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A combination of physical activity and computerized brain
training improves verbal memory and increases cerebral
glucose metabolism in the elderly
T Shah1,2,3, G Verdile2,3,4, H Sohrabi1,2,3, A Campbell5, E Putland2, C Cheetham6,7, S Dhaliwal8, M Weinborn2,9, P Maruff10,11,
D Darby10,11,12 and RN Martins1,2,3

Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the
healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study
evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In
this nonrandomized study, 224 healthy community-dwelling older adults (60–85 years) were assigned to 16 weeks home-based PA
(n= 64), computerized cognitive stimulation (n= 62), a combination of both (combined, n= 51) or a control group (n= 47).
Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState
computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points.
A subset (total n= 45) of participants underwent [18F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-
intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the
final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly
higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE)
status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with
improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical
and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy
older adults.
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INTRODUCTION
The rise in life expectancy has led to increases in the prevalence of
dementia globally.1 Lifestyle plays a vital role in increasing the risk
of dementia, as poor diet and inactivity—both physical and
mental—have been associated with cognitive decline.2–4 It has
been estimated that the prevalence of dementia will increase over
fourfold by 2050,5 and so far, pharmacological interventions have
been ineffective. As a result, lifestyle interventions have attracted
substantial interest, as physical and mental inactivity including
poor diet are risk factors that are modifiable. Specifically, studies
indicate that increasing the mental and physical activity, improv-
ing diet and changing an individual’s response to stressful stimuli
are avenues through which we can maintain brain health and
lower the risk of dementia.6–8

Observational studies have reported that physical activity (PA) is
associated with better cognitive performance and reduced
dementia risk.9–12 Intervention studies and meta-analysis of PA
clinical trials for healthy older adults report enhanced memory,

executive function and reaction time,13–15 including improved
cognition in Alzheimer’s disease (AD) patients.16,17 A study
(n= 170) reported that 6 months of walking intervention improved
ADAS-Cog scores in patients with mild cognitive impairment (MCI)
compared with the control group.18 Aerobic exercise intervention
is most beneficial for cognition,19 whereas resistance training has
shown mixed results.20,21 Like PA, interventions using mentally
stimulating/training (for example, reality orientation, method of
loci, mental imagery and so on) activities also enhance cognition
in healthy older adults,22–24 people with MCI25 and in AD
patients,26–28 and is associated with reduced dementia risk.29,30

The Advanced Cognitive Training for Independent and Vital
Elderly and the Improvement in Memory with Plasticity-based
Adaptive Cognitive Training clinical trials have provided the best
evidence of benefits from computerized brain training for verbal
memory, reasoning, processing speed and attention.22,31,32

Recently, a study which used video-game format (NeuroRacer)
as cognitive training intervention showed that older adults gained
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enhanced cognitive control along with improved untrained
cognitive control abilities. The study demonstrated that age-
related deficits in neural control of cognition were associated with
enhanced midline frontal theta power and frontal–posterior theta

coherence using electroencephalography; thus highlighting the
plasticity of this region in the aging brain.33

Although the benefits of physical or mental activities on
cognition have empirical support, whether further improvement
is achieved by carrying out both activities has not been widely

Figure 1. Flow of participants from screening to completion of the 16 weeks post-intervention follow-up assessment.
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explored. Limited clinical studies34–37 assessing combined effects
have used only cognitive parameters with no inclusion of
biomarkers related to AD. Cerebral glucose metabolism, as
measured by [18F] fluorodeoxyglucose (FDG) positron emission
tomography (PET), is tightly connected to neuronal activity. It can
be used as a marker of synaptic dysfunction before neurodegen-
eration advances further38,39 and in fact, cerebral glucose
hypometabolism has been reported in MCI40,41 and AD
patients.42–45

A recent study reported that 6 months of cognitive training
increased cerebral glucose metabolism in MCI patients only;
however, there were no significant associations between
increased FDG uptake and improved cognition.46 PA has also
been shown to alter brain glucose metabolism;47,48 however,
these studies appear to be limited to conditions of high intensity
exercise in young middle-aged cognitively normal cohorts. Studies
that include neuroimaging assessments of combined interven-
tions in healthy elderly subjects are currently lacking.
The current study tested the hypothesis that superior cognitive

benefits occur when using a combination of physical and mental
training. The method involved studies of cognitively intact older
adults, divided into four groups: PA, cognitive stimulation (CS),
combined and a control group. Besides assessing cognition,
FDG-PET was used for assessing neuronal activity at week 16
post intervention.

MATERIALS AND METHODS
Participants
The study was a single site-controlled, nonrandomized trial conducted
between June 2009 and December 2011. Participants were recruited from
either (1) an existing database of healthy individuals at the McCusker
Alzheimer’s Research Foundation, Hollywood Private Hospital (HPH), Perth,
WA, Australia, (2) the Survey Research Centre, Edith Cowan University (ECU;
June 2010) or (3) through local media advertisements, public talks and
word of mouth. The study was approved by the Human Research Ethics
Committees of ECU, HPH and the University of Western Australia.

Eligibility, inclusion and exclusion criteria
Males and females, aged 60–85 years old and providing informed consent,
were recruited. Exclusion criteria included inability to communicate in
English, visual or auditory impairment, MMSE (Mini Mental State
Examination) ⩽ 24, diagnosis of dementia, uncontrolled medical conditions
that could lead to difficulty complying with the protocol including history
of cardiovascular disorders, epilepsy and arthritis causing disability.
Participants were required to provide a physician’s certificate to allow
exercise participation, and were required to have access to, and be
comfortable using a personal computer with internet connection.

