combination, combining ChIP peaks located within the

same cis-regulatory element (see Materials and Methods).

We calculated evolutionary changes in TF occupancy as the

difference of normalized quantitative ChIP scores between

orthologous enhancers, for each TF at each TP (“DTF:TP”).

We noted extensive correlations among different DTF:TP

measures (fig. 1C), that is, evolutionary changes of TF-DNA

binding profiles are correlated. This is especially true of bind-

ing profiles of the same TF at different time points, that is, if a

TF loses binding at a location, it tends also to lose binding at

the same location at a different developmental stage. For ex-

ample, PCC of DBin:TP3 (changes in Bin binding at TP3) and

DBin:TP4 is 0.58 (P value¼ 2.30E-247), and that between

DMef2:TP4 and DMef2:TP5 is 0.56 (P value¼ 3.66E-227).

The natural explanation for this observation is that loss or

gain of the TF’s motif plays a significant role in evolutionary

changes of TF binding. More interestingly, changes in DNA

binding of different TFs at the same time point also show

correlations (fig. 1D), for example, DTin:TP2 and DTwi:TP2

have a Pearson correlation of 0.50 (P value¼ 3.69E-174).

Because the five TFs have different binding preferences

(motifs, see supplementary fig. S1, Supplementary Material

online), these correlations most likely arise due to cobinding of

specific pairs of TFs—a possibility that we examined in

Khoueiry et al. (2017), or from changes in accessibility, which

is a common correlate of DNA binding profiles of different TFs

Table 1

Classifiers Trained from Combinatorial Transcription Factor Binding Data

Can Accurately Predict Enhancer Activities

Meso VM SM

TN 100 145 144

FN 13 21 16

TP 89 44 50

FP 31 23 23

Balanced accuracy 0.82 0.77 0.81

NOTE.—Balanced accuracy from leave-one-out cross-validation is shown for
models built for each activity class: mesoderm (“Meso”), visceral muscle (“VM”),
and somatic muscle (“SM”). Models were trained (and tested) on 223 experimentally
characterized enhancers in Drosophila melanogaster; for each activity class,
enhancers with that activity were positives, whereas enhancers of the other two
classes were negatives. The numbers of correctly and incorrectly classified enhancers
for each model are listed.

TN, true negative; FN, false negative; TP, true positive; and FP, false positive.
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(Connelly et al. 2014; Vierstra et al. 2014), influencing binding

levels as well as being influenced by them.

We also compared the normalized DHS accessibility scores

(see Materials and Methods) of the same set of �2,500

orthologous enhancers mentioned above, at each of the three

time points (fig. 1E). Most of the accessibility scores are con-

served between species, while some enhancer pairs exhibit

substantial change. For instance, at TP1, of all the enhancer

pairs whose accessibility score is above 0.3 (median score, on

a scale of 0–1) in at least one of the two species, �7% have

their orthologous accessibility score below 0.1. We also com-

pared evolutionary changes in accessibility between ortholo-

gous enhancers at different developmental stages and found,

as expected, that the temporally proximal time points, for

example, TP3 and TP5, or TP1 and TP3, have more correlated

evolutionary changes than more separated time points, that

is, TP1 and TP5 (fig. 1F). In short, we collated data on TF

binding and DNA accessibility at the same stages of embryo-

genesis in two species and confirmed previous reports of

evolutionary flux in these important measures of the cis-reg-

ulatory landscape, setting the stage for a closer examination

of their mutual relationship.

Relationship between Changes in Chromatin Accessibility
and TF Binding at Orthologous Developmental Enhancers

We sought to systematically and quantitatively dissect how

evolutionary changes in TF binding are related to changes in

accessibility. Given the observations above, that the occu-

pancy of different TFs from the same time point tend to

change concordantly, it was natural to ask: “How frequently

do changes in TF binding between species coincide with

changes in DNA accessibility?” We collected orthologous en-

hancer pairs that are accessible in at least one of the two

species (normalized accessibility score >0.3) and examined

the relationship between change of accessibility score

(“DAcc”) and change of TF occupancy. As shown in

figure 2A, for Twi binding at TP1, enhancers with conserved

binding (points closer to diagonal) typically have conserved

accessibility (warmer colors), whereas enhancers with

changes of TF binding (off-diagonal points) tend to exhibit

changes in their accessibility score (cooler colors) (Pearson cor-

relation between DAcc and DChIP is r¼ 0.12, P value 1.44E-

5). Other TF:TP combinations showed the same trend (sup-

plementary fig. S2, Supplementary Material online).

