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Abstract

Background: Identifying potential associations between genes and diseases via biomedical experiments must be
the time-consuming and expensive research works. The computational technologies based on machine learning
models have been widely utilized to explore genetic information related to complex diseases. Importantly, the
gene-disease association detection can be defined as the link prediction problem in bipartite network. However,
many existing methods do not utilize multiple sources of biological information; Additionally, they do not extract
higher-order relationships among genes and diseases.

Results: In this study, we propose a novel method called Dual Hypergraph Regularized Least Squares (DHRLS) with
Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL), in order to detect all potential gene-disease
associations. First, we construct multiple kernels based on various biological data sources in gene and disease spaces
respectively. After that, we use CAK-MKL to obtain the optimal kernels in the two spaces respectively. To specific,
hypergraph can be employed to establish higher-order relationships. Finally, our DHRLS model is solved by the
Alternating Least squares algorithm (ALSA), for predicting gene-disease associations.

Conclusion: Comparing with many outstanding prediction tools, DHRLS achieves best performance on gene-disease
associations network under two types of cross validation. To verify robustness, our proposed approach has excellent
prediction performance on six real-world networks. Our research work can effectively discover potential
disease-associated genes and provide guidance for the follow-up verification methods of complex diseases.

Keywords: Gene-disease association network, Hypergraph learning, Dual Laplacian regularized least squares,
Bipartite network, Multiple kernel learning

Background
Identification of the association between disease and
human gene has attracted more attention in the field
of biomedicine, and has become an important research
topic. A great deal of evidence shows that understand-
ing genes related to diseases is of great help to prevent
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and treat diseases. However, identifying the relationship
between disease and gene by biological experiments has
to spend a long time and cost. Many computational mod-
els have been proposed to solve some similar biologically
related problems. For example, in the fields of biology
[1–3], pharmacy [4], and medicine [5, 6], machine learn-
ing methods help solve many analytical tasks.
In order to explore the relationship between gene

and disease, a variety of algorithms have been proposed
for association prediction. The typical machine learning
methods [7–10] is to extract relevant features of known
genetic data of each disease and train the model to deter-
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mine which disease is related to those genes, so these algo-
rithms are usually single-task algorithms for each disease.
This model needs to be trained separately. Therefore, for a
new disease or an existing disease with few known genes,
due to the lack of known association data or the rele-
vant information between various diseases, it is difficult to
train the learning model. As a machine learning method,
the matrix completion methods [11–13] can solve the
above problem by calculating the similarity informa-
tion and predicting the association between disease and
gene, but the matrix completion method usually takes
a long time to converge the local optimal solution. The
other type is network-based model [14–17]. Li et al. [17]
predicted the association by systematically embedding a
heterogeneous network of genes and diseases into Graph
Convolutional Network. This model usually divides genes
and diseases into two heterogeneous networks. The edges
in network represent the similarity between nodes. The
model is based on the assumption that genes with high
similarity are easily related to similar diseases. However,
they are biased by the network topology, and it is neces-
sary to rely on effective similarity information. It is not
easy for these methods to integrate related sources of
multiple genes and diseases.
Multiple Kernel Learning (MKL) is an important

machine learning method, which can effectively combine
multi-source information to improve the model effect,
and is applied to many biological problems. For instance,
Yu et al. [8] implemented one-class of Support Vector
Machine while optimizing the linear combination of the
gene nucleus and the MKL method. Ding et al. [18–21]
proposed multiple information fusion models to identify
drug-target and drug-side effect associations. Wang et al.
[22] proposed a novel Multiple Kernel Support Vector
Machine (MKSVM) classifier based on Hilbert Schmidt
Independence Criterion to identify membrane proteins.
Shen [23] and Ding et al. [24] proposed a MKSVM model
to identify multi-label protein subcellular localization.
Ding et al also employ fuzzy-besd model to predict DNA-
binding proteins [25] and protein crystallization [26].
Zhang et al. [27] developed an ensemble predictive model
of classifier chain to identify anti-inflammatory peptides.
LapRLS framework [28] is often used in various fields

based on machine learning model, such as the predic-
tion of Human Microbe-Disease Association [29] and the
detection of human microRNA-disease association [30].
At the same time, Hypergraph learning [31–33] is becom-
ing popular. Hypergraphs can represent more complex
relationships among various objects. Bai et al. [34] intro-
duced two end-to-end trainable operators to the family
of graph neural networks, i.e., hypergraph convolution
and hypergraph attention.Whilst hypergraph convolution
defines the basic formulation of performing convolution
on a hypergraph, hypergraph attention further enhances

the capacity of representation learning by leveraging an
attention module. Zhang et al. [35] developed a new
self-attention based graph neural network called Hyper-
SAGNN applicable to homogeneous and heterogeneous
hypergraphs with variable hyperedge sizes. Ding et al.
[36] predicted miRNAs-disease associations by a hyper-
graph regularized bipartite local model, which is based on
hypergraph embedded Laplacian support vector machine.
Inspired by what is mentioned above, we propose a

