

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Identification of 4-anilino-6-aminoquinazoline derivatives as potential MERS-CoV inhibitors

Jun Young Lee^a, Young Sup Shin^a, Jihye Lee^b, Sunoh Kwon^{a,c}, Young-hee Jin^{a,d}, Min Seong Jang^{a,e}, Seungtaek Kim^b, Jong Hwan Song^a, Hyoung Rae Kim^a, Chul Min Park^{a,*}

^a Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea

^b Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea

^c Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea

^d KM Application Center, Korea Institute of Oriental Medicine, Dong-gu, Daegu 41062, South Korea

e Department of Non-Clinical Studies, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, South Korea

ARTICLE INFO

Keywords: MERS-CoV 4-Anilino-6-aminoquinazoline Coronavirus Inhibitor Optimization

ABSTRACT

New the rapies for treating coronaviruses are urgently needed. A series of 4-anilino-6-aminoquinazoline derivatives were synthesized and evaluated to show high anti-MERS-CoV activities. N^{4} -(3-Chloro-4-fluorophenyl)- N^{6} -(3-methoxybenzyl) quinazoline-4,6-diamine (1) has been identified in a random screen as a hit compound for inhibiting MERS-CoV infection. Throughout optimization process, compound **20** was found to exhibit high inhibitory effect (IC₅₀ = 0.157 µM, SI = 25) with no cytotoxicity and moderate *in vivo* PK properties.

Coronaviruses (CoVs) are a group of positive-sense, single-stranded RNA viruses that cause severe respiratory diseases in a broad range of animal species, including humans.^{1–3} In 2003, one of the novel coronaviruses, severe acute respiratory syndrome CoV (SARS-CoV), caused a total of 8,422 cases of SARS with 916 deaths.⁴ The other novel coronavirus, Middle East respiratory syndrome CoV (MERS-CoV), has emerged in April 2012 and posed a serious threat to public health. As of 4 April 2020, a total of 2,494 human MERS-CoV infections with 858 deaths had been reported from 27 countries.⁵ Although MERS-CoV can cause primary infections from direct contact with animal reservoirs like camels,⁶ person-to-person transmission of this virus has mainly occurred in health-care facilities and family clusters.^{7–9} Recently outbreak of COVID-19, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China and has spread to several other countries.

Drug repositioning for an FDA-approved compound library found that numerous compounds inhibited MERS-CoV infection. However, there are still no approved drugs for coronaviruses.¹⁰ Through high content screening (HCS) platform of Institut Pasteur Korea (IPK) using the Korea Chemical Bank (KCB),¹¹ we found several novel compounds that can inhibit MERS-CoV infection.¹² We found that N^4 -(3-chloro-4-fluorophenyl)- N^6 -(3-methoxybenzyl)quinazoline-4,6-diamine **1** was effective for inhibiting MERS-CoV infection. Quinazoline derivatives have

previously been reported as potent inhibitors of the protein kinase of epidermal growth factor receptor (EGFR).¹³ Most of those compounds were approved as anticancer drugs, including Gefitinib,¹⁴ Lapatinib,¹⁵ Erlotinib,¹⁶ and Afatinib¹⁷. We thought that quinazoline compounds can exhibit good bioavailability and be easily extended to treatment of MERS-CoV infection. Here we report on the synthesis and biological effects of 4-anilino-6-aminoquinazoline derivatives.

The general synthetic route for 4-aminoquinazoline derivatives is described in Scheme 1. 2-Amino-5-nitrobenzonitrile was reacted with dimethylformamide-dimethyl acetal (DMF-DMA) in toluene to give (*E*)-N'-(2-cyano-4-nitrophenyl)-N,N'-dimethylformimidamide 2. N,N-dimethylformamidine 2 was treated with acetic acid and anilines at 120 °C to produce 6-nitroquinazoline 3.¹⁸ Reduction of the nitro group of 3 was carried out using iron powder and NH₄Cl in isopropyl alcohol and water at 100 °C to afford 6-aminoquinazoline 4. Aromatic amine 4 was reductive alkylated with aldehydes using NaBH(OAc)₃ and trifluoroacetic acid in isopropyl acetate at 100 °C to give N-substituted quinazolines 5.

