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Abstract: Acute lung injury (ALI) is an acute and life-threatening inflammatory disease of the lung
parenchyma that is associated with high mortality worldwide. No therapeutic strategies have been
developed for the mitigation of the proinflammatory response that characterizes ALI. Kirenol has
anti-inflammatory, antiarthritic, and immunoregulatory effects. In the present study, we investigated
the protective effects of kirenol against lipopolysaccharides (LPS)-induced ALI in mice. Kirenol
reduced the LPS-induced histopathology changes involving edema and thickening of the interstitial
or alveolar walls, infiltration of leukocytes, formation of hyaline membrane. Pretreatment with
kirenol reduced leukocytes infiltration in bronchoalveolar lavage fluid (BALF), the alveolar-capillary
barrier disruption and lipid peroxidation in lung tissues induced by LPS. Kirenol significantly
inhibited the secretion of cytokines, IL-1β, IL6, and TNFα, into the BALF of the mice with LPS-
induced ALI through NFκB activation. Moreover, kirenol attenuated the downregulation of the
antioxidant enzymes, superoxide dismutase, glutathione peroxidase, and catalase that was induced
by LPS. HO-1 expression and the phosphorylation of Nrf2 and AMPK2 were also induced by
kirenol. The results indicate that kirenol can be developed as a treatment strategy for ALI, and its
effects are induced through the inhibition of the NF-κB proinflammatory pathway and promotion of
AMPK2/Nrf2-mediated HO-1 and antioxidant enzymes (AOE) activation.

Keywords: lipopolysaccharide; acute lung injury; kirenol; NF-κB pathway; AMPK2/Nrf2-mediated
HO-1; AOE pathway
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1. Introduction

Acute lung injury (ALI) is an acute and life-threatening inflammatory disease of the
lung parenchyma that is caused by several direct and indirect risk factors. ALI considerably
varies in terms of severity, from short-term dyspnea to respiratory failure and acute respira-
tory distress syndrome [1]. The severe hypoxemia patients with ALI experience are due to
histopathological changes, called “alveolar damage” including intra-alveolar hemorrhage,
alveolar membrane thickening, leukocyte infiltration and accumulation, hyaline membrane
formation which consisting of fibrin, plasma proteins and surfactant [2]. Oxidative stress
has been observed in inflammatory lung tissue and contributes crucially to the pathogene-
sis of ALI. Oxidative stress induced by the overproduction of reactive oxygen species (ROS)
and the depletion of antioxidative enzymes (AOE). ROS include nonradical molecules like
hydrogen peroxide and singlet oxygen as well as free radicals such as superoxide anion
and hydroxyl radical. The content of intracellular ROS expression is regulated by at least
two types of AOEs. The first type comprises enzymes are associated with ROS scavenger,
containing superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase [3,4].
The second type comprises oxidative stress-induced enzyme, such as heme oxygenase-1
(HO-1) [4,5]. Expression of SOD, GPx, catalase, and HO-1 is regulated by nuclear factor
erythroid 2–related factor 2 (Nrf2), which is the transcription factor and downstream factor
of 5’AMP-activated protein kinase-2 (AMPK2). In addition, the intracellular oxidative
stress leads to the secretion of proinflammatory cytokines such as interleukin (IL)-1β,
IL-6, and tumor necrosis factor alpha (TNF-α) through the activation of nuclear factor
(NF)-κB, a proinflammatory transcription factor [6–8]. The inflammatory response in ALI
is exacerbated by the generation of ROS and proinflammatory cytokines [4,7,8].

To date, no effective therapeutic strategy to reduce the proinflammatory response in
ALI, which has high global mortality rates, has been developed [9]. Kirenol is a diterpenoid
compound derived from Herba Siegebeckiae, which is commonly used in traditional Chinese
medicine to treat arthritis, malaria, hypertension, snake bite, fatigue, and headache [10–13].
Specifically, kirenol constitutes the major active component of Herba Siegesbeckiae extract.
It has anti-inflammatory, antiarthritic, and immunoregulatory effects [14–16]. No study
has indicated that kirenol has protective effects on ALI in lipopolysaccharide (LPS)-treated
mice. Therefore, the present study evaluated whether kirenol pretreatment protects mice
with LPS-induced ALI from histopathological damage and explored the underlying molec-
ular mechanisms.