novel prediction method named Dual Graph Hypergraph
Least Squares model (DHRLS) to predict gene-disease
associations. Some computational models based on graph
learning can effectively solve various network problems.
In this paper, the gene-disease association detection can
be defined as the link prediction problem in bipartite
network [37–39]. Furthermore, two feature spaces are
described by similarity information of multiple genes and
diseases. Multiple kernel learning is also used to combine
multiple informations linearly. Here, we use the Centered
Kernel Alignment-based Multiple Kernel Learning (CKA-
MKL) [40] to obtain weights of multiple kernels and then
combine these kernels via optimal weights in two spaces,
respectively. In addition, we also embed hypergraphs in
graph regular terms to preserve high-order information
of genes and diseases, using more complex information to
improve prediction performance. To prove the effective-
ness of our proposed method, six types of real networks
and one gene-disease associations network are employed
to test our predictive model. On the gene-disease asso-
ciations dataset, our method has been compared with
some methods under two types of cross-validation (CV).
Comparing DHRLS with other state-of-the-art methods
on predicting gene-disease associations, including CMF,
GRMF and Spa-LapRLS, our model achieves the high-
est AUC and AUPR in 10-fold cross validation under
CV1, but our model achieves lower AUC under CV2
compared with Spa-LapRLS. At the same time, DHRLS
has excellent prediction performance on six benchmark
datasets.

Results
In order to better test the performance of our method,
our proposed approach is verified on real gene-disease
associations dataset under two types of cross validation.
We also test the capability of DHRLS in predicting novel
disease after confirming the excellent performance of
our method based on cross validation. Furthermore, we
employ benchmark datasets to evaluate our approach and
compare it with other existing methods.

Dataset
We download the dataset of gene-disease associations
from [41] (http://cssb2.biology.gatech.edu/knowgene).
Since the number of genes is too large and the information

http://cssb2.biology.gatech.edu/knowgene
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Fig. 1 Different AUPR values under different k-Nearest Neighbor and iterations

is insufficient, we remove some redundant gene data.
Finally, our dataset contains 31,519 associations of 960
diseases and 3,118 genes, where 279 genes are associated
with only one disease.

Evaluation measurements
The 10-fold Cross Validation (CV) is usually used to ver-
ify the bipartite network detection. In order to compare
the prediction performance with other methods under

the same evaluation measurement, we will also use 10-
fold CV for verification. At the same time, Area under
the receiver operating characteristic curve (AUC) and
Area Under the Precision-Recall curve (AUPR) as the
major evaluation indicator, will also be applied to evaluate
methods. There are two CV settings as follows:
CV1: Pair prediction. All gene-disease associations are

randomly divided into test set and training set, and the
associations in the test set are removed.

Fig. 2 The AUC (a) and AUPR (b) of models with different λd and λg under CV1. λd (horizontal axis) and λg (vertical axis) are set from 2−5 to 25 with
step 21. The yellow color is the higher value, and blue color is the lower value
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Table 1 The performance of different models under CV1

Model AUC AUPR

CKA-MKL + DHRLS 0.9742 0.8092

mean weighted + DHRLS 0.9703 0.8006

Kd
GIP&K

g
GIP + DHRLS 0.9554 0.7377

Kd
SEM&K

g
GO + DHRLS 0.9154 0.2827

CV2: Disease prediction. All diseases are randomly
divided into test set and training set, and all associations
of diseases in the test set are removed.

Parameter settings
In our study, DHRLS has some parameters λd , λg , β , k
and number of iterations. In the parameter selection, we
consider all combinations of following values: number of
k-Nearest Neighbor is from 10 to 100 (with step 10); num-
ber of iterations is {1,2,...,15};

{
2−5, ..., 20, ..., 25

}
for λd and

λg ; β = 1.
Figure 1 shows the results of our model obtained under

different iteration times and k values. For the number
of k-Nearest Neighbor, we select the optimal k under
the highest AUPR value and can clearly find that AURP
reaches its peak when k = 50. For the number of itera-
tions, it basically converges at the four times. In order to
train the model more fully, we finally choose the number
of iterations to be 10.

Figure 2 shows the results of AUC and AUPR in grid
search for parameters λd and λg . The optimal λd and λs

are also selected under highest AUPR value. In this study,
the optimal parameters of Hypergraph Laplace regular
terms are obtained on λd = 1 and λg = 0.25. Under this
parameter selection, the AUC value is relatively high.

Evaluation on gene-disease association data
Performance analysis
We evaluate the different performance of CKA-
MKL, mean weighted-based MKL and single kernel(
Kd
SEM&Kg

GOandK
d
GIP&K

g
GIP

)
. The testing results are

shown in Table 1 and Fig. 3.
Obviously, the model of CKA-MKL on DHRLS obtains

the best performance with AUC of 0.9742 and AUPR
of 0.8092. Comparing with mean weighted on DHRLS,
AUPR and AUC are increased by 0.0086 and 0.0039.
This means that CKA combines multi-kernel informa-
tion more effectively than simple average combination.