Study interventions
Six hundred and sixty participants were screened for eligibility over the
telephone. Figure 1 shows the flow of the participants from screening
through to the post-intervention follow-up at week 16. Two hundred and
twenty-four participants consented to take part in the study. One
participant had an MMSE o24 and one participant did not complete
baseline assessments. Hence, 222 participants commenced the study.
Participants were recruited into four groups; PA, CS, both PA and CS
(combined) and control. Monthly group meetings were conducted, log
books given and fortnightly phone calls made during the 16-week
intervention. Group discussions ensured fulfillment of study protocol and
resolution of any technical problems.
Though initial attempts were made to randomize subjects to treatment

groups, the preferences of some of the subjects made the objective
difficult as randomizing them put at risk the viability of the study due to
the increased possibility of noncompliance and nonadherence. Thus,
participants were allocated to the intervention and control arms
alternatively with o10% participants being allocated into groups on the
basis of their preference (reasons being couples, friends, relatives, busy
schedule and so on). The baseline data of all treatment groups were
compared to ensure that no biases were introduced as a result of self-

selection. In addition, baseline value of the primary outcome variables
were included as covariate in the respective analysis.
Instructions on and training for intervention-specific activities were

provided by an instructor in the monthly intervention-specific group
meeting. All physical activities were performed under the training provided
by a team of exercise physiologists in the group meetings. Instructions on
performing respective cognitive exercises were also given for those in the
CS group. Instruction booklets with detailed explanation of respective
physical and cognitive exercises were given. The different home-based
activities carried out by the groups are outlined below:

PA group. PA consisted of 48 sessions of walking for 60min per day,
3 days per week and 32 sessions of resistance training for 40min per day,
2 days per week. Exercises included 10min sessions for warming up and
cooling down. Resistance training incorporated all major muscle groups
using an elastic tube of 25 kg of resistance known as the Gymstick (www.
gymstick.net) for upper (for example, chest press, seated row, biceps curl)
and ankle weights for lower (for example, leg press, leg extension, leg
curls) body exercises as tolerated. Each participant was instructed to record
their rate of perceived exertion (Borg Scale49) during the activities. The
intensity of the exercises were gradually increased under the supervision
of an exercise physiologist at each group meeting.

CS group. CS consisted of 40 sessions each of the auditory-based Brain
Fitness Program (BFP) and the visual-based Insight Program (IP) (Posit
Science; San Francisco, CA, USA) for 60min per day, 5 days a week. Half the
participants commenced with BFP for the first 8 weeks and IP for the next
8 weeks and vice versa for the remaining half of the participants.

PA+CS group. The combined activity consisted of both PA and CS
sessions (as described above) each carried out for 60min per day, 5 days
per week, totaling 160 combined sessions.

Control group. This group continued with their routine lifestyle activities.
Logbooks were provided to record their physical and mental recreational
activities for 16 weeks.

Compliance and adherence
Compliance was monitored via the daily logbook and by fortnightly phone
calls, and adherence rate was calculated on the basis of the number of
training sessions completed and recorded in the logbook. Nonadherence
was defined as any participant that completed o25% of the total number
of respective group sessions at the end of the 16-week intervention.
Noncompliance was considered as any participant changing their behavior
despite the request to maintain their usual lifestyle pattern or the allocated
intervention exercises. This included those participants allocated to the
control group commencing activities as a result of the information
obtained from the study and the fact that there were three other
intervention groups, and the intervention participants performing more
robust activities outside their routine lifestyle and the allocated daily
activities.

Adverse events
Eight participants reported adverse events that were considered as
possibly study-related (shoulder injury due to falling over the carpet while
doing fitness assessment in one, sore arms and legs in five, ringing
sensation in head with eye strain in one and sweating and exhaustion in
one). All participants recovered except the participant with shoulder injury
who underwent treatment.

Assessments
Neuropsychological and physical fitness assessments were administered at
baseline, 8 and 16 weeks of the study. Blood samples were collected to
harvest DNA from leukocytes for APOE genotyping.50 The primary
outcome measure of the study was cognition. Secondary outcome
measures included changes in self-reported questionnaires, fitness
assessments and differences in the cerebral glucose metabolism in the
intervention groups versus the control group. The research staff involved
in the enrollment and outcome assessment were unblinded to group
assignments as they assisted in organizing the monthly intervention-
specific group meetings and follow-up phone calls.
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Assessment of cognitive function, anxiety, depression and quality
of life
Assessments included the Cambridge Contextual Reading Test51 for
Premorbid IQ, the Rey Auditory Verbal Learning Test52 for verbal episodic
memory; Controlled Oral Word Association Test53 for verbal fluency and the
computerized CogState battery (CogState, Melbourne, VIC, Australia).
CogState tasks included Detection (DET) for processing speed, one back
memory (ONB) for attention, Groton maze learning for executive functions
and Groton maze learning test recall, identification, one card learning and the
continuous paired associate learning for assessing the visual memory. As the
continuous paired associate learning, identification, Groton maze learning
test recall and one card learning tasks assessed visual memory, an index
score was calculated using sample-based z-scores. Dementia was diagnosed
using the Cambridge Cognitive Assessment—Revised54 with a cutoff score of
o80/105. The MMSE is a part of Cambridge Cognitive Assessment—Revised.
The Hospital Anxiety and Depression Scale55 assessed anxiety and
depression. Self-report measure of everyday memory functioning was
assessed using the Memory Functioning Questionnaire56 (MFQ). Health-
related quality of life was assessed using the physical and mental health
component of the SF-36 (short form-36)57 questionnaire.

PA and fitness assessments
Baseline PA levels were assessed using the International Physical Activity
Questionnaire. The incremental shuttle walk test58 and an assessment of
muscular strength using one repetition maximum protocol across four
major muscle groups were performed at baseline, 8 and 16 weeks post
intervention by the same operator. Exercise intensity levels were
determined using the Borg scale.49

PET imaging and processing
Participants (n= 13) underwent baseline scans, which were used for post-
intervention comparison. At week 16 (post intervention), a different subset
of participants was scanned from each group. Scans were performed
45min after intravenous injection of 185 MBq [18F]FDG on a Philips Gemini
16 Power PET/CT scanner. All participants were randomly selected for PET
imaging. The procedure was performed in a quiet, dimly lit room. Images
were processed using the NeuroStat brain analysis software package, as
described previously.42,44,59,60

Data analysis
Univariate analysis of variance was performed for all continuous variables
and chi-squared tests for all categorical variables to compare the four
treatment groups. For study outcome variables, the general linear model
repeated measures analysis of covariance procedure was used to assess
the main effects of the intervention including its interaction with time,
after adjusting for the covariates age, sex, APOE status, Cambridge
Contextual Reading Test and the respective baseline value. Post hoc
comparisons were only performed when group or group× time interaction
was significant. Comparisons between groups were assessed at the 5%
level of significance. Statistical analysis was performed using The Statistical
Package for Social Sciences (IBM SPSS version 19). The highly conservative
Bonferroni corrections were not used (see Perneger61). A minimum of 35
subjects in each of the four groups were determined to have 80% power at
5% level of difference to detect changes of at least 20% in primary
outcome variables. Additional recruitments were made to replace/foresee
that these numbers did not decrease due to dropouts in the study.