Although the above observations were statistically signifi-

cant, the strength of relationship between accessibility and TF-

binding changes revealed by them seemed modest. In part,

this may be because the quantified change in TF binding

depends not only on the change of accessibility (DAcc) but

also on the actual accessibility in either species. Thus, to make

the above analysis more systematic, for each of a set of 2,754

orthologous putative enhancer pairs and for each TF:TP con-

dition, we trained a SVR model to predict interspecies

differences in ChIP scores (DChIP) using the D. melanogaster

accessibility score and DAcc as features. Goodness of fit was

measured by PCC between measured and model-predicted

DChIP values, using 5-fold cross-validation. We found that

changes in accessibility are modestly predictive of changes

in TF binding between species, with correlation coefficients

varying substantially across the nine data sets, averaging

about 0.25 (fig. 2B). To provide an intuitive calibration of

this value, we note that it was computed over 2,754 samples

and has a P value of 1.64E-40. As an alternative evaluation of

the predictions, we asked how well the model-predicted

DChIP values classify the enhancer pairs with the greatest

increase in TF binding (measured DChIP in top 10 percentile

among all 2,754 orthologous pairs) versus those with the

greatest decrease in binding (DChIP in bottom 10 percentile).

We noted an AUROC of 0.78 or greater on such balanced

data sets for four of the 9 TF:TP pairs (supplementary fig. S3,

Supplementary Material online). This result shows that acces-

sibility comparison between orthologs can discern cases of

most extreme increase versus decrease of TF binding.

Among the best examples was Twi:TP1, where correlation

between measured and predicted DChIP on the full set of

2,754 orthologous pairs is 0.44 (P value 8.94E-131), that is,

about 20% of the variance (r2 ¼ 0.19) of DChIP is explained

by accessibility changes for this condition (fig. 2C). What

mechanisms might underlie this relationship? An intriguing

but untested possibility is that Twi is the major factor dictating

open chromatin that is, perhaps having a pioneering role at

these sites, in keeping with its role as a “master regulator”

being sufficient to convert cells to a mesodermal fate (Baylies

and Bate 1996). Alternatively, there may be unmeasured

changes in an additional factor required to open chromatin

and facilitate Twi binding to these sites. Zelda is a very good

candidate, as it is required for Twi binding to some early de-

velopmental enhancers (Y�a~nez-Cuna et al. 2012) and is

thought to play a pioneer role in early Drosophila embryogen-

esis (Liang et al. 2008; Harrison et al. 2011; Schulz et al.

2015). Such mechanistic speculations notwithstanding, the

above results—that even in the best example only 20% of

variance is explained—emphasize the potential existence of

influences other than accessibility, and that operate without

major effects on accessibility, on TF-binding change.

A natural comparison point for the above correlations is

the extent to which accessibility score in a single species can

predict TF binding in that species in the same time point,

across the same set of enhancers as above. It was not a priori

clear what the result of this comparison might be. It was

possible that accessibility and TF binding in a single species

correlate even more strongly (Connelly et al. 2014; Vierstra

et al. 2014), and that correlations between their evolutionary

changes are weaker; this may point to binding changes during

evolution being primarily due to sequence changes in terms of

motif presence. It was also possible that the within-species

correlations are weaker than correlations between
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evolutionary changes, despite previous reports of high corre-

lation (Li et al. 2011; Cheng et al. 2013); this may be because

our analysis is restricted to putative enhancers, which gener-

ally reside in accessible regions. Our single-species correlation

analysis will not reflect the strong genome-wide trend of ChIP

peaks coinciding with accessible regions. With these two con-

siderations in mind, it was thus instructive to find that corre-

lations between ChIP score and accessibility score in

D. melanogaster (fig. 2D) were similar to those between evo-

lutionary changes in these scores, that is, DChIP and predicted

DChIP based on accessibility, for every TF:TP condition.

Accessibility Changes Partly Explain Codivergence of
Binding by Pairs of TFs

We noted above (fig. 1D) that changes in binding for some TF

pairs in the same time point, are strongly correlated.