Fig. 3 The performance of different models under CV1
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Fig. 4 The kernel weights of drug and gene space respectively

What’s more, DHRLS with single kernel
(
Kd
SEM&Kg

GO

)

obtains lower performance than the model with GIP ker-
nel. Therefore, GIP is an effective method to calculate the
kernel matrix. By comparing the results of single kernel
andmulti-kernel models, combiningmultiple information
is an effective method to improve the prediction effect of
the model.
Furthermore, Fig. 4 shows the weights of each kernel

matrix in the gene space and disease space. The weight
of the kernel indicates the degree of contribution of the
corresponding kernel matrix. Comparing the weights in
the gene and disease spaces, the GIP kernel has a higher
weight in both spaces, which is consistent with the results
in Table 1. In gene space, except for GIP kernel, the kernel
weight of Kg

GO is higher than Kg
PPI and Kg

SW . This means
that Kg

GO’s contribution to the overall is better than the
other two kernel matrices.

Comparison to existing predictors
Many excellent methods have been proposed to predict
the bipartite network link, including Spa-LapRLS [30],
GRMF [42] and CMF [43]. Our method is compared
to the existing methods and DGRLS under CV1 and
CV2, respectively. Under CV1, the results are shown in

Table 2 and Fig. 5. Our method achieves the best AUC
(0.9742) and AUPR (0.8092). For AUC, DHRLS is not
much different from DGRLS and Spa-LapRLS, which is
about 0.01 higher than GRMF and CMF. As for AUPR,
DHRLS achieves better performance than other meth-
ods. Comparing the results of DHRLS and DGRLS, it can
be seen that the hypergraph-based model is better than
the normal graph model, which shows that the high-level
graph information constructed by the hypergraph is help-
ful for the predict performance. This is related to the
ability of hypergraph to effectively find similar informa-
tion between nodes. At the same time, the methods based
on LapRLS (DHRLS, DGRLS and Spa-LapRLS) are higher
than those based on matrix factorization (GRMF and
CMF), indicating that the model framework of LapRLS
has more advantages in the prediction of gene-disease
associations.
In order to test the performance of our method detect-

ing new diseases, the associations for new diseases
(CV2) are not observed in the training set. Table 3
and Fig. 6 show the results of CV2. Under CV2,
our method obtains best AUPR (0.1413). However, the
performance of our model on AUC (0.8987) is sec-
ondary best, which is about 0.02 lower than that of
Spa-LapRLS.

Table 2 The performance of different methods under CV1

Method AUC AUPR

DHRLS 0.9742 0.8092

DGRLS 0.9700 0.7842

Spa-LapRLS 0.9704 0.6222

GRMF 0.9609 0.7521

CMF 0.9594 0.7823
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Fig. 5 The performance of different methods under CV1

Comparing the results of DGRLS and DHRLS under
CV1 and CV2, we clearly find that utilizing hypergraph to
establish higher-order relationships greatly improves the
predictive ability of the model.

Case study
Our model can predict genes associated with new dis-
eases. Here, we use DHRLS to rank the predicted values
of genes related to new diseases in descending order.
The higher the ranking, the more likely it is to interact.
We set the value of a disease in the correlation matrix
to 0 as a new disease. One example is Lung Diseases.
We intercepted the top 50 predicted genes and 40 (80%)
known related genes in the predicted results. All predicted
ranking results are shown in Table 4.

Evaluation on six benchmark datasets
To test the performance of our proposed method, we
consider six real-world networks: (i) G-protein cou-
pled receptors (GPC Receptors): the biological network
of drugs binding GPC receptors; (ii)Ion channels: the

biological network of drugs binding ion channel proteins;
(iii) Enzymes: the biological network of drugs binding
enzyme proteins; (iv) Southern Women (referred here
as “SW”): the social relations network of women and
events; (v) Drug-target: the chemical network of drug-
target interaction; (vi) Country-organization (referred
here as “CO”): the network of organization most related
to the country. Detailed information about six datasets is
described in Table 5.
Since there is only the data of interaction matrix of

binary network, in order not to introduce additional
data, we directly use the GIP kernel extracted from the
interactionmatrix as the kernel matrix for each real-world
network. The kernel is defined as follows:

K∗
1(i, j) = exp

(−γ1||Yi − Yj||2
)

(1a)

K∗
2(m, n) = exp

(
−γ2||YT

m − YT
n ||2

)
(1b)

where Y is the train set of binary network, and Yi is the
vector of associations.

Table 3 The performance of different methods under CV2

Method AUC AUPR

DHRLS 0.8987 0.1413

DGRLS 0.7887 0.1233

Spa-LapRLS 0.9199 0.1402

GRMF 0.7240 0.1013

CMF 0.8640 0.1256
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Fig. 6 The performance of different methods under CV2

We test our method on above six datasets and compare
results with other methods [44]. Wang et al. [44] pro-
posed a framework, called Similarity Regularized Non-
negative Matrix Factorization (SRNMF), for link pre-
diction in bipartite networks by combining the similar-
ity based structure and the latent feature model from
a new perspective. Tables 6 and 7 show the compari-
son of precision and AUC for six real-world networks.
DHRLS performs better than other methods on Enzymes
and Ionchannel networks, and values of our precision
and AUC are higher than others. For GPC and Drug-
target networks, the precision is same, but AUC is
slightly higher. This directly indicates the clear perfor-
mance advantage of our approach in real-world binary
networks.