2. Materials and Methods
2.1. Materials

Kirenol was purchased from Chemface Biochemical Co. (Wuhan, Hubei, China).
Thiobarbituric acid reactive substances (TBARS) assay kit, SOD assay kit, GPx assay kit,
catalase assay kit, IL-1β enzyme-linked immunosorbent assay (ELISA) kit, IL-6 ELISA
kit, TNF-α ELISA kit were acquired from Cayman Chemical Co. (Ann Arbor, MI, USA).
The phosphor (P)-NF-E2-related factor 2 (Nrf2) antibodies was acquired from Abcam
Biotechnology Inc. (Cambridge, MA, USA). The P-Adenosine 5’-monophosphate-activated
protein kinase 2 (AMPK2) was acquired from Cell Signaling Technology Inc. (Beverly, MA,
USA). The AMPK2, Heme oxygenase 1 (HO-1), β-actin, Nrf2, AMPK2 P-p65, p65, and IκB
antibodies were obtained from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA).
Bio-Rad protein assay kit was obtained from Bio-Rad Laboratories (Hercules, CA, USA).
Zoletil 50® was obtained from Vibac Laboratories (Carros, France). T-PER® Tissue Protein
Extraction Reagent, enhanced chemiluminescence reagents, and bicinchoninic acid (BCA)
Protein Assay Kit were Thermo Fisher Scientific (Waltham, MA, USA). Lipopolysaccharide
(LPS) isolated from Escherichia coli 0111:B4, phosphate-buffered saline (PBS), dimethyl
sulfoxide (DMSO) were obtained from Sigma-Aldrich (St. Louis, MO, USA).
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2.2. Animal Model of ALI

BALB/c male mice weighing 25–35 g were obtained from the National Laboratory
Animal Center (Taipei, Taiwan) and were housed in the laboratory. They were put on
alternating 12-h cycles of darkness and light under specific pathogen-free conditions and
were given free access to food and water. Room temperature was maintained at 22 ± 2 ◦C.
All procedures involving the use of the mice were approved by the Institutional Animal
Ethics Committee of Chung Shan Medical University (No. 2408). During the study on the
preventive effect of kirenol on ALI induced by LPS, the pathogen-free animals were divided
into six groups. The control group, named Group I, received vehicle intraperitoneal (IP)
injection for 30 min followed by 24 h intranasal administration of 20 µL of saline using a
pipette. Group II received vehicle IP injection followed by the intranasal administration of
100 µg/20 µL LPS. Groups III, IV, and V received IP injection of 30, 50, and 100 mg/kg of
kirenol followed by the intranasal administration of LPS, respectively. Group VI received
IP injection of 1 mg/kg dexamethasone followed by the intranasal administration of LPS.
Study on the therapeutic effect of kirenol on ALI induced by LPS, the pathogen-free animals
were divided into three groups. The control group, named Group A, received intranasal
administration of saline using a pipette for 6 h followed by 18 h IP injection of vehicle.
Group B received intranasal administration of LPS for 6 h followed by 18 h IP injection of
vehicle. Group C received intranasal administration of LPS for 6 h followed by 18 h IP injec-
tion of kirenol at 100 mg/kg. The mice were euthanized through IP injection of 50 mg/kg
Zoletil 50® which containing the mixture of zolazepam and tiletamine hypochloride [4,7,8].

2.3. Histopathological Study

At the end of the study, the mice were sacrificed, and their lungs were harvested
for histological evaluation. The harvested lungs were collected and fixed with fresh
4% paraformaldehyde buffered with PBS before being dehydrated with graded alcohol,
embedded in paraffin at 60 ◦C, and cut sagittally into 5 µm sections. The sections were
stained with hematoxylin and eosin. The histopathological characteristics, including
edema and interstitial or alveolar thickening, leukocyte infiltration, and hyaline membrane
formation, were examined using light microscopy [4]. The histological scores of each group
were recorded from 0 to 4. Score “0” means normal condition and “4” means the severity
of the disease. The larger the number was the higher the severity of the disease [17].

2.4. Bronchoalveolar Lavage Fluid Collection

After the mice were sacrificed, the tracheostomy was performed and the plastic tube
slide was placed into the trachea. A sterile syringe was used to instill 1 mL of precooled and
pyrogen-free PBS slowly into the lungs via the tracheal cannula. After the lungs were gently
massaged for a few moments, the bronchoalveolar lavage fluid (BALF) was collected using
a syringe. This collection process was repeated three times. The BALF was centrifuged
at 1000× g for 10 min at 4 ◦C. Next, the content of protein in the BALF supernatant was
measured using the Bio-Rad Protein Assay Kit. A cell counter was used in the assessment
of leukocyte recruitment into the alveolar space [4,7,8].

