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A major focus of modern biological research is the understanding of how genomic variation relates to disease. Although

there are significant ongoing efforts to capture this understanding in curated resources, much of the information remains

locked in unstructured sources, in particular, the scientific literature. Thus, there have been several text mining systems

developed to target extraction of mutations and other genetic variation from the literature. We have performed the first

study of the use of text mining for the recovery of genetic variants curated directly from the literature. We consider two

curated databases, COSMIC (Catalogue Of Somatic Mutations In Cancer) and InSiGHT (International Society for Gastro-

intestinal Hereditary Tumours), that contain explicit links to the source literature for each included mutation. Our analysis

shows that the recall of the mutations catalogued in the databases using a text mining tool is very low, despite the well-

established good performance of the tool and even when the full text of the associated article is available for processing.

We demonstrate that this discrepancy can be explained by considering the supplementary material linked to the published

articles, not previously considered by text mining tools. Although it is anecdotally known that supplementary material

contains ‘all of the information’, and some researchers have speculated about the role of supplementary material (Schenck

et al. Extraction of genetic mutations associated with cancer from public literature. J Health Med Inform 2012;S2:2.), our

analysis substantiates the significant extent to which this material is critical. Our results highlight the need for literature

mining tools to consider not only the narrative content of a publication but also the full set of material related to a

publication.

.............................................................................................................................................................................................................................................................................................

Introduction

A major thrust of modern biological research is the under-

standing of how genomic variation relates to disease. This

information can be used for disease diagnosis, and increas-

ingly, in the context of personalized medicine, to enable

identification of effective disease treatments. There are

large-scale efforts to catalogue the results of this research

in structured databases, including in the Online Mendelian

Inheritance in Man (OMIM) database [1] and the Human

Gene Mutation Database (HGMD) [2]. However, much gen-

etic variant information is available only from unstructured

sources, including the scientific literature. As such, there

have been several systems developed to target extraction

of mutations and other genetic variation from the litera-

ture [3–9], inter alia. Such tools are motivated with

claims of their application in the context of database

curation [10–13].
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The performance of these tools has typically been eval-

uated intrinsically, that is, with respect to a gold standard

set of annotations over a corpus of documents. Depending

on the precise specification of the task, the gold standard

corpus and the tool tested, the performance of these tools

has been demonstrated to achieve very high precision and

recall [7].

In this work, we instead perform an extrinsic evaluation

of a mutation extraction tool to test the applicability of

text mining, specifically for the curation of mutation data-

bases. This is possible because of the existence of several

curated databases that catalogue genetic variants as well as

providing links to the source literature, supporting the

variation and its disease association. These databases in-

clude COSMIC [Catalogue Of Somatic Mutations In Cancer

(http://www.sanger.ac.uk/cosmic)] [14] that focuses on som-

atic mutations, and InSiGHT (International Society for

Gastro-intestinal Hereditary Tumours) (http://www.insight-

group.org), which targets annotation of the genetic basis

of Lynch Syndrome, also known as hereditary nonpolyposis

colorectal cancer (HNPCC) [15] within the Human Variome

Project (HVP).

Our analysis shows that the recall achieved by the text

mining tool in the recovery of mutations catalogued in the

databases is very low. Although this effect has been

observed previously for protein mutations recorded in the

Protein Data Bank (PDB) (http://www.rcsb.org) [16], the

work suggested that lack of access to the full-text literature

was a major contributor to the problem. In this work, we

show that the effect persists even when the full-text article

that was indicated to be the direct source of a mutation in a

curated resource is available for processing. In one of our

evaluations, we find that <3% of curated genetic variants

are discovered for the COSMIC database while this value is

barely better at just over 8% for the InSiGHT database,

even when full text is considered.

We explore several possible explanations for these re-

sults, including the inclusion of data from high-throughput

experiments, and processing of tables and supplementary

material linked to the published articles with the text

mining tool. We demonstrate that processing of this add-

itional material enables an increase in recall up to 50%,

indicating that most of the curated mutations are not in

the abstract or full text of the paper, and that supplemen-

tary materials are a critical source of information for cur-

ation of genetic variants. Furthermore, our false-negative

error analysis shows that the remaining 50% of variants are

also available in the supplementary files, but identifying

them automatically requires adaptation of current text

mining tools to the characteristics of these non-narrative

sources of genomic variation data. Our results indicate

that to effectively support curation of genetic variants, lit-

erature mining tools should consider not only the narrative

content of a publication but also the full set of material

related to a publication.

Background

Text mining of mutations in the scientific literature has

been addressed by several tools, including MutationMiner

[3], MarkerInfoFinder [17], EMU (Extractor of Mutations)

[6], MutationFinder [4], tmVar [9] and SETH [18]. A thor-

ough review can be found in [7]. These tools have been

shown to achieve a performance over 90% F-measure,

and in some cases perfect Precision/Recall, on intrinsic

evaluations. There are also several corpora that are publicly

available to support intrinsic evaluation of mutation extrac-

tion tools [4, 6, 17, 19–21].

There has been some work in assessing the ability of

mutation extraction tools to recover the information in a

curated mutation resource. Krallinger et al. [5] provided a

targeted study of mutations occurring in the protein kinase

domain (using a system that in later work appears to be

referred to as SNP2L [22]). Their strategy was to identify a

corpus of kinase domain articles, identify all the mutations

mentioned in those articles and then assess overlap of

those mutations with curated resources. Using both ab-

stracts and full texts, they showed that their approach

was able to recover �50% of the mutations in two data-

bases, KinMutBase [23] and the Swissprot Variant database

[24], but only 20% of the mutations in SAAPdb [25] and a

small fraction (6%) of the mutations in the COSMIC data-

base [14], at the time of their study in March 2009.