PET data analysis
The PET images were analyzed using NeuroStat brain analysis software as
described previously.42,60,62 Briefly, each study was transformed using
linear scaling and nonlinear warping to match the NeuroStat standard
Talairach anatomical atlas, and maximum cortical activity was extracted
using the three-dimensional stereotactic surface projection method
described by Minoshima et al.42 Images were normalized to the mean
cortical activity (1000, arbitrary units). To examine significant changes in
cerebral glucose metabolism post intervention, week 16 scans on
participants (total n= 45) in the three-dimensional stereotactic surface
projection images for the four groups were compared separately with the
baseline FDG-PET scans (n=13) using a Student’s t-test on a voxel-by-
voxel basis.
T-values were converted to equivalent z-scores and a statistically

significant threshold was used, controlling for multiple pixel comparisons

and the shape of the stochastic process on the three-dimensional
stereotactic surface projection format, of z= 4.53 (Po0.05).
NeuroStat was also used to calculate the volume of interest by

automatically determining the normalized average surface projection
count for major cortical regions (including the parietal, temporal, frontal,
occipital, posterior and anterior cingulate cortices) on the week 16 post-
intervention scans. An analysis of covariance was performed on this data
with age, sex, APOE status, Cambridge Contextual Reading Test and history
of head injury as covariates. Finally, to determine associations, Spearman’s
rank correlation was performed with post-intervention neuropsychological
scores and regions showing higher cerebral glucose metabolism.

RESULTS
Descriptive statistics
Table 1 shows participant (n= 222) demographic and clinical
characteristics. Overall, the study participants had an average age
of 67.60 ± 5.42 years and 69% were females. Baseline group
differences after recruitment were observed for the APOE ε4
status, Borg’s scale and SF-36 physical component with no group
differences for other parameters. APOE status was included as a
covariate in all analyses, whereas inclusion of Borg’s scale and
SF-36 physical component as covariates did not alter the main
results and hence were removed from the analyses. Seven
participants switched from the intervention group to the control
group. These participants were considered noncompliant together
with 11 other noncompliant participants and were excluded from
the final analysis. One participant had o25% adherence and 31
participants were dropouts. Thus, data of 172 participants were
included and analyzed. After correcting for multiple comparisons
with respect to age, sex, APOE and Cambridge Contextual Reading
Test including all primary outcome variables, completers (n= 172)
were not significantly different (P40.002) than non-completers
(n= 52).

Effect of the interventions on cognition: a combination of PA and
CS improves verbal memory
Cognitive and fitness assessment results following repeated
measures analysis of covariance for the four groups are shown
in Supplementary Table 1. Significant group differences were
observed for the long-term delayed recall (LTDR) using the Rey
Auditory Verbal Learning Test (P= 0.040, partial eta squared 0.055).
Post hoc analysis revealed that the combined group performed
significantly better (P= 0.024) compared with the control group
(Figure 2). Group differences were observed for the short-term
delayed recall (P= 0.026) but when compared with the control
group at 8 and 16 weeks; there were no significant changes in the
PA (P= 0.560), CS (P= 0.809) and combined groups (P= 0.966) at
8 weeks or at 16 weeks PA (P= 0.328), CS (P= 0.724) and combined
groups (P= 0.309), respectively. No significant group or group×
time interaction was observed for immediate recall, executive
function, processing speed, visual memory or attention.
Significant group differences were observed for the total score

of MFQ (P= 0.021). Post hoc analysis revealed that the control
group reported better memory functioning than the PA (P= 0.027)
and the combined group (P= 0.016). A significant group × time
interaction (P= 0.019) was observed for the distance traveled, as
assessed by the Shuttle walk test. Compared with the control
group at 8 weeks, the combined group (P= 0.020) and at 16 weeks
the PA group (P= 0.012) performed better. No significant changes
were observed for measures of SF-36 questionnaire, anxiety and
depression scales as well as for the one repetition maximum test
and the Borg’s scale.

NeuroStat results and analysis of variance
PA and computerized brain training together increase cerebral
glucose metabolism. A total of 45 participants across all groups
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(PA, n= 11; CS, n= 14; combined, n= 10 and control, n= 10) had an
FDG-PET scan at week 16. NeuroStat three-dimensional stereo-
tactic surface projection z-score images indicating regions of
hypo- and hypermetabolism for the 16-week post intervention are
shown in Figure 3. The CS group showed a trend towards a
metabolic increase (peak z-score = 4.23) in the right inferior frontal
gyrus, and the PA group showed a trend towards a metabolic
reduction (peak z-score = 4.25) in the left middle temporal lobe.
However, the z-scores representing these effects did not reach
statistical significance.
The volume of interest data with the results of analysis of

covariance with study covariates showed significant group
differences (Supplementary Table 2) for the right and left posterior
cingulate cortex (P= 0.025 and P= 0.018, respectively) and left

primary sensorimotor cortex (P= 0.045). Trends toward group
differences were observed for left medial parietal cortex (P= 0.051)
and left frontal lobe (P= 0.073). Pair-wise comparisons revealed
that compared with the control group, a significant increase in
metabolism was observed for the combined group (P= 0.039) in
the left primary sensorimotor cortex (Figure 4a) with a trend
towards greater activity in the left frontal lobe (P= 0.051,
Figure 4b). All other comparisons showed differences between
the intervention groups but not compared with the control (data
not shown) and thus did not reflect intervention-specific effects.
The findings above show moderate increases in regional counts

in the left primary sensorimotor cortex in the combined group,
indicating increased glucose metabolism in this region. Although
it cannot be determined if this increase is from baseline, as the

Table 1. Baseline demographics, clinical characteristics and assessments for entire cohort and the four intervention groupsa