2.5. Thiobarbituric Acid Reactive Substances Assay

To determine the injury level of oxidative stress, we performed lipid peroxidation
detection. The degree of lipid peroxidation was assessed based on the presence of thiobarbi-
turic acid (TBA) reactive substances (TBARS) in the lung homogenates [4]. After lung soni-
cation and homogenization, the lysates were incubated with 10% ice-cold trichloroacetic
acid. After centrifugation 5000× g for 10 min, the TBA was added to supernatant. The mix-
tures were then kept in a boiling water-bath for 10 min and after cooling under tap water.
The optical density of the supernatant was measured at 530 nm using the Synergy HT
Multi-Mode Microplate Reader (BioTek, Winooski, VT, USA).
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2.6. Antioxidant Enzyme Capability and Cytokine Generation Assay

The activity of antioxidant enzymes (AOEs), including SOD, GPx, and catalase, in the
lung tissue were assessed using commercially available assay kits. The concentrations
of TNF-α, IL-1β, and IL-6 in the BALF were determined using commercially available
enzyme-linked immunosorbent assay (ELISA) kits. All experimental procedures were
carried out according to the manufacturer’s protocols.

2.7. Western Blot Assay

After treatment, the total protein in the lungs was extracted using ice-cold T-PER Tissue
Protein Extraction Reagent, to which 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl
fluoride, and phosphatase inhibitors (containing 50 mM sodium fluoride, 1 mM sodium
orthovanadate, 10 mM sodium pyrophosphate, 1 nM microcystin) had been added using
an electric homogenizer. After centrifugation at 1000× g, the concentration of protein from
the lungs was measured by using the bicinchoninic acid (BCA) protein assay kit. The equal
amounts of protein in each sample were harvested and incubated in Laemmli sample buffer,
which contain 2% sodium dodecyl sulfate, 10% 1,2,3-propanetriol, 5% β-mercaptoethanol,
0.002% bromophenol blue, 67.5 mM Tris-HCl (pH 6.8). After boiling, the samples were
separated using 7.5–12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis,
followed by transfer to the polyvinylidene difluoride (PVDF) membranes. The PVDF
membranes were blocked with 5% nonfat milk in PBS containing 0.1% Tween-20 (PBST)
for 1 h at room temperature. And then, the membranes were incubated overnight at 4 ◦C
with specific primary antibodies, including P-AMPK2, AMPK2, P-Nrf2, Nrf2, HO-1, P-p65,
p65, IκB, and β-actin antibodies. After washing with PBST, the membranes were probed
with horseradish peroxidase–conjugated secondary antibody for 1 h at room temperature.
Finally, the immunoreactive bands on the membranes were visualized using enhanced
chemiluminescence reagents and imaged using the Infiniti Vision System (Vilber, Lourmat,
Collegien, France) [4,7,8].

2.8. Statistical Analysis

The results from the present study were statistically analyzed using one-way anal-
ysis of variance, with Bonferroni posttest correction used for multigroup comparisons.
A p value of <0.05 was considered significant. The results are presented as means ± stan-
dard deviations (S.D.) and were analyzed using SPSS Statistics for Windows, version 14.0
(SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Kirenol Protected the Lung Histopathological Changes in Mice with LPS-Induced ALI