Caporaso et al. [16] explored the ability of the

MutationFinder tool to recover protein mutations anno-

tated in PDB protein records. They considered 70 PDB

records with 13 mutations, and the corresponding primary

citations of those records, finding that <10% of these

mutations could be recovered from abstracts, while >70%

were able to be recovered from the full-text articles. The

authors concluded, as follows from the results of

Krallinger’s work and as we will also show, that a system’s

performance on gold standard data is not necessarily indi-

cative of its applicability to large-scale biocuration tasks.

This finding has been echoed in similar contexts [19, 26],

in which protein residue information extracted from full-

text documents lacked coverage compared with existing

PDB entries.

Rance et al. [13] applied the EMU tool to identify genetic

variants associated with drugs. Their study was limited to

104 abstracts in the PharmGKB ‘‘VIP’’ (very important phar-

macogenes) dataset; this is a set of manually curated

articles in PharmGKB [27]. For the 33 abstracts with corres-

ponding full-text articles, they were able to increase overall

recall of gene–drug relations from 33 to 48% by analysing

the full text. Hakenberg et al. [8] mine PubMed for associat-

ing genetic variants with drug, diseases and adverse
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reactions, and evaluate coverage of these associations, also

using PharmGKB. For gene-variant relations, they found

that their SNPshot method recovered 96.5% of the

PharmGKB gene-variant annotations, after processing

nearly 180 000 PubMed abstracts, though for gene-RefSNP

annotations the coverage dropped to 65.4%. These results

are significantly higher than the others we have reported

on, perhaps because by processing significantly more litera-

ture, they are increasing the chances of finding any individ-

ual gene-variant association. The detailed analysis of 40

‘‘VIP’’ genes showed lower recall (73.4%) for gene-variant

relations and a precision of 58.8%. As PharmGKB is focused

specifically on curation of gene–drug relationships, it is also

possible that evaluation against this resource is not repre-

sentative of the general problem of exhaustive annotation

of genetic variants. This assertion is supported by the fact

that the 96.5% coverage is accounted for by only 505 indi-

vidual gene-variant associations (where we find several

orders of magnitude more variants in the COSMIC data-

base, Table 1).

Taken together, these prior results not only indicate that

processing full text is essential for supporting curation of

genetic variants, both in proteins and DNA, but also raise

doubts about the role of text mining tools in the context of

real-world curation tasks. In some ways, the real-world

scenarios tested have been difficult — SNP2L and SNPshot

considered a broad set of literature, not specifically tied to

a database — whereas in other ways, these evaluations

have been too limited to draw reasonably generalizable

conclusions, focusing on a small number of papers, or a

narrow biological context. Our investigation addresses

both of these issues by expanding the scope of analysis to

a larger set of genetic variants, while also focusing on

the more straightforward task of reproducing manual an-

notation of specific articles that have been explicitly indi-

cated to be the source of a given curated mutation. This

allows us to test directly how well text mining tools can

approximate the performance of human curators who

work to extract specific gene-variant information from in-

dividual articles.

Methods

To investigate the ability of mutation extraction tools to

recover mutation information curated directly from the lit-

erature, we required a curated database that includes muta-

tions plus specific links to the literature (with PubMed

identifiers [PMIDs] included for each mutation). We selected

the COSMIC and InSiGHT databases for our investigation.

These databases are used as reference sets; the information

extracted from the corresponding scientific literature is com-

pared directly with the information curated from those

articles in the databases. We normalize mutation mentions

to Human Genome Variation Society (HGVS) format [28].

The mutation databases

COSMIC [26] (COSMIC site: http://www.sanger.ac.uk/cosmic)

contains comprehensive curated information on somatic

mutations in human cancer. We used version v62 (from 29

November 2012) available from COSMIC’s FTP site

(COSMIC’s FTP site: ftp://ftp.sanger.ac.uk/pub/CGP/cosmic),

including mutation information curated from 9950 unique

PubMed articles, as well as Cancer Genome Project (CGP)

(Cancer Genome Project site: http://www.sanger.ac.uk/gen

etics/CGP) studies and international system screens [e.g.

International Cancer Genome Consortium (ICGC)

(International Cancer Genome Consortium site: http://dcc.

icgc.org/web)]. We identified 7898 publications associated

with mutation information in this resource. cDNA and pro-

tein mutation information is already available in HGVS

format. Genes are referenced by name and by HGNC

(HUGO Gene Nomenclature Committee) identifier.

InSiGHT maintains a database of genetic variants for

both Lynch Syndrome and Familial Adenomatous

Polyposis. The current database has only curated mutations

for four genes: MLH1, MSH2, MSH6 and PMS2. The original

database was established in the 1990s with mutations re-

ported by individual laboratories. Reports manually ex-

tracted from published literature comprise the majority of

entries in the InSiGHT database (�75%, according to the

database curator), with the balance direct submissions

from clinics.

We accessed the InSiGHT database on 2 January 2013 to

establish our data set. The data include variants with

curated associations linked to 809 PubMed citations. The

database contains information about the variants in the

fields Variant/DNA and Variant/Protein. The amino acids

in protein variants have been normalized to single letter

amino acid abbreviation form.

There are 41 articles that have been curated both in

COSMIC and InSiGHT databases. Unfortunately, none of

the mutations in the overlapping articles has been curated

by both databases because COSMIC is focused on somatic

mutations, whereas InSiGHT is focused on germline muta-

tions in only four genes.

Table 1. COSMIC and InSiGHT data set statistics. Each row re-
flects figures for cited articles (PMIDs) in the reference
database

Set PMIDs Mut

Art

Mut

Cnt

Avg

Mut

SD

COSMIC (reference) 9950 7898 198 864 25.18 521.18

InSiGHT (reference) 809 809 7022 8.68 18.55

Mut Art = number of articles associated to at least one mutation;

Mut Cnt = the number of mutations associated with those articles;

Avg Mut = the average number of mutations per article;

SD = standard deviation of Mut Cnt.