Variables Total cohort (n= 222) Intervention groups P-valueb

Physical activity,
n=42

Cognitive stimulation,
n=51

Combined, n= 44 Control, n= 35

Age 67.60± 5.42 67.36± 5.09 66.61± 4.82 67.18± 5.33 69.06± 5.59 0.187
Females, n (%) 153 (68.92) 29 (69.00) 32 (62.70) 29 (65.90) 26 (74.30) 0.716
Education (PG), n (%) 35 (15.98) 5 (11.90) 11 (22.00) 6 (13.60) 6 (17.10) 0.094
Retired, n (%) 167 (75.57) 34 (81.00) 35 (68.60) 32 (72.70) 29 (82.90) 0.531
High blood pressure, n (%) 75 (34.09) 11 (26.20) 16 (31.40) 14 (31.80) 16 (45.70) 0.318
Heart attack, n (%) 8 (03.62) 0 (00.00) 0 (00.00) 2 (04.50) 3 (08.60) 0.066
Diabetes, n (%) 26 (11.76) 6 (14.30) 5 (09.80) 4 (09.10) 4 (11.40) 0.589
Visual defects, n (%) 132 (59.73) 20 (47.60) 34 (66.70) 28 (63.60) 19 (54.30) 0.242
History of falls, n (%) 15 (06.79) 4 (09.50) 5 (09.80) 3 (06.80) 2 (05.70) 0.879
Thyroid, n (%) 34 (15.38) 10 (23.80) 3 (05.90) 7 (15.90) 6 (17.10) 0.112
Arthritis, n (%) 91 (41.18) 14 (33.30) 22 (43.10) 18 (40.90) 11 (31.40) 0.624
Joint replacement, n (%) 20 (09.05) 2 (04.80) 5 (09.80) 4 (09.10) 1 (02.90) 0.539
Head injury, n (%) 10 (04.52) 1 (02.40) 4 (07.80) 1 (02.30) 1 (02.90) 0.447
Depression, n (%) 37 (16.82) 7 (17.10) 10 (19.60) 3 (06.80) 5 (14.30) 0.339
Anxiety, n (%) 31 (14.09) 5 (12.20) 5 (09.80) 6 (13.60) 6 (17.10) 0.792
Smoking, n (%) 12 (05.45) 1 (02.40) 3 (05.90) 3 (06.80) 2 (05.90) 0.806
Premorbid IQ (CCRT) 38.13± 6.46 37.29± 6.80 38.39± 6.33 40.25± 4.40 38.26± 6.53 0.149
BMI (n= 212) 27.28± 4.81 26.60± 4.42 28.08± 4.57 27.00± 5.10 26.51± 4.16 0.373
IPAQ (n= 216) 4431.63± 4536.96 4432.11± 5064.37 4294.36± 4042.81 4749.62± 5326.22 3673.00± 3157.38 0.773
APOE ε4 carriers, n (%) 65 (29.41) 14 (33.30) 18 (35.30) 17 (38.60) 3 (08.60) 0.018c

Physical fitness assessments
Total sum of strength
(kg) (n= 211)

191.39± 58.18 193.81± 53.51 205.11± 63.14 204.43± 57.01 168.24± 54.03 0.062

Distance (n= 213) 470.52± 138.01 501.19± 129.28 466.38± 114.62 485.68± 136.29 481.76± 143.58 0.659
Borg’s Scale (n= 212) 12.02± 2.24 12.32± 2.24 11.55± 2.07 12.50± 2.29 11.03± 2.04 0.011c

Assessment score
CAMCOG-R 96.17± 4.20 96.69± 4.06 96.73± 3.34 96.84± 3.65 95.97± 4.08 0.743
MMSE 28.64± 1.43 28.60± 1.47 28.80± 1.18 28.59± 1.40 28.80± 1.26 0.785
RAVLT: IR 47.02± 9.13 48.10± 11.63 46.47± 8.02 47.30± 8.76 46.17± 7.84 0.778
RAVLT: STDR 9.56± 2.88 9.71± 3.33 9.61± 2.37 9.48± 3.15 9.43± 2.70 0.971
RAVLT: LTDR 9.14± 3.35 9.26± 3.88 9.24± 2.45 8.84± 3.47 9.29± 2.92 0.905
COWAT 41.69± 12.12 42.26± 13.69 41.75± 10.80 44.57± 11.13 40.09± 11.50 0.398
Detection 1.49± 0.15 1.51± 0.12 1.49± 0.11 1.45± 0.23 1.50± 0.12 0.317
One back memory 1.31± 0.18 1.32± 0.19 1.30± 0.19 1.33± 0.14 1.33± 0.17 0.798
Groton maze learning 68.31± 28.35 66.02± 25.81 66.55± 27.85 66.30± 25.40 65.00± 17.80 0.993
IS: visual memory 0.05± 2.02 − 0.39± 1.87 − 0.04± 2.02 0.34± 2.18 0.36± 1.98 0.290
HADS: anxiety 4.52± 3.25 4.14± 3.43 4.27± 3.17 3.61± 2.69 5.31± 3.27 0.124
HADS: depression 2.82± 2.28 2.24± 1.86 2.84± 1.90 2.20± 1.89 3.03± 2.12 0.127
MFQ 289.42± 52.39 297.55± 49.41 293.59± 50.57 290.82± 52.25 286.57± 48.93 0.807
SF-36: PC 71.31± 17.04 75.29± 16.52 73.53± 17.88 75.42± 12.86 66.05± 16.51 0.045c

SF-36: MC 76.86± 15.85 78.42± 15.75 80.88± 12.05 80.50± 13.00 73.46±16.42 0.090

Abbreviations: APOE, apolipoprotein E; BMI, body mass index; Camcog-R, Cambridge cognitive assessment-Revised; CCRT, Cambridge contextual reading test;
COWAT, controlled oral word association test; HADS, hospital anxiety and depression scale; IPAQ, international physical activity questionnaire; IQ, intelligence
quotient; IR, immediate recall; IS, index score; LTDR, long-term delayed recall; MFQ, memory functioning questionnaire; MMSE, mini-mental state examination;
PG, post graduation; RAVLT, Rey auditory verbal learning test; SF36:PC, short form 36: physical component; SF36:MC, short form 36: mental component; STDR,
short-term delayed recall. aValues are expressed as mean± s.d. unless otherwise indicated. bFor all continuous variables, an analysis of variance was used and
for all categorical variables, a chi-square test was used. cIndicates the group differences significant at the 0.05 level.
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scans were only performed at week 16, the data can be used to
investigate associations with other outcome variables from the
study. Correlation analysis was performed between regional

counts in the left primary sensorimotor cortex and cognitive
variables assessed at week 16 (Supplementary Table 3).
Higher regional counts within the left sensorimotor cortex and

left frontal lobe correlated significantly with LTDR for the
combined group only (P= 0.030 and P= 0.003, respectively). Such
associations were not present in any other group (Supplementary
Table 3). No significant correlations were observed with baseline
values for LTDR and left primary sensorimotor cortex (ρ= 0.254,
P= 0.510). A positive correlation was also present between the
CogState ONB (attention) task, and regional counts within the left
sensorimotor cortex (P= 0.011) in the combined group. No
correlations were observed with pre-intervention values for ONB
(left primary sensorimotor cortex (ρ= 0.213, P= 0.582)). Unlike
LTDR scores, scores for the ONB task did not improve significantly
in the combined group; thus the significance of this association as
it relates to improved cognition is unclear.