The effects of kirenol on alleviating ALI induced by LPS were observed in the mice
pretreated with kirenol or its solvent for 30 min; these mice then received 24 h intranasal
instillation LPS or its solvent. The hematoxylin–eosin staining results, obtained through
light microscopy, revealed normal pulmonary histology in the control group. By contrast,
the lung tissue in the LPS-treated group showed clear injury, as indicated by edema and
interstitial or alveolar thickening, leukocyte infiltration, and hyaline membrane formation.
The histopathological changes were inhibited by kirenol in a concentration-dependent
manner. In addition, dexamethasone, administered in Group VI, reduced LPS-induced
histopathological changes (Figure 1).
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group also named Group V; (F) 1 mg/kg dexamethasone + LPS group also named Group VI. Histopathological changes 
were observed using Hematoxylin-eosin staining of lung sections under light microscopy. The magnification of the en-
largements are 100 times. The scale bars represent 100 μm. Green arrow indicates neutrophil infiltration; black arrow 
indicates hyaline membrane formation; orange arrow indicates alveolar wall thickness. (G) The histologic scores are pre-
sented for the lung tissues. Values are shown the mean ± S.D. of 3–4 mice per group. # represents the significant difference 
compared with the Group I (p < 0.05); * represents the significant difference compared with the Group II (p < 0.05). 
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4.76, and 3.11 at the treatment condition of Group I to VI, respectively. The protein content 
in the BALF of the LPS-treated group was significantly higher than that in the control 
group (p < 0.05). However, kirenol pretreatment inhibited plasma protein leakage into the 
alveolar space in a concentration-dependent manner, with significant effects observed 
starting at 50 mg/kg (p < 0.05). Moreover, we also found the mice treatment with dexame-
thasone attenuated plasma protein leakage after LPS administration (p < 0.05; Figure 2). 

 

Figure 1. Kirenol protected against histopathological changes in lung tissues in lipopolysaccharide (LPS)-induced Acute
lung injury (ALI) mice. (A) Control group also named Group I; (B) LPS group also named Group II; (C) 30 mg/kg kirenol +
LPS group also named Group III; (D) 50 mg/kg kirenol + LPS group also named Group IV; (E) 100 mg/kg kirenol + LPS
group also named Group V; (F) 1 mg/kg dexamethasone + LPS group also named Group VI. Histopathological changes were
observed using Hematoxylin-eosin staining of lung sections under light microscopy. The magnification of the enlargements
are 100 times. The scale bars represent 100 µm. Green arrow indicates neutrophil infiltration; black arrow indicates hyaline
membrane formation; orange arrow indicates alveolar wall thickness. (G) The histologic scores are presented for the lung
tissues. Values are shown the mean ± S.D. of 3–4 mice per group. # represents the significant difference compared with the
Group I (p < 0.05); * represents the significant difference compared with the Group II (p < 0.05).

3.2. Kirenol Protected the Alveolar-Capillary Barrier Disruption in Mice with LPS-Induced ALI

Leakage of plasma protein into the alveolar space may indicate LPS-induced alveolar–
capillary membrane disruption. The levels of protein content were 2.32, 9.98, 8.61, 7.36,
4.76, and 3.11 at the treatment condition of Group I to VI, respectively. The protein content
in the BALF of the LPS-treated group was significantly higher than that in the control group
(p < 0.05). However, kirenol pretreatment inhibited plasma protein leakage into the alveolar
space in a concentration-dependent manner, with significant effects observed starting at
50 mg/kg (p < 0.05). Moreover, we also found the mice treatment with dexamethasone
attenuated plasma protein leakage after LPS administration (p < 0.05; Figure 2).
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Figure 2. Kirenol protected against LPS-induced alveolar-capillary barrier disruption. The contents
of protein in bronchoalveolar lavage fluid (BALF) were measured by Bradford protein analysis.
Values are shown the mean ± S.D. of 3–4 mice per group. # represents the significant difference
compared with the Group I (p < 0.05); * represents the significant difference compared with the
Group II (p < 0.05).
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3.3. Kirenol Protected the Leukocyte Infiltration and Lipid Peroxidation in Mice with
LPS-Induced ALI

After activation, leukocytes migrate into the alveolar space, generating considerable
oxidative stress, through which lipid peroxidation is initiated. This leads to the disruption
of the alveolar–capillary membrane, which in turn facilitates more leukocyte infiltration
into the lungs. As shown in Figure 3, the leukocyte numbers in BALF were 3.14, 19.26, 19.06,
12.71, 7.83, and 3.19 × 105 at the treatment condition of Group I to VI, respectively. The con-
tent of malondialdehyde (MDA) formation, the product of lipid peroxidation in lung tissue
were 22.12, 73.03, 57.09, 44.05, 35.83, and 28.58 mmol/mg at the treatment condition of
Group I to VI, respectively. Leukocyte infiltration and lipid peroxidation were significantly
higher in the LPS-treated group than in the control group (p < 0.05). Kirenol administration
reduced the occurrence of both in the mice with LPS-induced ALI in a concentration-
dependent manner, with significant effects observed starting at 50 mg/kg (p < 0.05). More,
we also found the mice treatment with dexamethasone attenuated leukocyte infiltration
and lipid peroxidation after LPS administration (p < 0.05; Figure 3).
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Figure 3. Kirenol protected against leukocyte infiltration and lipid peroxidation. (A) Leukocytes
infiltration was determined by cell counter assay activity in BALF. (B) Lipid peroxidation was
determined by thiobarbituric acid (TBA) reactive substance assay in the lungs. Values are shown
the mean ± S.D. of 3–4 mice per group. # represents the significant difference compared with the
Group I (p < 0.05); * represents the significant difference compared with the Group II (p < 0.05).