.............................................................................................................................................................................................................................................................................................
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Corpus collection

An abstract for each PMID was retrieved from Medical

Literature Analysis and Retrieval System Online (MEDLINE)

using National Center for Biotechnology Information

(NCBI)’s E-Utils (NCBI Entrez Programming Utilities Help:

http://www.ncbi.nlm.nih.gov/books/NBK25500). Abstracts

are downloaded in XML format, and XML-escaped charac-

ters are converted to their text characters (e.g. A-&gt;T

becomes A–>T). In the case of the COSMIC database, 17

articles do not seem to be available when querying

PubMed.

A small portion of PubMed is available as full-text articles

through the Open Access collection in PubMed Central

(PMC-OA). From the 9950 PMIDs available from the

COSMIC set, only 563 were available from PMC-OA

(5.7%). From the 809 citations for InSiGHT, only 13 were

available through the full-text PMC-OA (1.6%).

We attempted to extend this set by retrieving HTML of

full-text articles from publisher websites, filtering out those

that were found to contain a title and an abstract, but no

body. The HTML was converted into text and processed to

remove irrelevant information, such as references.

Combined with the PMC-OA set, we could recover 2395

full-text articles for the COSMIC database and 165 for the

InSiGHT database.

Mutation identification in text

We selected the EMU tool [6] to process the corpora. EMU

was designed to capture a broader range of mutations than

other tools, and hence is a better fit for the variation we

might expect to find. It identifies protein and DNA point

mutations, dbSNP identifiers [29] (RSIDs) and DNA inser-

tions and deletions. In addition, it links the mutations to

the proteins and genes that appear in text and performs

verifications using existing databases to increase the preci-

sion of the annotations. EMU has been shown to have a

performance of 0.92 F-score on an intrinsic evaluation, i.e. it

has high recall and high precision. EMU version 1.0.19 was

used. This version has an available option to process the

text either one sentence at a time or across the whole

text, which impacts the scope at which links between mu-

tations and genes are identified (i.e. only within a sentence

or in the whole text). We used the option to process the

whole text because our aim is to maximize the coverage,

and that option is less restrictive. Our evaluation in full-text

extraction did not show a significant difference in coverage

while showing a smaller set of mutation + gene pairs,

meaning that gene and mutation co-occur in the same sen-

tence. In addition, EMU can increase the precision of the

predicted mutations by performing sequential checking.

We have not used this option, again to maximize the cover-

age of the extracted variants with respect to the reference

set. Table 2 shows the number of articles with at least one

identified mutation and the number of mentions per cat-

egory. We ignored the genome category because genome

variants do not appear in COSMIC or InSiGHT.

We normalized the mutation mentions identified by

EMU to the HGVS format to be comparable with the infor-

mation in the COSMIC and InSiGHT databases. Missense

mutations, mutations in the DNA that result in a protein

change, identified by EMU as PROTEIN, are normalized to

amino acid (wild-type), position, amino acid (mutated),

using single-letter amino acid abbreviations. Thus, a muta-

tion identified by EMU with wild-type amino acid Ala, pos-

ition 140 and mutated amino acid Thr is converted to

A140T. DNA mutations identified by EMU are normalized

to the format ‘c.[position][wild type nucleotide]> [mutated

nucleotide]’. In the case of insertion and deletions, given

position ranges, hyphens are replaced by the underscore

character (e.g. c.597-598delGA to c.597_598delGA). When

EMU identifies a dbSNP identifier, the dbSNP API is queried

to obtain further details about the mutations, identifying

all available candidates for DNA and protein mutations

associated with each ID.

There were mentions in which the position of the DNA or

protein substitution mutation was provided as exon/intron

number or a codon position. The codon positions were con-

verted to the three-candidate nucleotide positions. Exon

Table 2. Counts of mutations identified by EMU, by corpus
and by mutation type

Set COSMIC InSiGHT

Abstracts Full

text

Abstracts Full

text

Papers with mutation mentions 2486 2395 235 165

DNA 139 623 165 97

Genome 21 10 3 5

Protein 3266 18 015 283 1071

Protein; DNA 786 3229 137 269

Protein; DNA; RNA 118 517 32 132

RSID 55 275 14 92

All 4267 22 575 602 1593

Average 1.76 9.43 2.67 9.65

SD 1.44 16.94 2.96 16.87

Mutations with no gene 542 48 110 1

Papers w/HGVS mutation + gene 2373 2251 195 150

HGVS mutation + gene count 8960 57 369 1649 12 908

Average 3.78 71.66 8.45 86.05

SD 4.61 148.36 17.11 225.52

The table shows the statistics after normalizing the mutations to

HGVS and assigning one related gene per mutation. (insert this as

a footnote for this table)
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and intron mentions were removed because no precise pos-

ition could be derived.

EMU identifies gene mentions based on matching a dic-

tionary of human gene names compiled from the Human

Genome Organization (HUGO) and NCBI’s gene database.

From this dictionary, gene names identical to codon names

were removed and ‘P53’, absent in both source dictionaries,

was added. InSiGHT curated genes are easy to map, as only

4 genes are included. The COSMIC database contains the

gene name and, in most cases, a reference to HGNC. We

mapped the gene mentions identified by EMU to HGNC

identifiers. The gene name is normalized to the NCBI

Gene database, and then mapped to the HGNC identifier.

Table 2 shows the statistics on the number of articles for

which we could normalize the extracted mutations to HGVS

format. It also shows the number of unique normalized

mutations (HGVS mutation) and gene pair. Because the as-

signment of genes to mutations is done based on co-occur-

rences, sometimes a mutation is assigned to several genes.

Collection of additional material linked to the articles

In addition to narrative text, we have analysed further con-

tent linked to the papers, which includes the tables and

supplementary material. We collected articles from

COSMIC and InSiGHT that are available in the open access

subset of PubMed Central (PMC-OA), as it already contains

the tables in the XML of the article and there are explicit

links to the supplementary material. The open access litera-

ture has been shown to be representative of the broader

biomedical literature in terms of textual characteristics [30];

hence, we expect that our analysis would generalize across

PubMed. For the set of 13 articles in the InSiGHT database

that could be found in PMC-OA, InSiGHT contains 252 mu-

tation triples. COSMIC associates 33 814 mutation triples to

the 563 articles in PMC-OA.