The antiviral activities of the synthesized compounds in Vero cells were determined by immunofluorescence assay (IFA). Vero cells were infected with a korean clinical MERS-CoV isolates and the inhibitory concentration (IC₅₀) and cytotoxic concentration (CC₅₀) values of the compounds were calculated by nonlinear regression analysis.¹¹

* Corresponding author.

E-mail address: parkcm@krict.re.kr (C.M. Park).

https://doi.org/10.1016/j.bmcl.2020.127472

Received 10 April 2020; Received in revised form 27 July 2020; Accepted 4 August 2020 Available online 08 August 2020 0960-894X/ © 2020 Elsevier Ltd. All rights reserved.

Fig. 1. Hit against MERS-CoV from a KCB library screen.

Molecules with higher selective index (SI) were considered as active molecules (Fig 1).

Our preliminary structure activity relationship (SAR) studies surrounding 1 were carried out by introducing halide groups on phenyl ring of 4-anilino group (Table 1). 4-Bromo substituent (6) maintained the potency. 4-Fluoro (7), 3-chloro (8), 4-cyano (9), and 3-acetyl (10) reduced potency compared to 1. Interestingly, 4-trifluoromethyl (11) can slightly improve the potency. In the next phase optimization, we observed the effects of the substituents of 6 position of quinazoline ring, having fixed with 3-chloro-4-fluoro and 4-trifluoromethyl substituents on phenyl ring at 4 position (Table 2).

Table 1

Antiviral effect and toxicity of 4-anilino groups of hit compound 1.

Compound	Y	IC ₅₀ (µM) ^a	$CC_{50}(\mu M)^{b}$	SI ^c
1	3-Cl,4-F	5.6	> 25	4.5
6	4-Br	7.4	> 25	3.4
7	4-F	22.7	> 25	1.1
8	3-C1	> 25	23.0	1.0
9	4-CN	> 25	> 25	1.0
10	3-COCH ₃	> 25	> 25	1.0
11	4-CF ₃	1.8	> 25	1.0

 $^{a,b}\ \text{IC}_{50}$ and CC_{50} were derived from the results of at least two dependent experiment in Vero cells infected with MERS-CoV.

 $SI(selective index) = CC_{50}/IC_{50}$ for inhibiting MERS-CoV infection.

Scheme 1. Synthesis of 6-substituted 4-anilinoquinazoline derivatives. Reagents and conditions: (a) DMF-DMA, toluene, 110 °C, 5 h; (b) ArNH₂, AcOH, 120 °C, 7 h; (c) Fe, NH₄Cl, i-PrOH/H₂O (10/1), 110 °C/4h; (d) Aldehyde, NaBH(OAc)₃, trifluoroacetic acid, i-PrOAc, 90 °C, 3 h; Acyl chloride, Et₃N, dichloromethane, rt; or carboxylic acid, EDCI, i-Pr₂NEt, DMF, rt.

Structure-Activity Relation of Derivatives of 1 and 11.

12-3				32-30		
Compound	Х	R ₁	R_2	$IC_{50}(\mu M)^a$	$\text{CC}_{50}(\mu M)^b$	SI ^c
1	Н	3-CH ₃ O-	Н	5.6	> 25	4.5
19	н	2-CH-O-	н	3.8	> 25	7
12	11	PhCH ₂	11	5.0	- 25	,
13	Н	$2-OH-PhCH_2$	Н	3.6	> 25	7
14	Н	3,4-F ₂ -PhCH ₂	Н	4.6	23.0	5
15	Н	4-F-PhCH ₂	Н	4.6	14.4	3
16	Н	2-NO ₂ - PhCH ₂	Н	3.3	> 25	8
17	Н	3-NO ₂ - PhCH ₂	Н	6.1	> 25	4
18	Н	4-NO ₂ - PhCH ₂	Н	2.7	> 25	8
19	Н	2-CN-PhCH ₂	Н	> 25	> 25	1
20	Н	3-CN-PhCH ₂	Н	0.157 ± 0.002	3.59 ± 1.1	25
21	Н	4-CN-PhCH ₂	Н	4.8	> 25	5
22	Н	3-H ₂ NCO- PhCH ₂	Н	> 25	> 25	1
23	н	3-CF ₃ -PhCH ₂	Н	2.3	9.2	4
24	н	<i>n</i> -butyl	<i>n</i> -butyl	> 25	> 25	1
25	Н	cyclohexyl	н	15	> 25	1
26	Н	CH ₃ CO	Н	> 25	> 25	1
27	Н	3-CN-PhCO	Н	> 25	> 25	1
28	Н	3-CN-trans- cynnamoyl	Н	> 25	> 25	1
29	OMe	3-CN-PhCH ₂	Н	5.8	13.2	2
30	OH	3-CN-PhCH ₂	Н	> 25	> 25	1
11	Н	3-CH ₃ O- PhCH ₂	Н	1.8	> 25	1
31	Н	2-CN-PhCH ₂	Н	> 25	> 25	1
32	Н	3-CN-PhCH ₂	Н	3.6	> 25	7
33	Н	4-CN-PhCH ₂	Н	4.1	> 25	6
34	Н	3-NO ₂ - PhCH ₂	Н	3.7	> 25	7
35	Н	4-NO ₂ - PhCH ₂	Н	3.3	> 25	8