3.4. Kirenol Protected the NF-κB p65 Phosphorylation and of IκB Degradation in Mice with
LPS-Induced ALI

Activation of the NF-κB pathway induced by LPS or oxidative stress contributes to
proinflammatory responses in mice with ALI. In the present study, Western blotting was
used to assess the mechanisms of this activation, namely NF-κB p65 phosphorylation and
IκB degradation. The fold of NF-κB p65 phosphorylation in lung tissue were 4.72, 3.62, 2.82,
1.68, and 1.14 compared to Group I at the treatment condition of Group II to VI, respectively.
The fold of IκB degradation in lung tissue were 0.24, 0.29, 0.65, 1.00, and 1.02 compared
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to Group I at the treatment condition of Group II to VI, respectively. Phosphorylation of
p65 and degradation of IκB in the LPS-treated group was significantly higher than that in
the control group (p < 0.05). Administration of kirenol inhibited phosphorylation of p65
and degradation of IκB in the mice with LPS-induced ALI in a concentration-dependent
manner, with significant effects observed starting at 50 mg/kg (p < 0.05) Moreover, we also
found the mice treatment with dexamethasone attenuated phosphorylation of p65 and
degradation of IκB after LPS administration (p < 0.05; Figure 4).
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3.5. Kirenol Protected the Production of Proinflammatory Cytokines in Mice with
LPS-Induced ALI

In mice with ALI, the generation of proinflammatory cytokines such as TNFα, IL-1β,
and IL-6 is induced by NF-κB activation. In the present study, the concentration of proin-
flammatory cytokines were measured through ELISA in the BALF. The concentration of
TNFα in BALF were 2.97, 8.37, 7.95, 6.07, 4.90, and 4.03 at the treatment condition of Group
I to VI, respectively. The concentration of IL-1β in the BALF were 4.49, 10.08, 9.29, 6.62,
6.36, and 2.97 at the treatment condition of Group I to VI, respectively. The concentration
of IL-6 in the BALF were 0.31, 9.50, 8.60, 6.28, 3.97, and 1.88 at the treatment condition
of Group I to VI, respectively. The level of proinflammatory cytokines was significantly
higher in the LPS-treated group than in the control group (p < 0.05). Kirenol administration
inhibited the production of proinflammatory cytokines in the mice with LPS-induced
ALI in a concentration-dependent manner, with significant effects observed starting at
50 mg/kg (p < 0.05). Moreover, we also found the mice treatment with dexamethasone
attenuated generation of proinflammatory cytokines after LPS administration (p < 0.05;
Figure 5).
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3.6. Kirenol Attenuated the Downregulation of AOEs Activities in Mice with LPS-Induced ALI

Oxygen stress induces tissue damage as a result of the failure of AOEs to detoxify the
excessive accumulation of ROS through their endogenous activity [18,19]. Thus, the present
study further investigated the effect of kirenol on the activity of AOEs, including SOD,
GPx, and catalase. As shown in Figure 6, the level of SOD activity in lung tissue were
47.67, 21.13, 29.61, 34.37, 45.07, and 34.86 mol/mg at the treatment condition of Group
I to VI, respectively. The levels of catalase activity in lung tissue were 9.92, 3.72, 4.67,
5.74, 7.81, and 9.62 mol/mg at the treatment condition of Group I to VI, respectively.
The level of catalase activity in lung tissue were 64.47, 16.39, 15.41, 26.88, 53.71, and 50.64
µmol/mg at the treatment condition of Group I to VI, respectively. LPS significantly
reduced AOE activity in the mice with LPS-induced ALI. Kirenol administration attenuated
the decline in AOE activity in a concentration-dependent manner, with significant effects
observed starting at 50 mg/kg (p < 0.05). Moreover, we also found the mice treatment with
dexamethasone attenuated the decline in AOE activity after LPS administration (p < 0.05;
Figure 6).
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Figure 6. Kirenol attenuated the LPS-reduced the activities of superoxide dismutase (SOD), catalase, GPx. Values are
shown the mean ± S.D. of 3–4 mice per group. # represents the significant difference compared with the Group I (p < 0.05);
* represents the significant difference compared with the Group II (p < 0.05).