We asked if these codivergence patterns can be explained

by changes in accessibility, because accessibility can be sim-

plistically thought of as setting up a “landscape” for binding,

on which different TFs act differently to set up their own

binding profiles. Evolutionary changes in accessibility can

therefore be expected to impact binding of multiple TFs in

similar ways. (Note: more realistically, accessibility is not inde-

pendent from binding as just suggested, and is itself influ-

enced by TF binding; this does not undermine our rationale

for the statistical exercise reported next.) To test this possibil-

ity, we computed a statistic similar to the partial correlation of

DChIP between each pair of TFs, given accessibility data. For

each pair of TFs, we first computed the residuals of

accessibility-based predictors of DChIP for either TF, and

then calculated the correlation coefficient between these

residuals. This approach removes the effect of accessibility

changes in assessing the correlation of DChIP between TF1

FIG. 2.—Accessibility changes alone are modest predictors of TF occupancy changes between species. (A) Scatter plot of Drosophila melanogaster ChIP

scores versus Drosophila virilis ChIP scores for Twi at TP1. Points represent orthologous enhancers that are accessible in at least one species. Colors indicate

change of accessibility score. (B) Correlation coefficient between measured DChIP and DChIP predicted based on DAcc, denoted as “pDChIP(DAcc).” P

values of PCC (r) with sample size of 2,754 are also shown. (C) Scatter plot of DChIP versus pDChIP for Twi at TP1. Warmer colors indicate greater point

density. (D) Correlation between ChIP and accessibility in D. melanogaster (x axis) is compared with correlation between interspecies DChIP and

pDChIP(DAcc).
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and TF2. We found that for the majority of data set pairs (10

out of 16) where DChIP scores of two TFs at the same time

point are strongly correlated (PCC > 0.2), correlations are

lower (a difference of at least 0.04) after excluding the influ-

ence of accessibility (supplementary table S1, Supplementary

Material online), though the (partial) correlations remain

strong even after accounting for DAcc. For Twi and Tin at

TP2, for example, the correlation of DChIP scores drops

from 0.5 to 0.45 upon “removing” accessibility; a similar re-

duction is observed for the same pair of TFs at TP3, where the

correlation drops from 0.39 to 0.32. Another example is that

of Mef2 and Tin at TP2, where the correlation reduced from

0.45 to 0.37 upon accounting for accessibility changes.

Indeed, previous work reported the potential role of Tin-Twi

and Tin-Mef2 cobinding in the evolution of binding sites for

these TFs (Khoueiry et al. 2017). Our results reveal that

changes in accessibility do explain part of the codivergence

of DNA binding exhibited by pairs of TFs, but other causes of

codivergence (Duque and Sinha 2015; Khoueiry et al. 2017),

for example, cooperative occupancy, functional change of an

enhancer and the resulting shared changes of selective pres-

sure, also exist.

Changes in Accessibility and Sequence Predict TF-Binding
Changes to Similar Extents

The results above quantified the extent to which change of

accessibility (DAcc) predicts changes in TF-DNA binding

(DChIP) between orthologous enhancers. We next deter-

mined how strongly changes in sequence, in terms of binding

motif presence, predict DChIP, with the ultimate goal of com-

paring the relative contributions of changes in accessibility

and in sequence to divergence of TF binding. To approach

this goal, it is important to have a means of quantifying a TF’s

motif presence in a given sequence accurately enough to al-

low quantitative assessment of motif change between orthol-

ogous enhancers. We used our previously published STAP

model (He et al. 2009) for this purpose. STAP is a

thermodynamics-based model that integrates one or more

strong as well as weak binding sites, using a given motif, to

predict net TF occupancy within a DNA segment. The STAP

score is a more realistic estimation of motif presence in a

window, compared with using the strength of the best motif

match or counting the number of matches above a threshold.

Importantly, it is not a confidence score of a single binding site

(e.g., CENTIPEDE [Pique-Regi et al. 2011]) and is thus better

suited to assess net sequence change in developmental

enhancers, which often exhibit homotypic site clustering

(Lifanov et al. 2003; Ezer et al. 2014) and suboptimal sites

(Crocker et al. 2015; Farley et al. 2015).

For each orthologous enhancer pair, we calculated STAP

scores of either ortholog using a TF’s motif, and thus obtained

a “DSTAP” score quantifying the evolutionary change in mo-

tif presence for that TF. Next, we used the D. melanogaster

STAP score and the DSTAP score together to predict DChIP for

each orthologous enhancer pair, using a SVR algorithm, sim-

ilar to what was done for accessibility scores in the previous

section. This was repeated for each TF:TP condition. We

found that the predicted and measured DChIP are modestly

correlated, with average correlation coefficients in the 14

TF:TP conditions being �0.3 (fig. 3A, each reported correla-

tion is an average across 5-fold cross-validation). It was nota-

ble that most conditions exhibited similar correlations, with 9

of the 14 yielding values between 0.27 and 0.33, and the

highest correlation (0.38) seen for the 7Bin-TP3 and Bin-TP5

conditions. By way of calibration, we similarly computed cor-

relations between STAP and ChIP scores in each species sep-

arately, across the same set of enhancers as above. We noted

that correlation coefficients are �0.68 for D. melanogaster

and 0.61 for D. virilis (supplementary fig. S4, Supplementary

Material online), on average across the 14 conditions. This

assured us that STAP provides an accurate estimate of motif

content, which is strongly predictive of TF occupancy, and

does so in both species. However, it also highlights the poorer

predictability of evolutionary changes in binding from change

in sequence compared with the ability to predict binding from

sequence in a single species.