Discussion
We developed the model DHRLS for the gene-disease
association prediction. In order to evaluate our model,
we test not only on real gene-disease associations dataset,
but also on some benchmark datasets. By comparing the
results of single-kernel model and multi-kernel model,
MKL can effectively combine multi-kernel information to
improve the predictive ability of the model. By adjust-
ing different kernel weights, different kernel matrices can
express different levels of information. However, MKL
needs to be applied to samples with multiple feature
information, and the application effect is not obvious for
problems with fewer features. The comparison of DHRLS

and DGRLS can illustrate the effectiveness of hypergraph.
After adding the hypergraph, the result of the model is
obviously improved, which is caused by the characteristics
of the hypergraph. Hypergraph uses high-order informa-
tion between nodes, that is, a hyperedge can connectmore
than two nodes, which can better indicate the degree of
similarity between nodes. Comparing DHRLS with other
state-of-the-art methods on predicting gene-disease asso-
ciations, including CMF, GRMF and Spa-LapRLS, our
model achieves the highest AUC and AUPR in 10-fold
cross validation under CV1, but our model achieves lower
AUC under CV2 compared with Spa-LapRLS. At the same
time, DHRLS has excellent prediction performance on six
benchmark datasets.
Nevertheless, our model still has some flaws.First of

all, the model contains a large number of matrix oper-
ations and optimization problems, and lacks a certain
degree of simplicity. Secondly, we need to calculate the
multi-kernel information of the sample. Therefore, we
cannot achieve predictions for samples without features.
At present, most of the computational methods are devel-
oped to predict the associations of gene-disease, and there
is still a great possibility to improve the prediction per-
formance. For example, hypergraph can be considered in
the graph based method. In the future, for optimizing the
model and improving the prediction performance, we can
add some data preprocessing and calculate simplification
on the basis of DHRLS, as well as better method to build
hypergraph.
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Table 4 Predicted top 50 genes for Lung Diseases by our method

Rank Gene Confirm Rank Gene Confirm

1 DQB1_HUMAN Y 26 PBX2_HUMAN Y

2 DQA1_HUMAN Y 27 BRD2_HUMAN Y

3 IFNG_HUMAN N 28 TGFB1_HUMAN N

4 DQA2_HUMAN Y 29 CFTR_HUMAN Y

5 ACE_HUMAN Y 30 PAFA_HUMAN Y

6 TNFA_HUMAN Y 31 TAP2_HUMAN N

7 DPB1_HUMAN Y 32 UBP38_HUMAN Y

8 CTLA4_HUMAN N 33 MUC7_HUMAN Y

9 ADA33_HUMAN Y 34 DPP10_HUMAN Y

10 NOTC4_HUMAN Y 35 CH3L1_HUMAN Y

11 PDE4D_HUMAN Y 36 IL6RA_HUMAN Y

12 IL13_HUMAN N 37 RNBP6_HUMAN Y

13 DRA_HUMAN Y 38 CHIT1_HUMAN Y

14 SMAD3_HUMAN Y 39 ELF3_HUMAN Y

15 IL4_HUMAN N 40 ORML3_HUMAN Y

16 DPA1_HUMAN Y 41 S2546_HUMAN Y

17 SUOX_HUMAN Y 42 CDK2_HUMAN Y

18 IKZF4_HUMAN Y 43 IL2RB_HUMAN Y

19 EMSY_HUMAN Y 44 IL33_HUMAN Y

20 IL18R_HUMAN Y 45 DOA_HUMAN Y

21 ILRL1_HUMAN Y 46 X5CF87_HUMAN Y

22 ZNT8_HUMAN Y 47 TBX21_HUMAN N

23 IL10_HUMAN N 48 IL12A_HUMAN N

24 CRUM1_HUMAN Y 49 2B1G_HUMAN N

25 TSLP_HUMAN Y 50 PSPB_HUMAN Y

Conclusion
In summary, we propose a Dual Hypergraph Regularized
Least Squares (DHRLS) based on CKA-MKL algorithm,
for the gene-disease association prediction. We use mul-
tiple kernels to describe gene and disease spaces. The
weights of these kernels are obtained by CKA-MKL and
used to combine kernels. We use hypergraph to describe
more complex information to improve our prediction.
Our purpose is to establish an accurate and effective

prediction model of gene-disease association based on
the existing data of gene-disease associations, and pro-
vide guidance for the follow-up verification methods of
complex diseases.

Methods
In this study, we first use two disease kernels and four gene
kernels to reveal potential associations of genes and dis-
eases. Then, the MKL method CKA is used to combine

Table 5 Statistics of six real-world networks

Network |V| |W| |E| LD AD LAD RAD

GPC 95 223 635 0.0300 2.00 6.68 2.85

Enzymes 664 445 2926 0.0099 2.64 4.41 6.58

Ionchannel 210 204 1476 0.0345 3.57 7.03 7.24

Drug-target 200 150 454 0.0151 1.30 2.27 3.03

SW 18 14 89 0.3532 2.78 4.94 6.36

CO 144 151 12170 0.5597 41.25 84.51 80.60

|V|, |W| denote the number of two types of nodes respectively; |E| is the number of edges; LD, AD, LAD, and RAD are the link density, the average degree, the left average
degree, the right average degree.
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Table 6 Precision by different methods on six real networks