3.7. Kirenol Enhanced the Nrf2 Phosphorylation and HO-1 Expression in Mice with
LPS-Induced ALI

The Nrf2/HO-1 pathway, the upstream signaling pathway of AOEs, involves Nrf2
phosphorylation and HO-1 expression. The fold of HO-1 expression in lung tissue were
1.00, 1.04, 1.13, 1.96, 2.65, and 2.45 compared to Group I at the treatment condition of
Group I to VI, respectively. The fold of Nrf2 phosphorylation in lung tissue were 1.00, 1.13,
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1.22, 1.76, 2.25, and 2.34 compared to Group I at the treatment condition of Group I to VI,
respectively. Nrf2 phosphorylation and HO-1 expression were comparable between the
groups treated with LPS and the control group. Administration of kirenol induced Nrf2
phosphorylation and HO-1 expression in a concentration-dependent manner, with signifi-
cant effects observed starting at 50 mg/kg (p < 0.05). Moreover, we also found the mice
treated with dexamethasone induced Nrf2 phosphorylation and HO-1 expression after LPS
administration (p < 0.05; Figure 7).
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mean ± S.D. of 3–4 mice per group. # represents the significant difference compared with the Group I (p < 0.05); * represents
the significant difference compared with the Group II (p < 0.05).

3.8. Kirenol Attenuated the Downregulation of AMPK2 Phosphorylation in Mice with
LPS-Induced ALI

AMPK2 phosphorylation is an upstream signaling process in the Nrf2/HO-1 pathway.
The fold of AMPK2 phosphorylation in lung tissue were 0.15, 0.17, 0.56, 1.03, and 1.04 com-
pared to Group I at the treatment condition of Group II to VI, respectively. AMPK2 phospho-
rylation was significantly lower in the LPS-treated group than in the control group (p < 0.05).
Kirenol administration attenuated AMPK2 phosphorylation in a concentration-dependent
manner, with significant effects observed starting at 50 mg/kg (p < 0.05). Moreover, we also
found the mice treatment with dexamethasone attenuated AMPK2 phosphorylation after
LPS administration (p < 0.05; Figure 8).
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Figure 8. Kirenol attenuated the LPS-reduced the phosphorylation of AMPK2. The levels of AMPK2
phosphorylation in the lung tissues were analyzed by Western blotting analysis. Values are shown
the mean ± S.D. of 3–4 mice per group. # represents the significant difference compared with the
Group I (p < 0.05); * represents the significant difference compared with Group II (p < 0.05).

3.9. Kirenol Suppressed the Leukocyte Infiltration and Alveolar-Capillary Barrier Disruption in
Mice with LPS-Induced ALI

We further study that the therapeutic effects of kirenol on ALI induced by LPS. Mice re-
ceived intranasal administration of LPS for 6 h followed by IP injection of kirenol at the
concentration of 100 mg/kg for 18 h. As shown in Figure 9, the leukocyte number in BALF
were 4.56, 17.63, and 11.79 × 105 at the treatment condition of Group A to C, respectively.
The leukocyte number in the BALF of the LPS-treated group was significantly higher than
that in the control group (p < 0.05). However, post-treatment with kirenol at 100 mg/kg
significantly inhibited leukocyte infiltration into the alveolar space (p < 0.05). The levels
of protein content were 1.82, 9.00, and 5.72 at the treatment condition of Group A to C,
respectively. The protein content in the BALF of the LPS-treated group was significantly
higher than that in the control group (p < 0.05). However, post-treatment with kirenol at
100 mg/kg significantly inhibited plasma protein leakage into the alveolar space (p < 0.05).
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Figure 9. Kirenol suppressed the leukocyte infiltration and alveolar-capillary barrier disruption. (A) Leukocyte infiltration
was determined by cell counter assay activity in BALF. (B) The contents of protein in BALF were measured by Bradford
protein analysis. Values are shown the mean ± S.D. of 3–4 mice per group. # represents the significant difference compared
with the Group A (p < 0.05); * represents the significant difference compared with Group B (p < 0.05).