We next sought to compare the accuracy of DSTAP-based

predictions of DChIP to that of DAcc-based predictions, with

the intention of assessing the relative contributions of se-

quence- and accessibility-level changes to TF-binding change

between species. For this, we modified the accessibility-based

predictor introduced above, which used the accessibility

scores for the time point matching the ChIP data set, to

now use data from all three time points with available data.

This allowed us to predict DChIP scores even for the two time

points—TP2 and TP4—for which accessibility data were not

generated, by basing those predictions on accessibility scores

from TP1, TP3, and TP5 (see supplementary fig. S5A,

Supplementary Material online, for clarification about a po-

tential methodological concern that this might raise).

Correlation coefficients between predicted and measured

DChIP scores (fig. 3B) had an average value of 0.29 across

the 14 TF:TP conditions, which is comparable to the 0.30

average correlation seen above with motif-based predictors

(fig. 3A), though there is a greater variation across TF:TP con-

ditions when using accessibility-based predictors.

We then made direct comparisons between motif-based

and accessibility-based predictors of DChIP scores for every

TF:TP condition (fig. 3C). In some cases, for example, Twi at

TP1 and Tin at TP2, changes in accessibility shows better pre-

dictive power than changes in motifs (PCC values of 0.45 vs.

0.3 for Twi:TP1 and 0.44 vs. 0.33 for Tin:TP2). This is unlikely

to be due to inferior motifs used in the STAP models, as the

single-species STAP models for both Twi and Tin show strong

correlations with ChIP (supplementary fig. S4, Supplementary

Material online). It may be in part because DNA binding of

these two TFs is believed to depend not only on their own
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FIG. 3.—Changes in motif presence and accessibility are both predictive of TF occupancy change. (A) Correlation between measured DChIP and DChIP

predicted by models based on motif presence changes, denoted by “pDChIP(DSTAP).” For each TF-TP condition, average PCC from 5-fold cross-validation is

reported. (B) Similar to (A), except that the DChIP predictions are now based on changes in accessibility, denoted by “pDChIP(DAcc).” These values are

similar to those reported in figure 2B, but with slightly modified models (see text). (C) Comparison of motif-based models (x axis) and accessibility-based

models (y axis). P values of PCC (r) with sample size of 2,754 are also shown. (D, E) Predictions of DChIP based on both motif changes and accessibility

changes, denoted by “pDChIP(DSTAPþDAcc),” are better than using only motif changes (D) or only accessibility changes (E).
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motif but also on cobinding with each other (Khoueiry et al.

2017). In other cases, such as Bin (at all three time points),

change in motif presence is a far better predictor of binding

change than are changes in accessibility. This is in concor-

dance with our previous studies in a single species—Bin motifs

are very predictive of Bin binding (Junion et al. 2012; Khoueiry

et al. 2017). For Mef2, the only TF expressed and with ChIP

measurements at all five time points, DChIP values at later

time points are predicted better using the motif-based predic-

tor and earlier DChIP values are better predicted using acces-

sibility changes, even though the motif used is the same in all

cases. Interestingly, we note that this is part of a general trend

for accessibility-based predictions to be better at earlier time

points than later ones, such as TP4 and TP5 (supplementary

fig. S5B, Supplementary Material online). This trend may be

due increased embryo heterogeneity at later developmental

stages having a distortive effect on cell type specific accessi-

bility seen in bulk whole embryo DHS measurements or alter-

natively due to pioneering roles of early TFs priming enhancers

for activation at later stages of embryogenesis.

Having found that the contribution of DAcc to DChIP is

similar in extent to the contribution of DSTAP (change of

motif presence) to DChIP, we asked if combining these two

pieces of information would further improve our ability to

predict binding changes; this would imply that divergence in

accessibility and sequence have complementary information

regarding change of binding. Generally, the answer was af-

firmative: for almost all TF:TP pairs the DChIP scores are better

predicted with combined models (SVR using D. melanogaster

STAP, DSTAP, Acc, and DAcc features), achieving correlations

in the range of 0.3–0.5, with an average of 0.4 across the 14

data sets, compared with �0.3 when using accessibility or

sequence alone (fig. 3D and E). As above, we asked how

well the combined model-predicted DChIP values classify

the enhancer pairs with the greatest increase in TF binding

versus those with the greatest decrease in binding (DChIP in

top and bottom 10 percentile, respectively). We noted an

AUROC of 0.84 or greater on such balanced data sets for

four of the nine TF:TP pairs (supplementary fig. S6,

Supplementary Material online). The performance of this joint

predictor is a quantitative summary of how well we under-

stand the determinants of TF-binding changes between

orthologous enhancers in a well-studied regulatory system.

