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Graphical Abstract

CircCPM is up-regulated in 5-FU resistant gastric cancer cells and tissues.
CircCPM modulates autophagy by working as a sponge of miR-21-3p, thereby
up-regulating PRKAA2 expression.
CircCPM regulates gastric cancer 5-FU chemoresistance through the miR-21-3p/
PRKAA2 axis.
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Abstract
Background:Chemotherapy can significantly improve the disease-free survival
and overall survival of patients with advanced gastric cancer (GC). 5-fluorouracil
(5-FU) is frequently applied in the clinic, acting as a first-line chemotherapy drug
of advanced GC, which could be used alone or combining platinum drugs. How-
ever, its efficacy is significantly attenuated by chemoresistance, which is asso-
ciated with patients’ poor survival. Recently, there is evidence suggesting that
dysregulation of autophagy may contribute to drug resistance in cancer, and cir-
cular RNAs (circRNAs) also take part in chemoresistance. However, whether cir-
cRNAs participate in 5-FU chemoresistance through autophagy remains largely
unknown.
Methods: RNA sequencing technologies and bioinformatics analysis were per-
formed in GC. Sanger sequencing, Actinomycin D assay and RNase R assay con-
firmed the circular structure of circular CPM (circCPM). Various cell line mod-
els and animal models were used to explore related functions in vitro and in
vivo. Quantitative Real-time PCR (qRT-PCR), fluorescence in situ hybridization,
ribonucleic acid; (RNA) pulldown assays, RNA binding protein immunoprecip-
itation assays and Luciferase reporter assays were applied to explore involved
pathways.

Abbreviations: 5-FU, 5-fluorouracil; AMPK, AMP-activated protein kinase; AV, autophagic vacuoles; c-caspase3, cleaved caspase 3; circCPM,
circular CPM; circRNA, circular RNA; CQ, chloroquine; FACS, fluorescence activated cell sorting; FISH, fluorescence in situ hybridization; GC, gastric
cancer; LC3, microtubule-associated protein 1 light chain 3; miRNA, microRNA; OS, overall survival; p62, sequestosome 1; PRKAA2, protein kinase
AMP-activated catalytic subunit alpha 2; TEM, transmission electron microscopy
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Results: circCPM was up-regulated in 5-FU resistant GC cell lines and tissue.
Moreover, high circCPM expression is positively associated with poor survival.
Silencing circCPM greatly improved chemosensitivity in vitro and in vivo. Mech-
anistically, it directly binds tomiR-21-3p in the cytoplasm and therefore increases
the expression of PRKAA2, contributing to the activation of autophagy and
chemoresistance.
Conclusion:Our results reveal that circCPM has a crucial role in regulating GC
autophagy and 5-FU resistance by targeting PRKAA2. It may function as a new
theory basis for assessing the curative effect of GC and reversing 5-FU chemore-
sistance.

KEYWORDS
5-FU resistance, autophagy, ceRNA, circRNA, gastric cancer, PRKAA2

1 INTRODUCTION

Gastric cancer (GC) is one of the most common malig-
nant tumours with high fatality worldwide.1,2 Its inci-
dence is very high in EasternAsia,3,4 especially in China.5,6
Despite the advances in early diagnosis and clinical treat-
ment, the patients’ prognosis of with advanced GC is still
poor, which has a low 5-year overall survival (OS).7 Cur-
rently, chemotherapy based on 5-FU and cisplatin is rec-
ommended for advanced GC patients.8–10
5-fluorouracil (5-FU) is one of the most widely used

anti-tumour agents, which shows significantly inhibitory
effects against plenty of solid tumours.11–13 As a thoracic
nucleotide synthase inhibitor, 5-FU can interfere with
deoxyribonucleic acid (DNA) and protein synthesis. There
are studies showing that 5-FU resistance seriously affects
the prognosis of GC patients.14–16 Our previous studies also
showed that TFF1 rs3761376 AA had a positive correlation
with a worse prognosis among patients receiving 5-FU-
based chemotherapy after surgery.17 Thus, the underlying
mechanisms of 5-FU resistance inGCpatients need further
exploration.
Autophagy, acting as a resistance mechanism against