Method GPC Enzymes Ionchannel Drug-target SW CO

DHRLS 0.43 0.73 0.74 0.75 0.26 0.94

SRNMF-CN 0.41 0.69 0.69 0.74 0.20 0.94

SRNMF-AA 0.43 0.69 0.69 0.74 0.22 0.92

SRNMF-JC 0.43 0.69 0.69 0.74 0.23 0.93

SRNMF-CAA 0.42 0.69 0.69 0.74 0.20 0.93

SRNMF-CJC 0.42 0.69 0.69 0.73 0.22 0.94

Comparison refers to the reference [44].

above kernels into one disease kernel and one gene ker-
nel. Finally, we use Dual Hypergraph Regularized Least
Squares to identify gene-disease associations. Figure 7
show the flowchart of our method DHRLS.

Problem definition
The prediction of gene-disease associations can be
regarded as a recommendation system. Given n diseases
D = {d1, d2, , ..., dn}, m genes S = {

g1, g2, , ..., gm
}
and

gene-disease associations. The association between gene
and disease items can be expressed as an adjacent matrix
Y ∈ Rn×m. The element of adjacent matrix Y is the rela-
tionship between genes and diseases. If disease dj(1 ≤ j ≤
m) is associated with gene gi(1 ≤ i ≤ n), the value of
Yi,j is set as 1, otherwise it is 0. Genes, diseases, and their
associations are formulated as a bipartite network.

Related work
LapRLS framework [28] is often used in various fields
based on machine learning model, such as the predic-
tion of Human Microbe-Disease Association [29] and the
detection of human microRNA-disease association [30].
At the same time, Hypergraph learning [31–33] is becom-
ing popular. Hypergraphs can represent more complex
relationships among various objects.
The Laplacian Regularized Least Squares (LapRLS)

model [45] based on graph regularization is employed to
predict potential associations in a bipartite network. The

functions of model can be defined as follows:

F∗
a = argmin J(Fa) = ||Ytrain − Fa||2F + λatr

(
FTa LaFa

)

F∗
b = argmin J(Fb) = ||Ytrain − Fb||2F + λbtr

(
FTb LbFb

)

(2)

where F∗
a = Kaααα∗

a, F∗
b = Kbααα

∗
b, and Fa, ααα∗

a, FTb , ααα∗
b
T ,

Ytrain ∈ Rn×m. Ka ∈ Rn×n and Kb ∈ Rm×m are kernels in
two feature space, separately.
La ∈ Rn×n and Lb ∈ Rm×m are the normalized Lapla-

cian matrices as follows:

La = D−1/2
a �aD1/2

a ,�a = Da − Ka

Lb = D−1/2
b �bD

1/2
b ,�b = Db − Kb

(3)

where Da and Db are diagonal matrices, Da(k, k) =∑n
l=1 Ka(k, l), Db(k, k) = ∑m

l=1 Kb(k, l)
The variables αααa and ααα∗

b of LapRLS can be solved as
follows:

ααα∗
a = (Ka + λaLaKa)

−1 Ytrain

ααα∗
b = (Kb + λbLbKb)

−1(Ytrain)
T (4)

And F∗
a and F∗

b can be calculated as follows:

Table 7 AUC by different methods on six real networks

Method GPC Enzymes Ionchannel Drug-target SW CO

DHRLS 0.89 0.96 0.97 0.98 0.85 1.00

SRNMF-CN 0.84 0.88 0.94 0.93 0.83 1.00

SRNMF-AA 0.83 0.88 0.94 0.93 0.82 1.00

SRNMF-JC 0.83 0.88 0.93 0.92 0.85 1.00

SRNMF-CAA 0.83 0.87 0.94 0.92 0.82 1.00

SRNMF-CJC 0.83 0.87 0.95 0.93 0.80 1.00

Comparison refers to the reference [44].
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Fig. 7 The overview of our proposed method

F∗
a = Ka(Ka + λaLaKa)

−1Ytrain

F∗
b = Kb (Kb + λbLbKb)

−1 (Ytrain)
T (5)

The predictions from two feature spaces are combined
into:

F∗ = F∗
a + (F∗

b)
T

2
(6)

Feature extraction
To improve effectiveness of detecting gene-disease associ-
ations, We use two and four types of similarity for disease
and gene separately. In our work, we constructed the mul-
tiple kernels of diseases and genes to represent the feature
sets. Table 8 summarizes whole kernels, including two
feature spaces.