Our results suggest that the two types of information (mo-

tif and accessibility) are complementary in their contribution

to predicting changes in binding (most points are above the

diagonal in fig. 3D and E). For instance, the strongest corre-

lation observed with the joint predictor is for TWI-TP1, with a

PCC of 0.52, compared with 0.3 when using motif change

alone and 0.45 when using accessibility change alone. The

only exceptions are data sets for Bin, where predictions of

occupancy change based on sequence changes are nearly

unaffected after adding accessibility information (fig. 3D),

which implies that motif change alone is a strong predictor

of Bin occupancy divergence. We note that in order to make

such direct comparisons between determinants of binding

change, we have used an approach that goes beyond testing

statistical enrichments of various events, such as motif loss or

gain, in regions of binding change.

A Strategy to Assess Predictions of Binding Change
Relevant to Enhancer Activity

In the analysis above, we quantified the ability to predict

changes in binding by directly correlating experimentally mea-

sured DChIP of a TF with computationally predicted DChIP

based on accessibility and sequence-level changes between

orthologous enhancers. What does this imply for one of the

ultimate goals of comparative cis-regulatory profiling—to pre-

dict changes in enhancer-driven expression? Prior work has

shown that one can predict spatio-temporal activity of meso-

derm enhancers based on ChIP data for the set of five TFs

studied here (Zinzen et al. 2009). We asked therefore if our

DChIP predictions agree with the experimentally measured

DChIP values when examined through the lens of such an

activity prediction model, rather than through direct correla-

tions for each TF separately. In other words, if we knew the

ChIP values in an enhancer, and the sequence and accessibility

changes between it and an orthologous enhancer, can we

predict ChIP values in the ortholog and use them to determine

if the enhancer’s spatio-temporal activity is conserved? If so, it

would indicate that our understanding of binding changes is

accurate enough to be of predictive value. Note that such a

comparison must integrate the information from DChIP

scores for multiple TFs, rather than compare each TF:TP sep-

arately as was done above. In this sense, we now aim to assess

DChIP predictions in a more integrative manner.

Outline of approach: A major obstacle in answering this

question is the lack of data on changes in enhancer activity.

There is a large collection of D. melanogaster enhancers with

annotated activities (Zinzen et al. 2009; Gallo et al. 2011;

Kvon et al. 2014), but only a small set of D. virilis enhancers

whose activities were tested experimentally (in transgenic D.

melanogaster embryos) (Khoueiry et al. 2017). Moreover, this

small set of experimentally characterized D. virilis enhancers

mostly exhibited conserved activity (Khoueiry et al. 2017), ex-

acerbating the analysis of functional changes. We therefore

devised a modeling-based approach to the above question

that can be briefly described as follows (fig. 4): 1) Train a

model “A” that predicts an enhancer’s activity from its ChIP

profile (binding levels for relevant TFs), similar to prior work

(Zinzen et al. 2009). 2) Use model “A” to predict the activities

of orthologous D. melanogaster and D. virilis enhancers, using

their respective ChIP profiles, thus characterizing the change

in (predicted) activity between the orthologs. 3) Separately,

use the ChIP profile of the D. melanogaster enhancer and

motif and/or accessibility-based predictions of DChIP, to pre-

dict the ChIP profile of the D. virilis ortholog. Once again,
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estimate the activity change between orthologs, but now re-

lying on the predicted ChIP profile of the D. virilis ortholog. 4)

Compare the activity changes computed in steps (2) and (3),

that utilize, respectively, direct ChIP measurements or pre-

dicted ChIP profiles in D. virilis. The extent to which these

changes agree with each other will reveal how well motif

and accessibility-based predictions of DChIP agree with real

DChIP when seen through the lens of enhancer function.