DISCUSSION
There are three novel findings from this study. First, this specific
combination of PA and computerized brain training significantly
improved verbal memory after 16 weeks. Second, this combined
group showed higher regional counts compared with the control
group; indicating higher levels of glucose metabolism. Specifically,
significant increases were observed in the left primary sensor-
imotor cortex. Third, higher regional counts were associated with

Figure 2. Effects of the interventions on long-term delayed recall
(LTDR): Repeated measures analysis of covariance showed significant
group differences (P= 0.040) for the LTDR scores. Post hoc analysis
showed that only the combined group performed better when
compared with the control group (P= 0.024). Comb, combined;
CS, cognitive stimulation; PA, physical activity.

Figure 3. Three-dimensional stereotactic surface projection z-score
images for the 16-week post-intervention scans showing regions
of (a) hypometabolism and (b) hypermetabolism compared
with baseline scans. COMB, combined; CS, cognitive stimulation;
PA, physical activity.

Figure 4. Effects of the intervention on regional count as deter-
mined by FDG-PET. (a) An ANCOVA showed significant group
differences at 16 weeks post intervention in the left sensorimotor
cortex (P= 0.045). Post hoc analysis showed that the combined
group had more glucose uptake in this region when compared with
the control group (P= 0.039). (b) Trends toward significant group
differences (P= 0.070) were observed in the left frontal cortex. Post
hoc analysis revealed trends toward the combined group showing
increased glucose metabolism compared with the control group
(P= 0.051). CS, cognitive stimulation; PA, physical activity.

Effects of lifestyle interventions in the elderly
T Shah et al

6

Translational Psychiatry (2014), 1 – 9



improved verbal memory at week 16 post intervention in the
combined group only. This association was not present in any
other group, indicating that higher neuronal activity could be due
to the activities being combined.
Consistent with our current findings, previous studies have

reported that a combination of physical and mental activities are
more beneficial.35,36 However, these studies included paper and
pencil based training and did not include additional assessments
of biomarkers. Other studies reporting improved cognition have
applied stand-alone interventions of PA18,63 or CS.31,32 A 6-month
randomized trial of aerobic, strength, flexibility, balance and
coordination exercises, or brain training in the form of operating
common features of computers (n= 256 women, 70–93 years of
age), resulted in improved immediate and delayed recall in the
intervention groups.64 However, this study lacked a combined
group. Our study shows that a combination of these activities,
which included low intensity walking, provided benefits particu-
larly for verbal episodic memory compared with the control group.
In this context, it is noteworthy that episodic memory impairment
is the core deficit of AD.65

Our study did not demonstrate post-intervention benefits for
executive functions, visual memory, processing speed or attention.
Limited sample size, the counterbalanced-design of our CS
intervention or differences in the outcome measures may be
responsible, as relationships with these particular cognitive
domains have been found in other trials.22,31,32 It may also
suggest that the intensity of PA may be more important than the
type of exercise for these specific cognitive domains. For example,
aerobic exercise has been linked specifically with improved
attention66 and executive control processes.14,67 Given the age
of the participants, the PA intervention in the current study was
deliberately kept mild and hence was not aerobic in nature. A
previous study showed that aerobic exercise in the form of brisk
walking generated positive outcomes, but only if practiced for at
least 1 year.68 A recent trial using PA and identical brain training
programs for 12 weeks reported improved global cognitive scores
over time, but these scores did not differ between the
intervention and the active control group.34 Our results demon-
strate the cognitive benefits of combined activities after 16 weeks
of training.
Unexpectedly, the control group reported better memory

performance at 16 weeks post intervention on the MFQ in this
study. Memory self-appraisal and depression tendencies are
strongly associated.69 It is possible that participating in such a
trial may have some placebo-like effect; that is, encouraging an
imitation of treatment and resulting in a self-reported improve-
ment in memory or a decrease in subjective memory complaints.
However, this finding was not supported by any objective
measure of cognitive function included in the current study that
could possibly explain the improved memory self-perception, nor
did the control subjects demonstrate any changes in their physical
fitness assessments post intervention.
Our study suggests that the observed benefits in verbal

memory may be mediated by the higher glucose metabolism
levels in the left sensorimotor cortex. To the best of our
knowledge, there is no other study that has investigated the
benefits of single as well as combined lifestyle interventions using
FDG-PET. FDG-PET has been used in one study to examine a
cohort of 17 healthy older adults, to investigate the benefits of a
combination of memory training, PA, stress reduction and diet.
The study reported a 5% decrease in activity in the left
dorsolateral prefrontal cortex in the intervention group.70 The
intervention used in the study by Small et al.70 was a combination
aimed at providing an overall healthier lifestyle, however, it is not
possible to interpret whether all or any one component of this
healthy lifestyle caused the resulting improvement in word
fluency and the observed change in brain activity.

In addition, we showed that of all the variables, only the LTDR
was positively associated with the observed higher regional count.
This suggests that the increased LTDR scores could be due to the
higher neuronal activity in this brain region. The left primary
sensorimotor cortex is usually associated with motor functioning,
although animal studies suggest that it is highly dynamic. Thus,
cognitive functioning could be mediated in this area because it
shows high neuronal plasticity, and increased activation within
this area is seen following long-term learning.71,72 Unlike the
frontal cortex, this brain region is relatively spared from AD
pathology and does not show reductions in glucose metabolism
in early AD.44 According to the cognitive reserve hypothesis, there
is increased and decreased activation in specific brain regions
during task performance reflecting the complexity of the neural
expression of the cognitive reserve. It has been speculated that for
a given task, high cognitive reserve could result in reduced
cerebral activation in regions normally specifically engaged to
enable performance of the task, and this could possibly explain
why we found an increase in the left primary sensorimotor cortex
whereas Small et al.70 had found a decrease in the dorsolateral
prefrontal cortex. It is tempting to speculate that, as the more
susceptible areas of the brain are affected in early dementia, the
more resistant areas such as the sensorimotor cortex may provide
cognitive reserve and higher neuronal activity following lifestyle
interventions.73