We extracted the tables and table captions from the full-

text PMC-OA articles and processed them with EMU. The

COSMIC database references 394 PMC-OA articles with

tables; 197 of these were identified as having mutations

in the tables. From the InSiGHT database, there are only

eight articles with tables, of which four contain mutations.

In these articles, no mutations were found in the abstract or

full text.

Supplementary material was also identified from links

within the PMC articles and downloaded. The InSiGHT set

contains a limited number of supplementary material files

(in 1/13 articles), whereas COSMIC has a larger number

linked to the papers (in 138/563 articles). In contrast to

PMC-OA articles, available in XML following a consistent

DTD, supplementary material appears in a variety of file

formats. The most frequent types of supplementary mater-

ial in this corpus are in order of frequency: MS Word docu-

ments, MS Excel spreadsheet, PDF documents, TIFF images

and MS Powerpoint documents. Text from the

supplementary material was extracted with Apache Tika

1.3 (http://tika.apache.org/1.3) and then processed with

EMU. No image processing was performed.

During the extraction of tables and supplementary ma-

terial, we realized that some PubMed Central articles do

not contain the full text in XML format but a link to a

PDF version of it. From the InSiGHT collection, four papers

out of the 13 contained only the abstract with a link to the

full text in PDF format. In the COSMIC collection, the pro-

portion is 76 papers out of 563. The PDF version for these

papers has been downloaded from the European PubMed

Central mirror (http://europepmc.org), which offers a

straightforward link to download the PDF files. The docu-

ments were converted into text using Apache Tika 1.3.

Results

We compare the curated variants in the COSMIC and

InSiGHT databases with the information extracted from

the literature using EMU. Table 1 shows the distribution

of mutations associated to articles in each database. One

notable statistic in the COSMIC database is the large

number of mutations associated with each PMID article

on average (Avg Mut = 25.18) and the large variation (Std

Dev = 521.18). In the InSiGHT database, the average number

of mutations per article is much lower than in the COSMIC

database. This might be explained partially by the focus of

the InSiGHT database, i.e. the limited number of genes

related to Lynch syndrome.

Despite recovering most of the abstracts from MEDLINE,

a limited proportion of those abstracts contain any muta-

tion mentions when processed with the automatic muta-

tion extraction tool [2373/9936 (23.88%) in COSMIC and

195/809 (24.10%) in InSiGHT]. As mutation extraction algo-

rithms have high performance, we can safely assume that

this information was not available in the abstracts. To verify

this assumption, we manually analysed 100 randomly se-

lected abstracts for each of the two databases. If at least

one mutation mention was found that provided enough

information to be converted into HGVS format, the ab-

stract was counted as a positive example. In this sample,

we found that only 22% of abstracts for the COSMIC data-

base and 23% of abstracts for the InSiGHT database con-

tained at least one mutation mention. As this result is in

agreement with the findings of the automatic processing

done with EMU, our assumption is supported.

Only a small portion of the articles in each database

could be recovered as full text, but we find that a larger

proportion of full-text articles contain mutation mentions

(2251/2394 in COSMIC and 150/228 in InSiGHT). The propor-

tion of available full-text articles with at least one mutation

is higher than in the case of the abstracts.

.............................................................................................................................................................................................................................................................................................
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Table 3 examines the recovery of information extracted

from the abstracts (Abs), the full text (FT) and their com-

bination (Abs + FT), for each reference database. The Cmn

Art (Common Articles) column shows the number of articles

associated with mutations in the reference database that

also had automatically extracted mutations, for each sub-

corpus (Abs, FT or Abs + FT). In Table 1, we see that only

7898 articles (Mut Art) out of 9950 referenced in the

COSMIC database are linked to DNA or protein mutations;

the gap results from some articles referencing non-coding

variants not formally recorded as mutations in COSMIC

(personal communication, COSMIC database curators) and

does not affect the calculation of mutation recall. This gap

also explains why the Cmn Art set for COSMIC in Table 3 is

not the full set of articles for which EMU extracted muta-

tions (2200/2373 abstracts and 2071/2251 full-text articles),

as EMU may find mentions of these unrecorded variants.

The problem does not affect InSiGHT.

We also find that the number of identified mutations by

EMU is larger than the mutations matched to curated vari-

ants, as previously observed by Schenck et al. [31] when

using MutationFinder to annotate COSMIC related papers.

There are several reasons for mutations in the articles not

being curated in the databases. One reason is that there are

mutations in the papers that are not of interest to the data-

bases, e.g. the scope of COSMIC is somatic mutations only

while InSiGHT focuses on germline mutations in only four

genes. Another issue is that some of the reported muta-

tions have been found not to be relevant to the disease

under study, e.g. the mutation is not related to the disease,

and such negative results are not curated. Further work is

required to catalogue or filter the mutations before provid-

ing them to a database curator.

We calculate the recall obtained when matching the

gene and either the DNA or protein mutation for each

record in the database (Recall) as well as when the gene

is ignored (Recall NG (No Gene)), to allow for incorrect nor-

malization of the gene name. We also calculate recall only

with respect to mutations directly associated with the

common articles (Cmn Art) set (Recall Common and Recall

CmnNG) to focus the assessment on those articles (a) that

the system had access to, and (b) for which EMU had at

least one positive extraction. We find that the recall is

low, especially for COSMIC. We recover only 2% of the

full set of curated mutations in COSMIC and not even 9%

for InSiGHT. Recall over full-text articles is higher than for

abstracts, even though the number of articles is smaller.

The combination of abstract and full text has a much

higher coverage on both sets, though still barely exceeds

5% for COSMIC under the most generous evaluation con-

ditions and 25% for InSiGHT.