Computationally Imputed ChIP Profiles Agree with
Measured ChIP Profiles in Terms of Their Predictions of
Enhancer Activity Changes

We first trained XGBoost (Chen and Guestrin 2016) classifiers

to predict enhancer activity in D. melanogaster from the 14-

dimensional vector of ChIP scores of the enhancer, the ChIP

scores pertaining to the 14 TF:TP conditions. Here, enhancer

activity is one of the three spatio-temporal expression

classes—the early unspecified mesoderm (“Meso”), somatic

muscle (“SM”) and visceral muscle (“VM”)—and for each

class “C” a separate classifier was trained to predict the

enhancer’s activity in that class (“AC”) on a scale of 0–1,

representing the confidence of that classifier. More details

on building and evaluating the classifiers are provided in

Materials and Methods and table 1. We then predicted the

activity AC of the D. virilis orthologs using the same classifiers

and regarded the difference between these two AC values

(DAC ¼ AC[D.mel] – AC[D. vir]) as an estimate of the change

in regulatory activity, specific to class C, between the orthol-

ogous enhancers.

Next, for each spatio-temporal class “C,” we considered all

D. melanogaster enhancers with predicted activity AC (for that

class) in the top 20 percentile, that is, enhancers with ChIP

profiles that are most suggestive of activity in class “C.” We

further restricted ourselves to the subset of these that exhib-

ited the highest and lowest DAC values, that is, enhancer pairs

whose DChIP scores are most strongly indicative of activity

change (high DAC) or conservation (low DAC). We asked how

well these two subsets of orthologous enhancer pairs, with

the greatest and least predicted changes in enhancer activity,

FIG. 4.—A strategy to assess predictions of binding change through the lens of enhancer activity. (A) Change in regulatory activity between orthologous

enhancers is estimated from difference between output scores of activity classifiers that use Drosophila melanogaster and Drosophila virilis ChIP profiles,

respectively, as input. (B) An alternative estimate of change in regulatory activity between orthologous enhancers, similar to strategy in (A), except that D.

virilis activity classifier uses “imputed” D. virilis ChIP profiles as input. Imputation of D. virilis ChIP scores is based on D. melanogaster ChIP scores and DChIP

scores predicted from motif- and/or accessibility-level interspecies changes.
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can be discriminated based on predicted changes of TF bind-

ing. To this end, we obtained an “imputed” ChIP profile of

the D. virilis ortholog, by using the D. melanogaster ChIP

scores and DChIP scores predicted from interspecies changes

in motif presence, accessibility, or both (fig. 4B), re-estimated

the regulatory activity AC of the D. virilis ortholog based on

this imputed ChIP score profile, and computed its difference

from the regulatory activity of the D. melanogaster enhancer

(dDAC) as an alternative estimate of change in regulatory ac-

tivity between the orthologs. Finally, we computed the PCC

between the two estimates DAC and dDAC, across all enhancer

pairs considered (table 2A), and also noted that AUROC val-

ues when dDAC is used to classify enhancer pairs with high

DAC versus low DAC (table 2B and supplementary fig. S7,

Supplementary Material online).

We noted that when D. virilis ChIP score profiles are im-

puted based on motif and accessibility changes together, the

two estimates of activity change have a correlation of 0.47 (P

value 2.21E-7) for the “VM” class, which is substantially

greater than the correlation of 0.16 (P value 0.09) seen in a

random control. (In the control setting, D. virilis ChIP scores

were imputed based on a random permutation of DChIP

scores). The high level of agreement between DAC and
dDAC is also reflected in the classification AUROC of 0.75,

compared with the random control AUROC of 0.59.

Similarly, for the “SM” class, a high agreement between

the two estimates is borne out by an AUROC of 0.78 (com-

pared with 0.57 in random control), and a correlation coeffi-

cient of 0.37 (P value 0.005), whereas the random control

yields a correlation of 0.09 (P value 0.51) for this expression

class. The correlation and AUROC values are lower for the

class “Meso,” although clearly statistically significant, for ex-

ample, correlation of 0.33 (P value 0.0004) compared with

random correlation of 0.07 (P value 0.47). Taken together,

these results suggest that the accuracy of DChIP predictions

demonstrated above (fig. 3D and E), based on modeling in-

terspecies changes in sequence and accessibility, is sufficient

for us to make similar predictions of enhancer activity changes

as can be made using experimental knowledge of binding

changes. It also raises the possibility that, to an extent, the

observed evolutionary variation in TF occupancy not predicted

by accessibility or sequence may not be critical for fitness re-

lated biological output. This interpretation is consistent with

our previous observations that enhancer activity is plastic to TF

occupancy changes (Khoueiry et al. 2017), and that compu-

tationally obtained TF-binding scores based on motif presence

and sequence conservation are as predictive of enhancer ac-

tivity as ChIP data (Blatti et al. 2015). However, much work is

needed before we can truly claim evidence of noncritical var-

iation. For instance, our ability to predict activity changes dif-

fers from one expression class to another and there is

substantial room for improvement, suggesting shortcomings

in the models. Also, such evidence would have to account for

technical noise in measurements of TF binding and accessibil-

ity in a rigorous manner.