There are some limitations to this study. The participants were
not completely randomized. Although randomization is important,
such an approach may not be practical in lifestyle intervention
trials. Cognitively healthy individuals are often highly motivated,
usually active and request to be placed into groups that are
rewarding. Internet publicity of brain training games, social
interaction and spouses/friends of study participants requesting
to be placed in the same group make it more challenging to
ensure randomization. However, baseline values were taken as a
covariate in the analysis to reduce any nonrandomization bias.
Another limitation is that the FDG-PET scans were performed at
week 16 post intervention only. Thus it cannot be determined if
the reported increase is from baseline.
In conclusion, this study adds to the clinical significance of

lifestyle interventions by demonstrating improved cognition
following 16 weeks of walking and resistance training together
with computerized visual and auditory cognitive training. The
results identify higher cerebral glucose metabolism as a result of
these activities, beyond the traditional benefits of enhanced blood
circulation as observed for both physical and mental activities.
Although data from the FDG-PET scans must be interpreted with
caution, the current findings provide information that combined
lifestyle activities may be altering neuronal activity. A larger
sample size with longitudinal follow-up would consolidate
findings and provide further information. Specifically, it would
help to determine if such changes in cerebral glucose metabolism
are maintained following completion of the intervention, or if the
activities need to be continued to maintain these benefits. The
findings do indicate that the type of activities trialed here provide
greater cognitive benefits than routine lifestyle activities in the
healthy elderly.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
TS is supported by the Australian Postgraduate Award from the University of Western
Australia, the Research Excellence Award form Edith Cowan University and the
Freemasons of Western Australia Education Grant 2010 and 2011. The McCusker
Alzheimer’s Research Foundation contributed financial and in-kind support for the
study. Posit Science (San Francisco, CA, USA) has generously provided us their

Effects of lifestyle interventions in the elderly
T Shah et al

7

Translational Psychiatry (2014), 1 – 9



software programs for the study. We thank all the study participants for their time,
commitment and dedication for this intervention study and also the research staff at
the Foundation.

REFERENCES
1 World Health Organization. Dementia: a Public Health Priority. World Health

Organization: Geneva, Switzerland, 2012.
2 de Bruijn RF, Schrijvers EM, de Groot KA, Witteman JC, Hofman A, Franco OH et al.

The association between physical activity and dementia in an elderly population:
the Rotterdam Study. Eur J Epidemiol. 2013; 28: 277–283.

3 Barberger-Gateau P, Raffaitin C, Letenneur L, Berr C, Tzourio C, Dartigues J-F et al.
Dietary patterns and risk of dementia The Three-City cohort study. Neurology
2007; 69: 1921–1930.

4 Scherder EJ, Bogen T, Eggermont LH, Hamers JP, Swaab DF. The more physical
inactivity, the more agitation in dementia. Int Psychogeriatr 2010; 22: 1203–1208.

5 Access Economics. Keeping dementia front of mind: incidence and prevalence
2009-2050. Alzheimer's Australia, 2009. Available at http://www.alzheimers.org.
au/upload/Front_of_Mind_Full_Rep ort1 pdf.

6 Mattson MP, Duan W, Chan SL, Cheng A, Haughey N, Gary DS et al. Neuropro-
tective and neurorestorative signal transduction mechanisms in brain aging:
modification by genes, diet and behavior. Neurobiol Aging 2002; 23: 695–706.

7 Studenski S, Carlson MC, Fillit H, Greenough WT, Kramer A, Rebok GW. From
bedside to bench: does mental and physical activity promote cognitive vitality in
late life? Sci Aging Knowl Environ 2006; 2006: pe21.

8 Fillit HM, Butler RN, O'Connell AW, Albert MS, Birren JE, Cotman CW et al.
Achieving and maintaining cognitive vitality with aging. Mayo Clin Proc 2002; 77:
681–696.

9 Abbott RD, White LR, Ross GW, Masaki KH, Curb JD, Petrovitch H. Walking and
dementia in physically capable elderly men. JAMA 2004; 292: 1447–1453.

10 Weuve J, Kang JH, Manson JAE, Breteler M, Ware JH, Grodstein F. Physical activity,
including walking, and cognitive function in older women. JAMA 2004; 292: 1454.

11 Yaffe K, Barnes D, Nevitt M, Lui LY, Covinsky K. A prospective study of physical
activity and cognitive decline in elderly women: women who walk. Arch Intern
Med 2001; 161: 1703.

12 Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K. Physical activity and
risk of cognitive impairment and dementia in elderly persons. Arch Neurol 2001;
58: 498–504.

13 Blumenthal JA, Madden DJ. Effects of aerobic exercise training, age, and physical
fitness on memory-search performance. Psychol Aging 1988; 3: 280–285.

14 Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a
meta-analytic study. Psychol Sci 2003; 14: 125–130.

15 Renaud M, Maquestiaux F, Joncas S, Kergoat M-J, Bherer L. The effect of three
months of aerobic training on response preparation in older adults. Front Aging
Neurosci 2010; 2: 148.

16 Palleschi L, Vetta F, De Gennaro E, Idone G, Sottosanti G, Gianni W et al. Effect of
aerobic training on the cognitive performance of elderly patients with senile
dementia of Alzheimer type. Arch Gerontol Geriatr 1996; 22: 47–50.

17 Rolland Y, Rival L, Pillard F, Lafont C, Riviere D, Albarede JL et al. Feasibily of
regular physical exercice for patients with moderate to severe alzheimer disease. J
Nutr Health Aging 2000; 4: 109–113.

18 Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J et al.
Effect of physical activity on cognitive function in older adults at risk for Alzhei-
mer disease: a randomized trial. JAMA 2008; 300: 1027–1037.

19 Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L et al. Exercise
training increases size of hippocampus and improves memory. Proc Natl Acad Sci
USA 2011; 108: 3017.

20 Lachman ME, Neupert SD, Bertrand R, Jette AM. The effects of strength training
on memory in older adults. J Aging Phys Act 2006; 14: 59.

21 Cassilhas RC, Viana VAR, Grassmann V, Santos RT, Santos RF, Tufik S et al. The
impact of resistance exercise on the cognitive function of the elderly. Med Sci
Sports Exerc 2007; 39: 1401–1407.