chemotherapy, received a great deal of attention in recent
years.18 It is a lysosome-mediated intracellular degra-
dation process for proteins and organelles to maintain
homeostasis and protects the cell from stress condi-
tions, including hypoxia, metabolic stress and therapeu-
tic agents.19,20 Our previous studies have identified that a
series of small-molecule altered the GC cells chemother-
apy sensitivity bymodulating autophagy. For example, our
team revealed that overexpressing miR-148a-3p in CDDP-
resistant cells inhibits cytoprotective autophagy by sup-
pressing RAB12 and mTOR1 activation.21 miR-1265 regu-
lates GC autophagy by modulating CAB39 expression and

the AMPK-mTOR signaling pathway.22 However, the pre-
cise function and mechanism of autophagy in GC 5-FU
resistance needs further investigation.
Circular RNAs are a new type of non-coding RNAs,

which have a highly conserved closed-loop structure,
produced from pre-mRNA back-splicing.23,24 They are
believed to be highly stable without 5′ cap and 3′
polyadenylated tail. Accumulating evidence reveals that
circRNAs contribute to diverse biological processes in can-
cer, including drug resistance.25–28 Our previous study
showed that circ-AKT3 enhances cisplatin resistance by
upregulating PIK3R1 expression in GC.29 However, up to
now, few studies have revealed the regulatory mechanism
of circRNAs in 5-FU resistance. The functions of circRNAs
in GC 5-FU resistance need further investigation.
In this study, a reliable ceRNA network based on 5-FU

resistancewas first constructed by using circRNAandmes-
senger RNA (mRNA) microarray. We then focused on the
key networks related to autophagy. With the advantage
of RNA sequencing technologies, bioinformatics analysis
and validation in GC tissues, we identified a circular CPM
(circCPM)-miR-21-3p-PRKAA2 axis related to autophagy,
which had a regulatory function in the 5-FU resistance of
GC. Our study provides a theoretical foundation for per-
sonalization in GC management and reversing drug resis-
tance.

2 MATERIALS ANDMETHODS

2.1 Patients and samples

In total, 102 GC specimens were collected from the First
Affiliated Hospital of Nanjing Medical University. Two
samples obtained from patients receiving treatment with
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standard 5-FU-based neoadjuvant chemotherapy were
used for sequencing. One hundred samples were used to
analyse the expression of candidate circRNAs and relations
between circCPM expression levels and clinical outcomes
after radical resection in patients undergoing 5-FU-based
adjuvant chemotherapy. 5-FU resistance group consisted
of patients whose disease-free survival was <2 years, and
5-FU sensitivity group consisted of patients whose disease-
free survival was ≥2 years among those receiving 5-FU-
based adjuvant chemotherapy. The samples were obtained
in 2017–2020.We collect specimens based on standard pro-
cedures. Within 30 min after the specimen was isolated,
the cancer tissue was cut into several tissue blocks with
a diameter of about 0.5 cm, which was respectively put
into the numbered cryostorage tubes and quickly put into
liquid nitrogen for long-term preservation. This study was
approved by the medical ethics committee of our hospital.

2.2 Cell culture

The human GC 5-FU sensitive cells AGS and HGC-27 as
well as their resistant cell lines (AGS-5FU and HGC-27-
5FU) were used in this study. 5-FU resistant GC cell strains
were developed through gradually increasing 5-FU treat-
ment. The original concentration of 5-FU started from 1uM
(1/5 of IC50 values of the 5-FU sensitive cells). Cells will
be cultured inmediumwithout chemotherapy agents after
24 h. The cells were cultured in medium with increasing
5-FU concentration (1.5- to 2-fold) after cells became sta-
ble. The resistant cell strains were eventually established
by gradually increasing 5-FU concentrations for 6 months.
Then, the two cell lines were maintained in a complete
medium containing 5-FU. HGC-27-5FUand HGC-27 were
maintained in RPMI 1640medium,while the rest were cul-
tured in F12K medium. The HEK-293T cell line was cul-
tured inDMEM.Thesemediumswere addedwith 10% fetal
bovine serum. All cells were cultured in a cell incubator at
37◦C in a constant atmosphere of 5% CO2.