We also repeated the above analysis using imputed ChIP

score profiles in D. virilis from DChIP predictions based only on

sequence-level changes or only on accessibility changes,

rather than both. Our main observation is that sequence-

based predictions of binding change are often close to and

in some cases even better than the joint predictors that utilize

sequence and accessibility changes (table 2, rows “DSTAP”

compared with rows “DSTAP and DAcc”). A noteworthy data

point is that for the “SM” class, sequence-based predictions

of DChIP can accurately predict, with an AUROC of 0.82, the

enhancer pairs with greatest and least activity change, where

activity is defined based on real ChIP profiles in the two spe-

cies. We also noted that DChIP predictions based on accessi-

bility changes alone are consistently worse in terms of the

resulting agreement between DAC and dDAC. The is in con-

trast to the observations in figure 3C, where we did not ob-

serve a consistent difference between sequence-based and

accessibility-based predictors of binding change for individual

TF:TP pairs. This is not surprising: accessibility changes are

indeed an important statistical determinant of binding

changes, but predicting activity change likely requires cor-

rectly predicting binding changes of multiple TFs, and the

sequence-based predictors have an advantage in this respect

as they use different motifs for each TF, whereas the

accessibility-based predictors utilize the same underlying in-

formation in predicting binding change for every TF.

Table 2

Changes in Motif Presence and Accessibility Can Be Used to Predict

Enhancer Activity Change

(A) D. virilis ChIP Imputation Based on Meso VM SM

DSTAP 0.33 0.42 0.36

DAcc 0.21 0.30 0.33

DSTAP and DAcc 0.30 0.47 0.37

Random control 0.07 0.16 0.09

#Samples 110 110 56

(B) D. virilis ChIP Imputation Based on Meso VM SM

DSTAP 0.65 0.70 0.82

DAcc 0.57 0.68 0.70

DSTAP and DAcc 0.65 0.75 0.78

Random control 0.56 0.59 0.57

#Samples 110 110 56

NOTE.—(A) PCCs between two different estimates of activity change: DAC, based
on measured Drosophila virilis ChIP score profiles and ^DAC , based on D. virilis ChIP
score profiles imputed from Drosophila melanogaster scores and predictions of bind-
ing change (DChIP), which in turn were made from changes in sequence (“DSTAP”),
accessibility (“DAcc”) or both. As a random control baseline, we used D. virilis ChIP
scores imputed from D. melanogaster scores and a permuted version of the DChIP
matrix. (B) AUROC values representing how well ^DAC values can classify high versus
low DAC enhancer pairs. These analyses were performed for three expression
domains: mesoderm (Meso), visceral muscle (VM), and somatic muscle (SM).
Enhancer pairs that exhibited the highest and lowest DAC values (in top and bottom
10 percentile for classes “Meso” and “VM,” and in the top and bottom 5 percentile
for class “SM”) are reported.
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Discussion

We examined the evolution of DNA accessibility in two distant

species and found it to be an important determinant or cor-

relate of interspecies changes in TF binding. It is possible that

changes in accessibility are not causal of binding change but

rather a consequence; for instance, the relaxation of selection

pressure resulting from a functional loss of TF binding may in

turn lead to reduction in local accessibility, which may be the

case for Twist. Interestingly, we noted that our ability to pre-

dict TF-binding changes simply based on accessibility changes

rivals our ability to make those predictions based on sequence

divergence, that is, change of TF motif presence. At the same

time, there is substantial complementarity between the two,

and a model that combines both motif and accessibility

changes can predict changes in TF binding more accurately

than either alone. A noteworthy feature of our work is that

we have approached issues of cis-regulatory divergence in a

quantitative manner, asking “to what extent” a relationship

(e.g., between accessibility and binding changes) is supported

by data, in addition to asking if “there exists strong evidence”

for such a relationship, through hypothesis testing

approaches. Such a quantitative approach is also important

for comparing how well two different types of information—

changes in accessibility and motif presence—correlate with

binding change. However, our finding that the relative impor-

tance of these correlates depends on the TF and developmen-

tal stage poses an important challenge: How do we build

“universal” (not TF-specific) models to predict TF occupancy

in a target species (e.g., D. virilis) using ChIP data sets in a

reference species (e.g., D. melanogaster) and only sequence

and global profiles such as accessibility from the target spe-

cies? We do not yet have a solution for such an obviously

useful program of research.