Disease space
We calculate two classes of disease kernels, including
semantic similarity kernel and Gaussian Interaction Pro-
file (GIP) kernel (for disease).

a) Semantic similarity The disease semantic similarity
kernel is calculated by the relative positions in the MeSH
[46] disease. Directed Acyclic Graph (DAG) [47] can
describe disease di as a node. A disease di can be described
as a node in DAG and denoted as DAGdi = (di,Tdi ,Edi),
where Tdi is the set of all ancestor nodes of di including
node di itself and Edi is the set of corresponding links. A
semantic score of each disease t ∈ Tdi can be calculated as
follows:

Ddi(t)
{
1 if t = di
max{� ∗ Ddi(t

′
)|t′ ∈ children of t} if t �= di

(7)
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Table 8 Summary of kernels in two feature spaces

Space Kernel Description

Disease
Kd
SEM Semantic similarity for disease

Kd
GIP Gaussian interaction profile for disease

Gene

Kg
GO Functional information of gene

Kg
PPI Protein-protein interactions(PPIs) network of gene

Kg
SW Sequence information of gene

Kg
GIP Gaussian interaction profile for gene

where � is the semantic contribution factor, which is set
to 0.5 in this paper.
Then, the semantic score of disease di can be calculated

as follows:

DV (di) =
∑

t∈Tdi
Ddi(t) (8)

So, the disease semantic similarity kernel Kd
SEM ∈ Rn×n

is calculated as follows:

Kd
SEM

(
di, dj

) =
∑

t∈Tdi
⋂

Tdj

(
Ddi(t) + Ddj(t)

)

DV (di) + DV (dj)
(9)

b) GIP kernel similarity The similarity between diseases
can also be calculated by GIP. Given two diseases di and
dj(i, j = 1, 2, ..., n), the GIP kernel can be calculated as
follows:

Kd
GIP

(
di, dj

) = exp
(
−γd||Ydi − Ydj ||2

)
(10)

where Ydi and Ydj are the information of associations for
vector disease di and dj. γd (set as 0.5) is the bandwidth of
GIP kernel.

Gene space
Four types of gene kernels, including Gene Ontology
(GO) [48] similarity, Protein-protein interactions (PPIs)
network similarity, sequence similarity kernel and GIP
kernel (for gene) are utilized to represent the relationship
between genes.

a) GO similarity The information of GO is obtained
through DAVID [49]. GO similarity

(
Kg
GO ∈ Rm×m)

is the
overlap of GO annotations on two genes, and we simply
use GOSemSim [50] to get it. We consider one option of
GO: cellular component (CC) to represent gene functional
annotation.

b) PPIs similarity We download the protein-protein
interactions network from previous research [41] and
select the sub-networks related to our genes. Give the
topological feature vectors pi and pj of two genes in the

PPIs network. The Cosine similarity of PPIs network can
be calculated as follows:

Kg
PPI

(
pi, pj

) = pi · pj
||pi||||pj|| (11)

c) Sequence similarity We use the normalized Smith
Waterman (SW) score [51] tomeasure the sequence simil-
arity between the two gene sequences, which is calculated
as follows:

Kg
SW

(
gi, gj

) = SW
(
Sgi , Sgj

)

√
SW

(
Sgi , Sgi

)√
SW

(
Sgj , Sgj

) (12)

where SW (., .) is Smith Waterman score. Sgi is the infor-
mation of sequence for gene gi.

d) GIP kernel similarity GIP is also employed to build
gene GIP kernel

(
Kg
GIP

)
. Given two genes gi and gj(i, j =

1, 2, ...,m), the GIP kernel can be calculated as follows:

Kg
GIP

(
gi, gj

) = exp
(−γg ||Ygi − Ygj ||2

)
(13)

where Ygi and Ygj are the information of associations for
vector gene gi and gj. γg (set as 0.5) is the bandwidth of
GIP kernel.

Multiple kernel learning
In our work, two kernels in the disease space including
Kd
SEM and Kd

GIP , and four kernels of gene space including
Kg
SW ,Kg

GO,K
g
PPI and Kd

GIP . We then need to combine these
kernels bymeans of linear combination in order to achieve
the optimal ones.

K∗ =
k∑

i=1
ωiKi

Ki ∈ RN×N

k∑

i=1
ωi = 1

(14)

where k is the number of kernels and ωi is the weight of
the kernel Ki. N is the number of samples in kernel Ki.
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The method CKA-MKL is utilized to combine gene
kernels and disease kernels, respectively. The cosine simi-
larity between K1 and K2 is defined as follows:

CA (K1,K2) = < K1,K2 >F
||K1||F ||K2||F (15)

where K1,K2 ∈ Rn×n, < K1,K2 >F= Trace
(
K1

TK2
)
is

the Frobenius inner product and ||K1||F = √
< K1,K1 >F

is Frobenius norm.
The higher the cosine value, the greater the similarity

between the kernels. CKA is based on the assumption
that the combined kernel (feature space) should be similar
to the ideal kernel (label space). Therefore, the alignment
score between the combined kernel and the ideal kernel
should be maximized. The objective function of centered
kernel alignment is as follows:

max
ω≥0

CA (Kω,Kideal)

= max
ω≥0

< Kc
ω,Kideal >F

||Kc
ω||F ||Kideal||F

subject toKω =
k∑

i=1
ωiKi

Kc
ω = UNKωUN

(16)

where
∑k

i=1 ωi = 1, ωi ≥ 0, i = 1, 2, ..., k. UN = IN −
(1/N)lN lTN denotes a centering matrix, and IN ∈ RN×N is
the N-order identity matrix, lN is the N-order vector with
all entries equal to one. Kc