We have performed two further analyses to better

understand the results. In the first one, we compared the

information extracted from the abstract citations with the

information extracted from the full-text articles. In the

second analysis, we explored the assumption that citations

in the COSMIC database reporting a larger number of

mutations might have putative assertions that are not re-

ported in the text of the article but rather in the supple-

mentary material, which might explain the low recall of our

initial experiments.

Abstracts versus full text

In this experiment, we consider only articles (Art Set) for

which at least one mutation is found in the reference data-

base, in the full-text set and in the abstract set (i.e. the

three-way intersection). In Table 4, we show that more mu-

tations are extracted from full text in both databases. We

have checked whether there is information extracted from

the abstracts that is missing from the full text, looking at

the precision of the information extracted in the abstract,

using the full text as reference. Precision is <96% for

COSMIC and <92% for InSiGHT. This means that most,

but not all, of the information extracted from the abstracts

can be found in the corresponding full text. A closer look

shows that the difference is due to conversion issues

for the full-text articles (i.e. in article PMID: 9927033,

C676T ! Arg226Stop in the abstract versus the C676T !

Table 3. Recall of COSMIC and InSiGHT curated mutations, evaluated over the full reference database (Recall), articles common
to each subcorpus and the reference database (Cmn Art) (Recall Common), and considering relaxation of gene match for each
case (NG = no gene; Recall NG/Recall CmnNG)

Set Cmn art Match

mutation

Recall Recall NG Mutations

common

Recall common Recall

CmnNG

COSMIC Abs 2200 1884 0.0095 0.0122 12,940 0.1456 0.1875

COSMIC FT 2071 3656 0.0184 0.0215 104,756 0.0349 0.0408

COSMIC Abs + FT 3738 4754 0.0239 0.0289 114,279 0.0416 0.0503

InSiGHT Abs 195 230 0.0328 0.0450 1233 0.1865 0.2562

InSiGHT FT 150 404 0.0575 0.0612 1626 0.2484 0.2644

InSiGHT Abs + FT 295 588 0.0837 0.0961 2657 0.2213 0.2540

.............................................................................................................................................................................................................................................................................................

Page 6 of 12

Original article Database, Vol. 2014, Article ID bau003, doi:10.1093/database/bau003
.............................................................................................................................................................................................................................................................................................

to 
,
,
[
] 
,
,
,
,
prior 
beforeprior
,
in order 
normalisation 
to 
in order 
,
,
to
,
,
,
if
above 
above 
> 


Arg226Stop in the HTML version of the full text, which was

converted to the non-standard C676T_Arg226Stop during

pre-processing) that resulted in EMU missing some mention

in the full text.

High-throughput set in COSMIC

The distribution of mutations in Table 1 shows that there

are curated articles with a large number of mutations. We

hypothesized that these are publications that make use of

high-throughput methods for genetic variant analysis, and

that there would be important differences in the perform-

ance of the automatic mutation extraction on these types

of articles.

We divided COSMIC into two groups, high-throughput

(HT) studies or not (NHT), using the MeSH headings avail-

able in MEDLINE for each article. Articles were labeled as

HT studies if they contain any of the MeSH headings in

Table 5 or any of their descendants in the MeSH hierarchy.

We evaluated this labeling procedure on the NHGRI

(National Human Genome Research Institute) catalogue

of Genome-Wide Association Studies (http://www.

genome.gov/GWAStudies), identifying 1466 PMIDs for stu-

dies indexed there. Using our MeSH heading-based strat-

egy, 1283 of these articles were labeled as HT, representing

87.34% recall of the classification procedure on this set.

Error analysis showed that not all of the GWAS PMIDs

had been indexed with MeSH key terms, which is often

the case for recently indexed publications. Redoing the cal-

culation without considering these, we labeled 1334 articles

as HT, with a recall on this set of 96.32%. We performed a

second evaluation of the top 50 articles in the catalogue,

ranked by the number of genes in the study (provided as a

private communication by National Human Genome

Research Institute), and found that 49 (98%) had one of

the MeSH headings we consider. The missed article did

not contain a MeSH heading that would be related to

this topic. These results show that the MeSH headings of

articles indexed in PubMed are good indicators for identify-

ing high-throughput studies.

Looking at the indexed PMIDs missed by this procedure,

we find that most of them are older articles. For instance,

the MeSH headings Genome-Wide Association Study and

Genome Association Studies have been available only

since 2009 and 2010, respectively. Many papers are older

than these dates. For instance, the PMID 17053108 is from

2006 and does not contain a MeSH heading relevant to the

high-throughput topic. This is because when new terms are

added to MeSH, they are not applied to articles already

indexed.

We labeled the citations in COSMIC using the procedure

based on MeSH headings. Table 6 provides the distribution

of mutation associations after the labeling. The HT articles

(79% of referenced articles) contain <94% of the muta-

tions in the COSMIC database (Mut Recall) and account

for the high average number of mutations in COSMIC. In

Table 7, we see the results of EMU over the COSMIC HT and

COSMIC NHT subsets, respectively. The NHT group shows a

much larger recall compared with the HT group, supporting

the hypothesis that the HT articles pose a particular chal-

lenge for the automated extraction methods.

To assess possible bias in the analysis described in Section

3.4 across these two subsets, we considered the proportion

of each corpus available through PMC-OA. For the full

COSMIC corpus, 6% (479 articles) are available in PMC-

OA, with slightly more of the COSMIC-NHT subset being

available in the open access collection (136 articles, 8.3%

of the COSMIC-NHT subset) than COSMIC-HT (343 articles,

5.5% of the COSMIC-HT subset). The PMC-OA subcorpus we

considered is, therefore, reasonably balanced across the

two subsets; the analysis of the collected PMC-OA articles

should be representative of both groups.

As a complementary study, we analysed the mutation

extraction performance at several mutation frequency

thresholds. As shown in Table 8, we find that most of the

articles (96%) have <30 curated mutations in COSMIC;

these articles account for <20% of the curated mutations.