Antioxidants 2021, 10, 204 11 of 15

4. Discussion

ALI and its more severe form, the acute respiratory distress syndrome, are the syn-
dromes of pulmonary inflammation that develops in response to influenza viruses, bacterial
infection, and even novel infectious diseases such as severe acute respiratory syndrome
and coronavirus-19 [20,21]. ALI and acute respiratory distress syndrome involve life-
threatening respiratory failure that are associated with high global mortality and morbid-
ity [22–24]. Despite its severe impacts, few treatment options are available for patients with
ALI [23]. The evidence indicates that kirenol, a major active component isolated from Herba
Siegebeckiae, has anti-inflammatory benefits for rheumatoid arthritis and diabetic cardiomy-
opathy [25,26]. The present study investigated the potential protective effect of kirenol on
LPS-induced ALI in mice. LPS has been widely used in the establishment of animal models
of ALI because it induces symptoms of ALI similar to those in humans, including leuko-
cyte infiltration, alveolar membrane thickening, alveolar space enlargement, and hyaline
membrane formation [2,27]. The results demonstrate that kirenol administration mitigated
the histopathological impacts of LPS-induced ALI in a concentration-dependent manner,
suggesting that kirenol plays the protective reagent against LPS-induced ALI in mice.

The alveolar–capillary membrane serves as the first line of defense against pathogen
infection and environmental pollutants in the respiratory tract [28–30]. LPS increases its
permeability [31]. In the present study, the disruption of this membrane led to protein
leakage and leukocyte infiltration into the alveolar space of the mice with LPS-induced
ALI [4,7,8]. Kirenol mitigated this disruption in a concentration-dependent manner. In a
model of carrageenan-induced rat paw edema, kirenol attenuated the infiltration of in-
flammatory cells such as neutrophils and eosinophils [32]. To the best of our knowledge,
the present study is the first to report that kirenol reduced leukocyte infiltration into the
lungs of mice with LPS-induced ALI. In the inflammation of the peripheral tissue, lipid per-
oxidation was mediated by leukocyte filtration [4,7,8]. A study found that kirenol exerted
protective effects on 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell
carcinogenesis by inhibiting lipid peroxidation [33]. Similarly, in the present study, kirenol
suppressed lipid peroxidation in the mice with LPS-induced ALI. The present results sug-
gest that this occurred through the reinforcement of the integrity of the alveolar–capillary
membrane and the inhibition of leukocyte infiltration and lipid peroxidation.

Alveolar–capillary membrane disruption and leukocyte activation result from the
overexpression of proinflammatory cytokines, including TNFα, IL-1β, and IL-6, in mice
with LPS-induced ALI [4,7]. NF-κB activation play the important role in the secretion of
these cytokines in the ALI [4,7,8]. In the physiological condition, the IκB binds to the p65,
which is the most commonly found component in NF-κB dimmer and retains NF-κB in
the cytoplasm. Ubiquitination and degradation of IκB release the NF-κB p65 in turn to
phosphorylation and nuclear translocation after LPS stimulation in ALI mice [4,7,8]. Kirenol
has been demonstrated to reduce the expression of TNFα, IL-1β, and IL-6 through NF-κB
activation in rat models of collagen-induced arthritis, carrageenan-induced paw edema,
Freund’s adjuvant-induced paw edema, and formalin-induced paw edema [25,32,34].
Through NF-κB activation, kirenol ameliorates symptoms of photoaging from ultraviolet-B
radiation, such as hair loss, wrinkle formation, and skin thickening [35]. In line with the
findings from animal studies, kirenol effectively reduced LPS-induced generation of TNFα,
IL-1β, and IL-6 in the present study. It also inhibited NF-κB activation. Taken together,
the results indicate that kirenol reduced LPS-induced ALI through the inhibition of TNFα,
IL-1β, and IL-6 by NF-κB activation.