 $^{a,b}\ \text{IC}_{50}$ and CC_{50} were derived from the results of at least two dependent experiment in Vero cells infected with MERS-CoV.

SI (selective index) = CC_{50}/IC_{50} for inhibiting MERS-CoV infection.

First, substituent effects at 6 position of 1 having 3-chloro-4-fluoro aniline at 4 position were evaluated. Changing 3-methoxybenzyl amine 2-methoxybenzyl amine group 12 showed similar activity to

Table 3

Result of hERG, Microsomal stability, cytotoxicity of 20.

Compound	hERG (µM)	MS ^a		Cytotoxicity (µM) ^b				
		m ^a	h ^a	Vero ^c	HFL-1	L929	NIH 3T3	CHO-K1
20	> 50	60.7	56.4	> 100	> 100	> 100	> 100	> 100

^a % original compound remained after 30 min incubation.

^b Cell information. Vero: African green monkey kidney cell line, HFL-1: human embryonic lung cell line, L929: NCTC clone 929, mouse fibroblast cell line, NIH 3T3: mouse embryonic fibroblast cell line, CHO-K1: Chinese hamster ovary cell line.

^c Vero cell was not infected with MERS-CoV.

Table 4

_									
ln	vivo	pharma	cokinetic	profiles	in	rat	of	20	

Parameters*	I.V., 2 mg/kg	P.O., 5 mg/kg		
Tmax (h)	NA ^{**}	2.0		
Cmax (µg/h)	NA	0.2		
T _{1/2} (h)	5.9	5.5		
AUC (μg·h/mL)	1.11	0.57		
CL (L/h/kg)	1.73	NA		
V _{ss} (L/Kg)	6.3	NA		
F _t (%)	NA	21		

* All results are the mean of experiments using three rats.

** NA: not applicable.

 $(IC_{50} = 3.8 \mu M)$. Introducing 2-hydroxybenzyl amine at 6 position of quinazoline ring 13 was tolerated (IC₅₀ = 3.6μ M). 3,4-Difluoro (14) and 4-fluoro (15) compounds gave similar activities (IC₅₀ = 4.6 μ M). We next explored the effects of electron-withdrawing groups. Compounds with nitro groups (16 to 18) showed similar inhibitory effects (IC₅₀ = 3.3, 6.1 and 2.7 μ M, respectively). Compound with 2cyanobenzyl amine at 6 position (19) showed no inhibitory effect, whereas 4-cyanoebnzyl amine (21) functionality was tolerated (IC₅₀ = 4.8 μ M). Gratifyingly, 3-cyanobenzyl amine analogue 20 resulted in significant higher activity (IC₅₀ = $0.157 \ \mu\text{M}$). We tested other electron-withdrawing groups at meta position of benzyl amine substituent. 3-Amidobenzyl amine analogue 22 was detrimental for activity but trifluoromethyl substituent at 3 position 23 retained the inhibitory effect (IC₅₀ = 2.3μ M). Then benzyl amine substituents at 6 position were changed to aliphatic amines and amides (24-28). Aliphatic amine substituents, such as di-n-butyl (24) and cyclohexyl (25), showed little inhibitory effects and amide groups (26-28) were detrimental. We introduced several substituents at 7 position of 20. Methoxy at 7 position gave a little decreased activity (29, $IC_{50} = 5.8 \ \mu M$) but hydroxy (30) showed no inhibitory effects.