22 Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M et al. Effects of
cognitive training interventions with older adults: a randomized controlled trial.
JAMA 2002; 288: 2271–2281.

23 Calero MD, Navarro E. Cognitive plasticity as a modulating variable on the effects
of memory training in elderly persons. Arch Clin Neuropsychol 2007; 22: 63–72.

24 Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth Ø, Larsen VA et al. Effects of
memory training on cortical thickness in the elderly. Neuroimage 2010; 52:
1667–1676.

25 Rozzini L, Costardi D, Chilovi BV, Franzoni S, Trabucchi M, Padovani A. Efficacy of
cognitive rehabilitation in patients with mild cognitive impairment treated with
cholinesterase inhibitors. Int J Geriatr Psychiatry 2007; 22: 356–360.

26 Farina E, Fioravanti R, Chiavari L, Imbornone E, Alberoni M, Pomati S et al. Com-
paring two programs of cognitive training in Alzheimer's disease: a pilot study.
Acta Neurol Scand 2002; 105: 365–371.

27 Zanetti O, Binetti G, Magni E, Rozzini L, Bianchetti A, Trabucchi M. Procedural
memory stimulation in Alzheimer's disease: impact of a training programme. Acta
Neurol Scand 2009; 95: 152–157.

28 Zanetti O, Zanieri G, Di Giovanni G, De Vreese LP, Pezzini A, Metitieri T et al.
Effectiveness of procedural memory stimulation in mild Alzheimer's disease
patients: a controlled study. Neuropsychol Rehabil 2001; 11: 263–272.

29 Wilson RS, Bennett DA, Bienias JL, Aggarwal NT, Mendes de Leon CF, Morris MC
et al. Cognitive activity and incident AD in a population-based sample of older
persons. Neurology 2002; 59: 1910–1914.

30 Wilson RS, Scherr PA, Schneider JA, Tang Y, Bennett DA. Relation of cognitive
activity to risk of developing Alzheimer disease. Neurology 2007; 69: 1911–1920.

31 Mahncke HW, Connor BB, Appelman J, Ahsanuddin ON, Hardy JL, Wood RA et al.
Memory enhancement in healthy older adults using a brain plasticity-based
training program: a randomized, controlled study. Proc Natl Acad Sci USA 2006;
103: 12523–12528.

32 Smith GE, Housen P, Yaffe K, Ruff R, Kennison RF, Mahncke HW et al. A cognitive
training program based on principles of brain plasticity: results from the
Improvement in Memory with Plasticity‐based Adaptive Cognitive Training
(IMPACT) Study. J Am Geriatr Soc 2009; 57: 594–603.

33 Anguera J, Boccanfuso J, Rintoul J, Al-Hashimi O, Faraji F, Janowich J et al. Video
game training enhances cognitive control in older adults. Nature 2013; 501:
97–101.

34 Barnes DE, Santos-Modesitt W, Poelke Gina, Kramer Arthur F, Castro Cynthia,
Middleton Laura E et al. The mental activity and exercise (max) trial: a randomized
controlled trial to enhance cognitive function in older adults. JAMA Intern Med
2013; 173: 797–804.

35 Fabre C, Chamari K, Mucci P, Masse-Biron J, Prefaut C. Improvement of cognitive
function by mental and/or individualized aerobic training in healthy elderly
subjects. Int J Sports Med 2002; 23: 415–421.

36 Oswald WD, Gunzelmann T, Rupprecht R, Hagen B. Differential effects of single
versus combined cognitive and physical training with older adults: the SimA
study in a 5-year perspective. Eur J Ageing 2006; 3: 179–192.

37 Shatil E. Does combined cognitive training and physical activity training enhance
cognitive abilities more than either alone? A four-condition randomized con-
trolled trial among healthy older adults. Front Aging Neurosci 2013; 5: 8.

38 Sokoloff L. Localization of functional activity in the central nervous system by
measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood
Flow Metab 1981; 1: 7–36.

39 Frackowiak RS Magistretti PJ Shulman RG Altman JS Adams M. Neuroenergetics:
Relevance for Functional Brain Imaging. Human Frontier Science Program:
Strasbourg, France, 2001.

40 Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Min-
oshima S et al. Cerebral metabolic changes accompanying conversion of mild
cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl
Med Mol Imag 2003; 30: 1104–1113.

41 Nestor PJ, Fryer TD, Smielewski P, Hodges JR. Limbic hypometabolism in Alz-
heimer's disease and mild cognitive impairment. Ann Neurol 2003; 54: 343–351.

42 Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in
Alzheimer's Disease using three-dimensional stereotactic surface. J Nucl Med
1995; 36: 1238–1248.

43 Masdeu JC, Zubieta JL, Arbizu J. Neuroimaging as a marker of the onset and
progression of Alzheimer's disease. J Neurol Sci 2005; 236: 55–64.

44 Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic
reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann
Neurol 1997; 42: 85–94.

45 Hoffman JM, Welsh-Bohmer KA, Hanson M, Crain B, Hulette C, Earl N et al. FDG
PET imaging in patients with pathologically verified dementia. J Nucl Med 2000;
41: 1920–1928.

46 Förster S, Buschert VC, Buchholz HG, Teipel SJ, Friese U, Zach C et al. Effects of a 6-
month cognitive intervention program on brain metabolism in amnestic mild
cognitive impairment and mild Alzheimer's disease. J Alzheimers Dis 2011; 25:
695–706.

47 Tashiro M, Itoh M, Fujimoto T, Fujiwara T, Ota H, Kubota K et al. 18F-FDG PET
mapping of regional brain activity in runners. J Sports Med Phys Fitness 2001; 41:
11–17.

48 Kemppainen J, Aalto S, Fujimoto T, Kalliokoski KK, Långsjö J, Oikonen V et al. High
intensity exercise decreases global brain glucose uptake in humans. J Physiol
2005; 568: 323–332.

49 Borg G. Borg's Perceived Exertion and Pain Scales. Human Kinetics Publishers:
Champaign, IL, US, 1998.

50 Wenham PR, Newton CR, Price WH. Analysis of apolipoprotein E genotypes by the
Amplification Refractory Mutation System. Clin Chem 1991; 37: 241–244.