ω is the centered kernel matrix
associated with Kω. Equation 16 can be written as follow:

min
ω≥0

ωTMω − 2ωTa (17)

where a=(
<Kc

1,Kideal>F,<Kc
2,Kideal>F , ...<Kc

k ,Kideal>F
)T∈

Rk×1 and M denotes the matrix defined by
Mij =< Kc

i ,Kc
j >F , for i, j = 1, ..., k. We can obtain the

weight (ω) by solving this simple quadratic programming
problem.
CKA-MKL estimates the weights of wd ∈ Rkd×1,wg ∈

Rkg×1, to combine disease
(
Kd
SEM,Kd

GIP ∈ Rn×n
)
and gene

(
Kg
SW ,Kg

GO,K
g
PPI ,K

g
GIP ∈ Rm×m)

kernels, separately. kd
and kg are the number of kernels in disease space and gene
space. In order to obtain the optimal kernel matrixK∗

d and
K∗
g in the two spaces, first calculate the weights of ker-

nel matrices in each space by Eq. 17, and then combine
them by Eq. 14. Here, Kd

ideal = YtrainYT
train ∈ Rn×n in the

disease space; and Kg
ideal = YT

trainYtrain ∈ Rm×m in the
gene space.

Hypergraph learning
In graph theory, a graph represents the pairwise rela-
tionship between a group of objects. In traditional graph
structures, vertices represent objects, and edges represent

relationships between two objects. However, traditional
graph structures cannot express more complex relation-
ships. For example, they cannot express more than three
relationships in pairs. Hypergraph [31] solves this prob-
lem well. In hypergraph theory, this kind of multi-object
relationship is represented by using a subset of vertex
sets as super edges. In this study, we use hypergraph to
establish this higher-order relationship. In Fig. 8 (left),
{v1, v2, ..., , v7} represents the vertex set, and {v2, v4, v6} are
contained in hyperedge e1. Each hyperedge may comprise
two or more vertices. The hyperedge will degenerate into
a normal edge, when there are only two vertices in the
hyperedge.
The construction of hypergraph is similar to that of

ordinary graph. Hypergraph also needs a vertex set V, an
hyperedge set E and the weight of hyperedge www ∈ RNe×1.
Here, each hyperedge ei(i = 1, 2, ...,Ne) is given a weight
w(ei). The difference is that the hyperedge set of a hyper-
graph is actually a set of vertices. Therefore, a hypergraph
can be represented by G = (V,E,www).
For the hypergraph G, the incidence matrix H conveys

the affinity between vertices and hyperedges. And, each
element ofH can be given by the following formula:

H(v, e) =
{
1 ifv ∈ e
0 ifv �∈ e (18)

The matrix H describes the relationship between ver-
tices and is shown in Fig. 2 (right). Specifically, Hi,j = 1
means the vertex vi is included in the hyperedge ej. On the
contrary, Hi,j = 0 means that the vertex vi is not in the
hyperedge ej
In a hypergraph G. The degree of each vertex and

hyperedge and the weight of hpyperdege are expressed as
follows:

d(v) =
∑

e∈E
H(v, e)

δ(e) =
∑

v∈V
H(v, e)

w(ej) =
k∑

i=1
K∗(vi, vj)

(19)

where K∗ is the combined kernel.
The hypergraph is constructed using the k Nearest

Neighbor (kNN) algorithm. Specifically, each vertex as
the center point, and find the k vertices with the largest
similarity according to the kernel matrix to form a hyper-
edge. Assuming that there are N samples, we can con-
struct N hyperedges. In this study, we define the weight
of each hyperedge is the sum of kernel values of the k
vertices closest to center point, and finally the weight is
normalized.
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Fig. 8 Hypergraph model in our method

Then, we compute three matricesDv,De andDw, where
Dv and De are the diagonal matrices of d(v) and d(e). Dw
is the matrix of hyperedge weights.

Dv = diag(d)

De = diag(δ)
Dw = diag(w)

(20)

The hypergraph Laplacian matrix Lh [31] is defined as
follows:

Lh = I − 			

			 = D−1/2
v HDwD−1

e HTD−1/2
v

(21)

where I is the identity matrix.
Consequently, we can obtain the hypergraph Laplacian

matrix Lhd and Lhg about the disease and gene spaces,
respectively.

Dual hypergraph regularized least squares
Baesd on LapRLS method, we propose a novel model
to predict the associations of genes and diseases, named
Dual Hypergraph Regularized Least Squares (DHRLS),
through incorporation of the multiple informations of
gene and disease feature spaces into the dual hypergraph
regularized least squares framework. The objective func-
tion can be written as follow:

minE(F∗) = ||K∗
dαααd +

(
K∗
gαααg

)T − 2Ytrain||2F (22)

where F∗
d = K∗

dαααd and F∗
g = K∗

gαααg . The F∗ could be
calculated by F∗ =

(
F∗
d + (F∗

g )
T
)

/2. F∗ is an average com-
bination of gene and disease space evaluation as the final
prediction result.