Although most of our analyses were aimed at global

insights, we also made several TF-specific observations that

suggest properties of those TFs. For instance, the relatively

high concordance between accessibility change and binding

change for Twi suggests to us that Twi may have direct influ-

ence in making DNA accessible (also suggested in Sandmann

et al. [2007] and Cheng et al. [2013]), though other explan-

ations are also feasible. Another analysis revealed that the

codivergence of Twi and Tin binding sites (Khoueiry et al.

2017) may only partly be explained by the shared influence

of accessibility, thus increasing the support for alternative

causes such as extensive cooperative binding, evidence for

which was also reported in Cheng et al. (2013). This latter

possibility was also consistent with our observation that motif-

level changes were less effective than accessibility changes in

predicting binding divergence of either TF.

It is worth emphasizing that our comparisons of sequence,

accessibility, and TF binding between species have the advan-

tage of being performed in the context of a system where the

examined TFs are all essential regulators that participate in a

highly interconnected regulatory network, participating in

feed-back and feed-forward regulation of a large number

of genes. Thus, by focusing on putative enhancers defined

by multiple ChIP peaks in close proximity, we hope to have

enriched for evolutionary events with potential consequences

for gene expression. Such an advantage is often not possible

in other studies of binding evolution, because few regulatory

networks have been as well characterized (see Paris et al.

[2013] for another example).

We also examined how total changes in TF binding relate

to changes in enhancer activity within the mesoderm specifi-

cation network. We found most orthologous enhancers have

conserved activity despite high divergence in TF-binding

events (see details in supplementary text S1, Supplementary

Material online). Enhancers in this network have been previ-

ously shown (Zinzen et al. 2009) to be amenable to compu-

tational models that predict their activity (tissue specificity)

from their TF-binding profiles within one species (D. mela-

nogaster). It was thus natural to ask if evolutionary changes

in TF binding can be interpreted in the light of such functional

models. However, we were unable to answer this question in

the most direct way—whether binding changes for multiple

TFs can, via these models, predict changes in enhancer activ-

ity—because the available data on regulatory activities of

orthologous enhancers are sparse. Instead, we used the ability

to model enhancer activity from ChIP data to show that pre-

dicted changes in binding (based on accessibility and motif

divergence) agree with measured binding changes (ChIP data)

in terms of what they imply about activity changes. It is worth

clarifying that we defined activity change between ortholo-

gous enhancers as the difference in predicted activity in a

spatio-temporal class, using a computational model that is

meant to predict enhancer activities in D. melanogaster.

Thus, under this definition, the activity of a D. virilis enhancer

is in fact the expression pattern we predict it to drive if it was

tested through a reporter assay in a D. melanogaster embryo.

This was necessary because we do not yet have sufficient

training data (D. virilis enhancers with known expression read-

outs in D. virilis) to learn a classifier for predicting activity in D.

virilis. It was also a convenient choice because we did not have

to make assumptions about conservation of the trans context

between D. melanogaster and D. virilis. The only assumption

required was that a “ChIP profile” (14 TF-ChIP values at a

enhancer) obtained from D. virilis is semantically comparable

to a ChIP profile obtained from D. melanogaster, which we

previously showed is the case (Khoueiry et al. 2017). Also, the

absolute values in the ChIP profile do not matter (only their

relative values), because we worked with normalized ChIP

profiles, which have similar distributions in both species (sup-

plementary fig. S8, Supplementary Material online). There is

precedence in the literature for examining activity changes

between orthologous enhancers in a common cellular context

(Arnold et al. 2014). Expression is often conserved despite

divergence at sequence level, but that the data are sparse still.
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We expect that more experimental data on heterologous ac-

tivity, for example, of D. virilis enhancers, will better address

the functional consequences of binding changes and improve

our ability to predict functional cis-regulatory change from

accessibility and sequence data.

In ending, we note that even when using a combined

model that integrates sequence and accessibility data, we

were able to predict TF-binding change with a correlation

coefficient of �0.5 at best. What is missing in the data and

models that might account for the missing predictability? The

answer is probably closely tied to the same issue in the context

of single-species TF-binding prediction, a topic that has re-

ceived far greater attention (Slattery et al. 2014), and where

a number of additional factors, such as cobinding and com-

petitive binding (Wasson and Hartemink 2009; Cheng et al.

2013), more precise motif characterizations (He et al. 2009;

Weirauch et al. 2013), and higher resolution mapping of chro-

matin context (Pique-Regi et al. 2011; Cheng et al. 2013;

Peng et al. 2015), have been shown to improve predictive

ability. Incorporation of these additional dimensions of data

and modeling in the future should further increase our un-

derstanding of evolutionary changes in TF binding.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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