Only 4% of the articles contain 80% of the mutations.

Table 9 shows the mutation extraction results at each

threshold. We find that with lower threshold values, the

recall is higher, which seems to indicate that it is more

likely that the mutations are identified in text. In addition,

we find that the mutations found in the abstracts and full

text seem to be complementary. Considering the set of art-

icles with >30 mutations, the recall drops considerably com-

pared with the other thresholds.

Table 5. MeSH headings denoting high-throughput papers

MeSH heading MeSH tree code

Computational biology H01.158.273.180

Genetic techniques E05.393

Genome G05.360.340

Molecular sequence data L01.453.245.667

Proteome D12.776.817

Proteomics H01.181.122.738

Table 4. COSMIC and InSiGHT results on common articles

Set Art

set

Match

mutation

Recall

common

Recall

commonNG

COSMIC Abs 822 806 0.2272 0.2740

COSMIC FT 822 1310 0.3692 0.4247

InSiGHT Abs 50 50 0.2475 0.3713

InSiGHT FT 50 90 0.4455 0.4950
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Analysis of additional material

Our results demonstrate that the vast majority of mutations

curated from the literature cannot be automatically identi-

fied in the abstract or in the full text of the curated articles.

This suggests that these mutations are not mentioned in

the narrative content of the articles but must appear in

parts of the article that are not being processed by the

text mining methods. We know, for instance, that import-

ant content appears not only in the body of an article but

also in tables [32]. Our analysis of the high-throughput art-

icles also led to consideration of another important source

of variants, information external to, but associated with,

the main article, such as supplementary material. It is par-

ticularly likely that a high-throughput study would exclude

a large number of results from the narrative content. We,

therefore, performed an experiment to verify this

hypothesis.

As above, coverage of mutation extraction was evalu-

ated by matching the triples (PMID, gene, mutation) ex-

tracted by EMU with the curated mutations in COSMIC

and InSiGHT. Table 10 and Figures 1 and 2 summarize the

mutations matched and the recall, by database and article

source. The full-text coverage does not get much higher

using the PDF representation of the full-text articles

where full-text XML was not available from PMC. Tables

do contain some mutations, although they only add a lim-

ited amount of information. Combining the information

from the full text and the tables (Full text + Tables) shows

that these sources are mostly complementary, indicating

that mutations in tables are not repeated in the full text.

Finally, we find that supplementary material has the largest

coverage, exceeding any other mutation source considered

by far. The combination of all the sources reaches >45% in

the case of the InSIGHT database, and is >52% for the

COSMIC database. These results confirm our suspicion

that most of the mutations being curated in the studied

databases, are not in the narrative text of the article but

appear in supplementary material and, in lower quantity, in

tables.

Despite the dramatic increase in recall by processing the

supplementary material, it is still limited to �50%. To

understand why there remains a substantial gap in recall,

we performed an error analysis of a selection of false nega-

tives, i.e. mutations missed by the text mining. Considering

the false negatives from the COSMIC database, we find

that most of the mutations belong to two articles

(PMID:21720365 with 7878 mutations and PMID:22622578

with 1550 mutations). Because a random selection of mu-

tations from COSMIC would likely return mutations only for

these two articles, we have done three separate random

selections: for each of these two articles, a selection of

Table 9. COSMIC mutation extraction results at several fre-
quency thresholds

Set Cmn

art

Match

mutation

Recall Recall

NG

Recall

common

Recall

CmnNG

C� 10 Abstract 2024 1700 0.0830 0.1054 0.3460 0.4394

C� 10 Full text 1664 2172 0.1060 0.1230 0.4218 0.4894

C� 10 Abs + FT 2941 3719 0.1551 0.1880 0.3838 0.4652

C� 20 Abstract 2144 1832 0.0576 0.0743 0.2780 0.3586

C� 20 Full text 1885 3449 0.0916 0.1084 0.3510 0.4153

C� 20 Abs + FT 3233 3988 0.1253 0.1537 0.3205 0.3930

C� 30 Abstract 2171 1858 0.0489 0.0631 0.2568 0.3317

C� 30 Full text 1969 3299 0.0868 0.1014 0.3179 0.3712

C� 30 Abs + FT 3330 4381 0.1152 0.1397 0.2955 0.3583

C>30 Abstract 29 29 0.0002 0.0002 0.0051 0.0051

C>30 Full text 102 357 0.0022 0.0026 0.0038 0.0045

C>30 Abs + FT 119 373 0.0023 0.0027 0.0038 0.0044

Table 7. COSMIC High-Throughput (HT)/Non-High Throughput
(NHT) subsets, mutation extraction results

Set Cmn

art

Match

mutation

Recall Recall

NG

Recall

common

Recall

CmnNG

HT abstract 1650 1357 0.0072 0.0096 0.1209 0.1608

HT full text 1545 2719 0.0145 0.0172 0.0270 0.0319

HT Abs + FT 2608 3501 0.0187 0.0231 0.0320 0.0395

NHT abstract 550 530 0.0461 0.0543 0.3055 0.3597

NHT full text 526 937 0.0815 0.0915 0.2350 0.2639

NHT Abs + FT 841 1259 0.1090 0.1243 0.2538 0.2895

Table 8. Descriptive statistics of mutations in COSMIC,
grouped by the number of mutations per curated article

Group PMIDs Count Average

mutation

SD Mutation

recall

COSMIC 7898 198 864 25.18 521.27 100.00%

COSMIC� 10 6549 20 491 3.13 2.50 10.30%

COSMIC� 20 7339 31 814 4.33 4.30 16.00%

COSMIC� 30 7589 38 015 5.01 5.61 19.12%

COSMIC> 30 309 160 849 520.55 2590.32 80.88%

Table 6. COSMIC high-throughput (HT)/non-high throughput
(NHT) subset statistics

Group PMIDs Count Average

mutation

SD Mutation

recall

COSMIC 7898 198 864 25.18 521.27 100.00%

COSMIC-HT 6266 187 367 29.90 584.82 94.22%

COSMIC-NHT 1632 11 497 7.04 38.05 5.78%
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10 mutations from the set of false negatives, as well as 85

mutations from the set of false negatives remaining after

removing these two articles.