ROS generation is mediated by leukocytes as a defensive response to pathogen inva-
sion [36]. ROS, in appropriate numbers, are necessary for the elimination of pathogens
from the body. However, the lipid peroxidation caused by the overproduction of ROS is
associated with various diseases and tissue damage [36]. ROS and relative oxidative stress
constitute vital upstream components of NF-κB activation [19,37]. In the present study,
kirenol reduced LPS-mediated lipid peroxidation and NF-κB activation in the mice with
ALI. These results are consistent with that reported in an animal model of oral squamous
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cell carcinogenesis that kirenol inhibited lipid peroxidation and NF-κB expression in the
oral tissue and plasma of hamsters treated with DMBA [33]. The toxic effects of ROS are
reduced by three major AOEs, including SOD, GPx, and catalase [18,19]. SOD converts
toxic superoxide anions into hydrogen peroxide, which is then converted by GPx and
catalase into the nontoxic products hydrogen oxide and oxygen [19,38]. Kirenol suppressed
the lipid peroxidation by reversing the activity of AOEs such as SOD, GPx, and catalase in
the skin wounds of diabetic rodents and in the plasma and oral tissue of DMBA-treated
hamsters [33,39]. In the present study, kirenol pretreatment significantly downregulated
lipid peroxidation and upregulated AOE activity in the lungs of the mice with LPS-induced
ALI. In other words, kirenol mitigated pulmonary inflammation by suppressing lipid
peroxidation and mitigating the oxidative imbalance in the mice.

Oxidative stress and LPS-induced enzyme HO-1 are responsible for the degradation of
heme into carbon monoxide, free iron, and biliverdin [40–42]. The conversion of biliverdin
into bilirubin is catalyzed by biliverdin reductase. The detoxification of an approximately
10,000-fold excess of lipophilic ROS is mainly achieved through the conversion of bilirubin
back into biliverdin [40–42]. In the present study, HO-1 expression was induced by kirenol
in the mice with LPS-induced ALI in a concentration-dependent manner. Nrf2 is an
important upstream transcription factor that modulates the expression of HO-1 and AOEs
for ROS detoxification [43]. In the present study, kirenol induced Nrf2 phosphorylation
and HO-1 expression in the LPS-challenged mice in a concentration-dependent manner,
with significant effects observed starting at 50 mg/kg. In the cellular adaptive response
to oxidative stress, AMPK2 leads to the phosphorylation of Nrf2 and then contributes to
the expression of HO-1 and AOEs [44]. In the present study, AMPK2 phosphorylation was
significantly lower in the lungs of the LPS-challenged mice than in those of the controls.
The results suggest that the attenuation of AOE activation downregulation and HO-1
expression through the phosphorylation of Nrf2 and AMPK2 is the critical mechanism by
which kirenol alleviates airway inflammation in experimentally induced ALI.

In addition, we further purposed that the therapeutic effects of kirenol on ALI induced
by LPS. Kirenol significantly reduced leukocyte infiltration and alveolar-capillary barrier
disruption in mice with LPS-induced ALI. Based on these findings, we could purpose
that kirenol could be the preventive measure for ALI due to enhanced immunity and
lesser toxic effect or fewer side-effects than the modern steroid treatments. Moreover,
kirenol has therapeutic effects on ALI. Therefore, kirenol would likely be the novel and
effective reagent on the improvement of ALI. Future work should examine the molecular
mechanisms of therapeutic exercise in the mice with LPS-induced ALI. Future studies are
needed to clarify the treatment strategies in the clinical trials, as well as the molecular
mechanisms for the ALI amelioration.

5. Conclusions

In conclusion, pretreatment with kirenol reduced the presentation of histopathological
changes in mice with LPS-induced ALI, including leukocyte infiltration, alveolar membrane
thickening, alveolar space enlargement, hyaline membrane formation, and lipid peroxida-
tion. As shown in Figure 10, the molecular mechanisms underlying the anti-inflammatory
effects of kirenol include: (1) the inhibition of proinflammatory cytokines generation,
such as TNFα, IL-1β, and IL-6; (2) the reduction of NFκB p65 phosphorylation and IκB
degradation; (3) the attenuation of AOEs activities downregulation; (4) the promotion
of HO-1 expression and Nrf2 phosphorylation; (5) the attenuation of AMPK2 phospho-
rylation downregulation. In sum, these present findings indicated that the ameliorative
effects of kirenol on the inflammation of LPS-induced ALI mice through inhibiting the
proinflammatory NF-κB pathway and promoting the AMPK2-/Nrf2-mediated HO-1/AOE
pathway. Thus, we found that the therapeutic effects of kirenol on ALI induced by LPS.
Further understanding of the advantageous effects and mechanisms of action of kirenol
can aid in the development of treatment strategies for pulmonary diseases characterized
by acute inflammation.
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