The antiviral effects of derivatives at 6 position of **11** with 4-trifluoromethyl aniline group at 4 position were also examined. Most of substituents were well tolerated. 3-Cyanobenzyl (**32**), 4-cyanobenzyl (**33**), 3-nitrobenzyl (**34**) and 4-nitrobenzyl (**35**) showed similar activities ($IC_{50} = 3.3$ to 4.1 μ M) to **11**. However, 2-cyanobenzyl (**31**) substituent exhibited decreased potency.

Considering activity and cytotoxicity, **20** was thought to be the best compounds for anti-MERS drug and evaluated for its hERG, metabolic stability, cytotoxicity (Table 3). Our optimized lead compound **20** was found to show no hERG binding and have good microsomal stability in both mouse and human. Compound **20** showed no cytotoxicity toward Vero (not infected with MERS-CoV) as well as toward HFL-1, L929 NIH 3 T3 and CHO-K1 cell lines, which shows that potential interaction between compound **20** and viruses might affect the cell viability. The pharmacokinetic parameters of **20** were evaluated in rats by intravenous (i.v.) and oral (p.o.) routes at 2 and 5 mg/kg, respectively (Table 4). **20** showed reasonable oral bioavailability (21%).

In conclusion, we have synthesized a series of 4-anilino-6-aminoquinazoline derivatives and most of the compounds showed anti-MERS-CoV activity in Vero cell. The best compound among the derivatives was **20**, which had the form of quinazoline with 3-Chloro-4-fluoroaniline at 4 position and 3-cyanobenzyl amine at 6 position. Compound **20** showed high anti-MERS-CoV activity (IC₅₀ = 0.157 μ M, SI = 25) with no cytotoxicity and moderate *in vivo* PK property. Further studies on additional SAR and pharmacological investigation of these compounds are currently underway.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The chemical library used in this study was kindly provided by Korea Chemical Bank (http://www.chembank.org/) of Korea Research Institute of Chemical Technology. This work was supported by a grant of National Research Council of Science & Technology (NST) by the Korean government (MSIP) (No. CRC-16-01-KRICT).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bmcl.2020.127472.

References

- 1. Woo PC, Lau SK, Huang Y, et al. Exp Biol Med. 2009;234:1117.
- 2. Chan JF, Li KS, To KK, et al. J Infect. 2012;65:477.
- 3. Chan JF, Lau SK, Woo PC. J Formos Med Assoc. 2013;112:372.
- World Health Organization (WHO). Summary table of SARS cases by country, 1 November 2002 - 7 August 2003. https://www.who.int/csr/sars/country/2003_08_ 15/en/ [online].
- World Health Organization (WHO). Middle East respiratory syndrome coronavirus (MERS-CoV). https://www.who.int/emergencies/mers-cov/2020_04_04/en/ [online].
- 6. Azhar EI, El-Kafrawy SA, Farraj SA, et al. N Eng J Med. 2014;370:2499.
- 7. Zumla A, Chan JF, Azhar EI, et al. Nat Rev Drug Discov. 2016;15:327.
- 8. Assiri A, McGeer A, Perl TM, et al. N Eng J Med. 2013;369:407.
- 9. Memish ZA, Zumla AI, Al-Hakeem RF, et al. N Eng J Med. 2013;368:2487.
- 10. Liang R, Wang L, Zhang N, et al. Viruses. 2018;10:721.
- 11. Cruz DJ, Bonotto RM, Gomes RG, et al. PLoS Negl Trop Dis. 2013;7:2471.
- 12. (a) Yoon JH, Lee J, Lee JY, et al. Bull Korean Chem Soc. 2019;40:906;

(b) Yoon JH, Lee JY, Lee J, et al. *Bioorg Med Chem Lett.* 2019;29:126727.
13. Li H-Q, Li D-D, Lu X, et al. *Bioorg Med Chem Lett.* 2012;20:317.

- 14. Lynch TJ, Bell DW, Sordella R, et al. N Engl J Med. 2004;350:2129.
- 15. Wood ER, Truesdale AT, McDonald OB, et al. Cancer Res. 2004;64:6652.
- 16. Raymond E, Faivre S, Armand JP. Drugs. 2000;60:15.
- 17. Vavalà T. Clin Pharmacol. 2017;9:147.
- 18. Chandregowda V, Rao GV, Reddy GC. Org Proc Res Dev. 2007;11:813.