The analysis of the false negatives from PMID:21720365

shows that the mutations can be found in a supplementary

plain text file. However, the format of this file is not stan-

dardized and mutations are spread across several fields

within the file, which explains why EMU did not return

any of these mutations. On the other hand, the false nega-

tives from PMID:22622578 are in an MS Excel supplemen-

tary file. Interestingly, the mutations do appear in HGVS

format, but the position numbering differs from the

curated mutations, indicating that curators adjusted the

numbering to a (different) reference sequence (genome

build). This was the only paper in our analysis that was

found to use a different reference sequence numbering

for the mutations, preventing a direct match to the infor-

mation in the database.

Analysing the randomly selected false negatives from

the rest of the articles, we also find that the missing muta-

tions do appear in the supplementary material and, less

frequently, in the tables linked to the articles or in the

full text. In many cases, we find that mutations in MS

Excel files were not in HGVS format and the position and

other details about the mutation were spread among sev-

eral fields in these files. In some other articles, e.g.

PMID:21750719, PMID:22237025 and PMID:22675565, the

chomosome position of the mutation was provided, requir-

ing further processing to determine a gene-based position.

Although less frequent, EMU did not seem to recognize

DNA mutations in tables without the prefix c. or with this

prefix but without the dot, e.g. c580G> T in PMID:

18549475. It also missed protein mutations, which are not

point mutations, e.g. in PMID:20470368 we find p.Glu554_

Val559del, p.Ser566_Glu571delinsArg and p.Trp557_

Lys558del. In a few cases, the HGVS nomenclature used

for the deletions cannot be matched directly, e.g. c.482_

483delGA vs c.482_483del2 or c.501delG vs. c.501del1

both in PMID:15932632. Only in three cases, the gene

linked to the mutation was not identified.

Looking at the false negatives from the InSiGHT data-

base, most of the missing mutations are found in tables,

either in the PMC XML file or in the article PDF.

Mutations can also be found in MS Word documents, in

contrast to MS Excel files for COSMIC.

There are many mentions not identified by EMU, mainly

because intron and exon deletions are not expressed in

HGVS format in the article tables, e.g. Del exon 3 vs.

c.367-?_645+?del in PMID:12373605. In some cases, there

are additional formatting characters, e.g. footnote indica-

tors as in 1704_1705deleAGb in PMID:15655560, which are

not properly handled by EMU. As for COSMIC, there are

some mentions that are not identified by EMU, e.g. no

prefix c. in 840insT in PMID:10732761. In some cases,

when curated in the database, they are converted to the

Table 10. Mutation extraction results from several mutation
sources for the PMC articles

COSMIC InSiGHT

Set Matched Recall Matched Recall

Abstracts 140 0.0041 1 0.0040

Full text 694 0.0205 20 0.0794

PDF (full text) 23 0.0007 7 0.0278

Tables 466 0.0138 18 0.0714

Full text + tables 906 0.0268 37 0.1468

Supplementary Material 17 015 0.5059 88 0.3492

All 17 896 0.5292 115 0.4563

Results are compared with 252 mutations linked to PMC articles in

InSiGHT and 33 814 mutations in COSMIC. PDF refers to a full-text

publication only available as PDF.
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Figure 1. COSMIC data set recall results of applying EMU to
different sources and their aggregation (All) on the PMC set.
Matching of the triple PMID, gene and mutation is required to
obtain a match.
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Figure 2. InSiGHT data set recall results of applying EMU to
different sources and their aggregation (All) on the PMC set.
Matching of the triple PMID, gene and mutation is required to
obtain a match.
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most appropriate HGVS format, e.g. from 840insT to

c.839dupT in PMID:10732761, in which the insertion is con-

verted into a duplication.

In one case, in PMID:17453009, a whole gene deletion was

expressed in natural language (entire gene deletion) instead

of the normalized HGVS mention (c.1-?_*+?del).Two

substitutions appeared in natural language in text,

e.g. C> T mutation at nucleotide 2131 in PMID:15655560,

and were missed by EMU. Finally, the position of one

missed mutation mention had been corrected by the curator

and thus did not match the mutation extracted by EMU,

e.g. 1408-54C> T in PMID:15655560 was curated as

c.1410-54C> T. This position correction was indicated with

a note in the database.

Even though there are only four genes catalogued by

InSiGHT, there remain problems mapping the gene

names, preventing some matches. For instance, MLH1 and

MLH2 can be found as hMLH1 and hMLH2, respectively, in

PMID:16995940. These variants are not in HGNC or

EntrezGene, even though they could be easily added to

the dictionary used for gene annotation.

Discussion

Our results clearly show that text mining of mutations from

MEDLINE achieves low recall. This result alone is not en-

tirely surprising, given previous work that showed similar

effects, though in a more narrow experimental set-up (e.g.

Krallinger et al. [5] focused on only two papers curated in

COSMIC, including PMID:17932254 that is in our HT group

with 972 mutations). We have shown that processing full-

text papers is important; this is also in agreement with prior

work, e.g. the analysis of protein residues in [26], as well as

the general observation of differences between abstracts

and full texts, with full texts argued to have more ‘content’

[33, 34]. Importantly, our results provide a novel result,

quantifying the significant role that processing of add-

itional material linked to the article with text mining

plays in increasing the coverage of extracted mutations.

As shown in the false-negative error analysis in the

Results section, the two databases reveal varied issues af-

fecting matching. We find that identification of mutations

other than substitutions, e.g. deletions, is problematic. In

addition, the text mining tools need to be updated to cover

a broader range of cases, e.g. to deal with information

distributed in tabular format [32].