Then to avoid overfitting of αααd and αααg to training data,
we apply L2 (Tikhonov) regularization to Eq. 22 by adding
two terms regarding αααd and αααg .

minE(F∗) = ||K∗
dαααd +

(
K∗
gαααg

)T − 2Ytrain||2F
+ β

(||αααd||2F + ||αααg ||2F
) (23)

where β is a regularization coefficient.
Since previous studies [52] have shown that graph reg-

ularization terms are beneficial to improve the prediction
effect of the model, graph regularization terms related to
genes and diseases are added to the model. According to
the local invariance assumption [53], if two data points
are close in the intrinsic geometry of the data distribu-
tion, then the representations of these two points with
respect to the new basis, are also close to each other. This
assumption plays an essential role in the development of
various kinds of algorithms. In our model, we minimize
the distance between the potential feature vectors of two
adjacent diseases and genes respectively

min
αααd

n∑

i,r
K∗
d(i, r)||F∗

d
i − F∗

d
r||2

= tr
(
αααT
dK

∗
dLdK

∗
dαααd

)

min
αααg

m∑

j,q
K∗
g (j, q)||F∗

g
j − F∗

g
q||2

= tr
(
αααT
g K∗

gLgK∗
gαααg

)

(24)

where F∗
d
i is the i-th row vector of F∗

d = K∗
dαααd ∈ Rn×m,

i, r = 1, 2, ..., n. Similarly, F∗
g
j is the j-th row vector of
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Table 9 The algorithm of our proposed method

Algorithm : The algorithm of our proposed method

Input: Known associations Ytrain ∈ Rn×m , disease space kernels ( Kd
SEM ,K

d
GIP ∈ Rn×n) and gene space kernels ( Kg

GO ,K
g
PPI ,K

g
SW ,Kg

GIP ∈ Rm×m), parameters
λd , λg , β and k-Nearest Neighbor for DHRLS;

Output: Predicted associations F∗ ∈ Rn×m ;

1.Calculating disease and gene kernels, listed in Table 8;

2.Calculating disease kernel weights wd and gene kernel weights wg by Eq. 17 (CKA-MKL), respectively;

3.Calculating K∗
d and K∗

g by Eq. 14, respectively;

4.Calculating Lhd and Lhg by Eq. 21, respectively;

5.Solving Eqs. 27 and 28 (ALSA), and estimating F∗ by Eq. 29;

F∗
g = K∗

gαααg ∈ Rm×n, j, q = 1, 2, ...,m. F∗
d
i and F∗

g
j mean the

representations of the new base. K∗
d(i, r) and K∗

g (j, q) are
the weights of two points in two spaces respectively. After
adding the graph regular term, the objective function is
redefined as follows:

minE(F∗) = ||K∗
dαααd +

(
K∗
gαααg

)T − 2Ytrain||2F
+ λdtr

(
αααT
dK

∗
dLdK

∗
dαααd

)

+ λgtr
(
αααT
g K∗

gLgK∗
gαααg

)

+ β
(||αααd||2F + ||αααg ||2F

)

(25)

where λd and λg are the coefficients of graph regular
terms.
We take formula 25 as a model, called Dual Graph Reg-

ularized Least Squares (DGRLS). In order to be able to
express the high-order relationship between nodes, while
improving the prediction effect, Hypergraph Laplacian
matrix is applied to our final model DHRLS. Thus, the
final objective function can be described as follows:

minE(F∗) = ||K∗
dαααd +

(
K∗
gαααg

)T − 2Ytrain||2F
+ λdtr

(
αααT
dK

∗
dL

h
dK

∗
dαααd

)

+ λgtr
(
αααT
g K∗

gLhgK∗
gαααg

)

+ β
(||αααd||2F + ||αααg ||2F

)

(26)

where Lh is the hypergraph laplacian matrix, it can be
calculated by Eq. 21.

Objective function optimization for DHRLS
We select alternating least squares to estimate αααd and αααg ,
and then run alternatingly until convergence.

Optimizing αααd Suppose αααg are known, to obtain the
optimal αααd by setting ∂E(F∗)/∂αααd = 0:

∂E(F∗)
αααd

= 0

K∗
d

(
K∗
dαααd + αααT

g (K∗
g )

T − 2Ytrain
)

+ βαααd + λdK∗
dL

h
dK

∗
dαααd = 0

(
K∗
dK

∗
d + βI + λdK∗

dL
h
dK

∗
d

)
αααd = 2K∗

dYtrain − K∗
dααα

T
g K∗

g

αααd =
(
K∗
dK

∗
d + βI + λdK∗

dL
h
dK

∗
d

)−1
(
2K∗

dYtrain − K∗
dααα

T
g K∗

g

)

(27)

Optimizing αααg Similarly, suppose αααd are known, to
obtain the optimal αααg by setting ∂E(F∗)/∂αααg = 0:

∂E(F∗)
αααg

= 0

K∗
g

(
K∗
gαααg + αααT

d (K∗
d)

T − 2YT
train

)
+ βαααg + λgK∗

gLhgK∗
gαααg = 0

(
K∗
gK∗

g + βI + λgK∗
gLhgK∗

g

)
αααg = 2K∗

gYT
train − K∗

gααα
T
dK

∗
d

αααg =
(
K∗
gK∗

g + βI + λgK∗
gLhgK∗

g

)−1
(
2K∗

gYT
train − K∗

gααα
T
dK

∗
d

)

(28)

The final prediction result is by combining the matrices
in the two spaces:

F∗ = K∗
dαααd + (K∗

gαααg)T

2
(29)

The overview of our method is shown in Table 9.
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