Effects of lifestyle interventions in the elderly
T Shah et al

8

Translational Psychiatry (2014), 1 – 9



51 Beardsall L, Huppert FA. Improvement in NART word reading in demented and
normal older persons using the Cambridge Contextual Reading Test. J Clin Exp
Neuropsychol 1994; 16: 232–242.

52 Rey A. L’examen clinique en psychologie [Clinical tests in psychology]. Presses
Universitaires de France: Paris, France, 1964.

53 Benton AL, Hamsher KS. Multilingual Aphasia Examination (Manual, revised, 1978).
University of Iowa: Iowa City, IA, USA, 1976.

54 Roth M, Tym E, Mountjoy CQ, Huppert FA, Hendrie H, Verma S et al. CAMDEX. A
standardised instrument for the diagnosis of mental disorder in the elderly with
special reference to the early detection of dementia. Br J Psychiatry 1986; 149:
698–709.

55 Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr
Scand 1983; 67: 361–370.

56 Gilewski MJ, Zelinski EM, Schaie KW. The Memory Functioning Questionnaire for
assessment of memory complaints in adulthood and old age. Psychol Aging 1990;
5: 482–490.

57 Ware JE Jr, Gandek B. Overview of the SF-36 Health Survey and the International
Quality of Life Assessment (IQOLA) Project. J Clin Epidemiol 1998; 51: 903–912.

58 Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle
walking test of disability in patients with chronic airways obstruction. Thorax
1992; 47: 1019–1024.

59 Minoshima S, Koeppe RA, Frey KA, Ishihara M, Kuhl DE. Stereotactic PET atlas of
the human brain: aid for visual interpretation of functional brain images. J Nucl
Med 1994; 35: 949–954.

60 Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear
scaling and nonlinear warping of functional brain images. J Nucl Med 1994; 35:
1528–1537.

61 Perneger TV. What's wrong with Bonferroni adjustments. BMJ 1998; 316:
1236–1238.

62 Rimajova M, Lenzo NP, Wu J-S, Bates KA, Campbell A, Dhaliwal SS et al. Fluoro-2-
deoxy-D-glucose (FDG)-PET in APOEε4 carriers in the Australian population. J
Alzheimers Dis 2008; 13: 137–146.

63 Ruscheweyh R, Willemer C, Krüger K, Duning T, Warnecke T, Sommer J et al.
Physical activity and memory functions: an interventional study. Neurobiol Aging
2011; 32: 1304–1319.

64 Klusmann V, Evers A, Schwarzer R, Schlattmann P, Reischies FM, Heuser I et al.
Complex mental and physical activity in older women and cognitive performance:

a 6-month randomized controlled trial. J Gerontol A Biol Sci Med Sci 2010; 65:
680–688.

65 Aggarwal NT, Wilson RS, Beck TL, Bienias JL, Bennett DA. Mild cognitive impair-
ment in different functional domains and incident Alzheimer’s disease. J Neurol
Neurosurg Psychiatry 2005; 76: 1479–1484.

66 Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ et al. Cardi-
ovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA. 2004; 101:
3316–3321.

67 Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR et al. Ageing,
fitness and neurocognitive function. Nature 1999; 400: 418–419.

68 Voss MW, Prakash RS, Erickson KI, Basak C, Chaddock L, Kim JS et al. Plasticity of
brain networks in a randomized intervention trial of exercise training in
older adults. Front Aging Neurosci 2010; 2: pii:32.

69 Antikainen R, Hänninen T, Honkalampi K, Hintikka J, Koivumaa-Honkanen H,
Tanskanen A et al. Mood improvement reduces memory complaints in depressed
patients. Eur Arch Psychiatry Clin Neurosci 2001; 251: 6–11.

70 Small GW, Silverman DHS, Siddarth P, Ercoli LM, Miller KJ, Lavretsky H et al. Effects
of a 14-day healthy longevity lifestyle program on cognition and brain function.
Am J Geriatr Psychiatry 2006; 14: 538–545.

71 Matsuzaka Y, Picard N, Strick PL. Skill representation in the primary motor cortex
after long-term practice. J Neurophysiol 2007; 97: 1819–1832.

72 Rokni U, Richardson AG, Bizzi E, Seung HS. Motor learning with unstable neural
representations. Neuron 2007; 54: 653–666.

73 Salustri C, Tecchio F, Zappasodi F, Tomasevic L, Ercolani M, Moffa F et al. Sen-
sorimotor cortex reorganization in alzheimer's disease and metal dysfunction: a
MEG Study. Int J Alzheimers Dis 2013; 2013: 638312.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International License. The images or

other third party material in this article are included in the article’s Creative Commons
license, unless indicatedotherwise in the credit line; if thematerial is not included under
the Creative Commons license, users will need to obtain permission from the license
holder to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)

Effects of lifestyle interventions in the elderly
T Shah et al

9

Translational Psychiatry (2014), 1 – 9

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly
	Introduction
	Figure 1 Flow of participants from screening to completion of the 16�weeks post-intervention follow-up assessment.
	Materials and methods
	Participants
	Eligibility, inclusion and exclusion criteria
	Study interventions
	PA group
	CS group
	PA+CS group
	Control group

	Compliance and adherence
	Adverse events
	Assessments
	Assessment of cognitive function, anxiety, depression and quality of life
	PA and fitness assessments
	PET imaging and processing
	Data analysis
	PET data analysis

	Results
	Descriptive statistics
	Effect of the interventions on cognition: a combination of PA and CS improves verbal memory
	NeuroStat results and analysis of variance
	PA and computerized brain training together increase cerebral glucose metabolism


	Table 1 Baseline demographics, clinical characteristics and assessments for entire cohort and the four intervention groupsa
	Discussion
	Figure 2 Effects of the interventions on long-term delayed recall (LTDR): Repeated measures analysis of covariance showed significant group differences (P�=�0.040) for the LTDR scores.
	Figure 3 Three-dimensional stereotactic surface projection z-score images for the 16-week post-intervention scans showing regions of (a) hypometabolism and (b) hypermetabolism compared with baseline scans.
	Figure 4 Effects of the intervention on regional count as determined by FDG-PET.
	Conflict of interest
	TS is supported by the Australian Postgraduate Award from the University of Western Australia, the Research Excellence Award form Edith Cowan University and the Freemasons of Western Australia Education Grant 2010 and 2011. The McCusker Alzheimer&#x02019;
	ACKNOWLEDGEMENTS
	REFERENCES