On the other hand, we observe some differences among

the two databases we considered. There are curated muta-

tions in the COSMIC database that are not expressed based

on the gene position but rather as a chromosome offset. In

InSiGHT, the main challenge is to turn explicit mentions of

intron and exon deletions into HGVS format and to convert

insertion and substitutions to the same normalization. Post-

processing is required either to translate the identified

expressions into HGVS format or to perform the calculation

of the position and specific change. Furthermore, the mu-

tations curated in the COSMIC database can be found

mainly in supplementary material, while the InSiGHT muta-

tions can be found mainly in tables.

We also found that not all mutations extracted from the

corpora are curated in the databases. Mutations that

appear in text may not be relevant or significant for the

disease under study. For example, in PMID:10469011, the

mutation Ala140Thr is identified by EMU, but the article

explicitly states this mutation is known to be functionally

silent and so is not included in the database. As shown in

Table 1, in the COSMIC database, there are articles that are

not directly associated to any mutation, while we were able

to identify mutations in both the abstract and the full

text using EMU in 64 common articles. These mutations

were properly identified by EMU, but they were either

non-coding variants, the variants had no effect on the dis-

ease mentioned in the article or the variants were out of

scope for the database, e.g. non-somatic.

Finally, we note that new approaches to recognizing

genetic variants in text are still being explored, including

the recent tmVar tool [9]. Although we have not yet done a

full analysis using that tool, a preliminary investigation sug-

gests that the same basic pattern of high performance on

intrinsic evaluation of mutation extraction and low recall

on the extrinsic tests we have performed in our experi-

ments also holds. On the COSMIC abstract subcorpus,

tmVar extracted 3187 mutations from 2032 abstracts,

which is slightly lower in absolute numbers than what

was found by EMU (cf. 4267 mutations from 2486 abstracts

for EMU, Table 2). Although it is possible that there will be

more positive matches among these results, the overall dif-

ference between the tools in the context of our experi-

ments is likely to have only a minor impact on recall.

Conclusion

In this work, we have performed the first direct text mining

study of the recovery of genetic variants for resources that

contain explicit links to the source literature for each

included mutation. Our work supports the conclusion that

text mining can be an effective tool supporting curation of

genetic variant information, and nothing in our analysis

calls the previously established good performance of text

mining tools for automated extraction of genetic variants

from narrative text into question. However, we have iden-

tified processing of supplementary files as critical to achieve

high recall in this endeavor. Supplementary material has

not previously been considered in text mining solutions; it

is clearly an important target for these tools to consider.

We have shown that when considering only the narra-

tive content of publications, the performance of text

mining tools on the task of curation of genetic variant
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information is very low. This effect is particularly strong for

research articles based on high-throughput methods. Given

the high intrinsic performance of the text mining tool, we

can argue that most of the variants are not present in the

narrative content of publications.

We have demonstrated that processing of supplemen-

tary material using the text mining tool results in an in-

crease in recall from 2 to 53% for the COSMIC database,

and from 8 to 46% for InSiGHT. Although our conclusion

that supplementary material is a critical resource for muta-

tion curation may be unsurprising to a biologist or biocura-

tor, we have quantified the significant impact of ignoring

this material for the task we explored.

Our analysis of false negatives suggests that the majority

of the remaining missing variants can also be found in the

supplementary material, but that current text mining tools,

designed for processing of narrative text, are not entirely

suitable for the semi-structured and varied nature of add-

itional files. Tables and supplementary materials represent

mutations in a different and more varied way, including

splitting elements of a genome sequence change across dif-

ferent columns of structured file in diverse ways. Our results

clearly indicate that a text mining system that supports cur-

ation of genetic variant data must consider not only the

text but also additional material associated to published

articles. However, many text mining tools, e.g. tmVar, rely

on sequence classifiers that are expected to be used with

data of the same type they were trained on, specifically

sequences of characters or tokens of natural language

text. Tables and supplementary material are not of the

same type, and a sequence classifier trained on text

would not be expected to work well on data with such

different characteristics. Additional work is required to

make such tools work robustly with both types of data.

It can be argued that the development of more robust

tools to handle the complexity of supplementary materials

is not the appropriate solution to the problem of recover-

ing genetic variants from publications; that publications

should instead include clearly structured data in a standard

semantically specified representation (e.g. a nanopublica-

tion [35]). We support efforts towards requiring direct de-

position of mutation data into central repositories that can

be referred to in a publication, avoiding the need for

manual curation of this data. Providing the data alongside

the publication in a consistent structured format would be

ideal. However, even if such changes were implemented

tomorrow and there was full compliance with these stand-

ards, an extremely unlikely scenario, we will still have the

problem of extracting information from the 22 million pub-

lications currently indexed in PubMed. The information

locked in unstructured or semi-structured form within

these publications, and the publications that will undoubt-

edly continue to appear with ad hoc supplementary mater-

ial, is valuable and requires extraction. Furthermore, even if

data were provided in a structured format, both the struc-

ture and the content of the data might be inadequate for

future needs, therefore potentially necessitating further

processing of the text in any case.

Future Work

A large proportion of genetic variants are found in tables

and supplementary material associated with the published

literature. We plan to improve coverage of genetic variant

extraction tools by developing targeted methods for muta-

tion extraction in tables and supplementary material, start-

ing with extending previous work [32]. Special retrieval

strategies might be required, as full-text articles, supple-

mentary material and tables are difficult to obtain

automatically.

Our work has focused on the coverage of an automatic

genetic variant extraction tool, but as mentioned before,

there are mutations in the articles that are not curated in

the databases. We would like to filter the delivered variants

according to the specific focus of the databases, e.g. germ-

line variants for InSiGHT and somatic variants for COSMIC,

to identify those variants of direct interest to a given cur-

ation context. In addition, variant information is relevant

within the context of the disease under study. We plan to

extend this work, linking the extracted mutations to the

diseases under research and identifying the change of func-

tion of the mutated gene product, by taking advantage of

the annotated mutation-disease relationships in the

Variome Corpus [11].
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