2.3 RNA extraction and qRT-PCR

RNA extraction and quantitative real-timewere performed
as reported previously.21 The sequences of primers are dis-
played in Table S1.

2.4 CircRNAmiRNA and mRNA
expression profiles

The sequencing procedures and bioinformatics analysis
were provided by the Shanghai Biotechnology Corpora-

tion (China). In short, 5-FU sensitive and resistant tissues
and cells (AGS-5FU/AGS and HGC-27-5FU/HGC-27) were
used for ceRNA chips. After a series of professional treat-
ments, the samples were analysed using miRNA sequenc-
ing and circRNA andmRNA chips (Agilent human ceRNA
3.0 chip; Agilent, CA, USA).

2.5 RNase R treatment

Total RNA was added for 20 min at 37◦C with RNase R
treatment at 3U/μg (WI,USA).AfterRNAwas treatedwith
RNase R, reverse transcription was then performed under
the manufacturer’s instructions.

2.6 Actinomycin D assay

Actinomycin D assay was performed as described
previously.29

2.7 Fluorescence in situ hybridization

Cy3-labelled circCPM and FITC-labelledmiR-21-3p probes
were specially provided by Servicebio (Wuhan, China).
The fluorescence in situ hybridization (FISH) assay was
performed as reported previously.29

2.8 Plasmid, siRNA and lentiviral
construction

Human circCPM overexpression vector and si-circCPM
were purchased by Genechem (Shanghai, China). miRNA
mimics and inhibitors were procured by GenePharma
(Suzhou, China). PRKAA2 plasmids were purchased from
Gene-Pharma. The transfection process was performed
with Lipofectamine 3000 according to the product man-
uals. The lentivirus vectors containing sh-circCPM, sh-
PRKAA2 and overexpressing circCPM were purchased
by Genechem (Shanghai, China). The stably transfected
cell lines were selected with puromycin. The detailed
sequences are shown in Table S1.

2.9 IC50 values

IC50 was detected as reported previously.21

2.10 Apoptosis assay

Annexin V PE Apoptosis Kit (BD, USA) was used. Apopto-
sis assay was performed as reported previously.21
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2.11 Colony formation assays

Colony formation assays were carried out as reported
previously.21

2.12 GFP-mRFP-LC3 imaging

GFP-mRFP-LC3 imaging was conducted as reported
previously.21 Puncta number was counted in six different
microscope fields.

2.13 Transmission electron microscopy

Transmission electron microscopy (TEM) was conducted
as reported previously.21 The number of autophagic vac-
uoles (AV) was counted in 15 different cells.

2.14 WB

Western blotting was performed as reported previously.29
Details of the antibodies are shown in the Table S2.

2.15 RNA pulldown assay and
immunoprecipitation assay

A pulldown assay and RNA binding protein immuno-
precipitation (RIP) assay were performed as reported
previously.29

2.16 Luciferase assay

Luciferase reporter vectors containing the wild-type frag-
ments of circCPM or 3′-UTR of PRKAA2 were constructed
by RiboBio (Guangzhou, China). Luciferase assay was per-
formed as reported previously.29

2.17 Immunohistochemistry staining

Immunohistochemistry (IHC) was performed as reported
previously.29

2.18 Organoid culture and viability
assay

GC tissues were obtained from the department of gastric
surgery in a sterile condition. Tissues were finely chopped
and digested with collagenase A at 37◦C for 40 min. Then,
the cell suspension was mixed in Matrigel (R&D Systems,

USA) supplemented with several growth factors added at
a concentration of 100 ng/ml. Fifty microliters of Matrige
per well were added to a 24-well plate. After that, 500 μl
of human organoid culture medium (Stemcell Technolo-
gies, Canada) was added to each well for organoid growth.
Organoids were transfected with siRNAs using Lipofec-
tamine 3000. Photographswere taken daily bymicroscope.
Cell viability was analysed using the PrestoBlue Cell Via-
bility Reagent (Invitrogen). For the chemotherapy using 5-
FU, organoids were overlaid withmedium for 48 h. Presto-
Blue reagent (1x) was added to organoids and incubated for
3 h at 37◦C. Absorbance (Tecan Reader, Genio) was mea-
sured.

2.19 Animal study

Animal experiments were performed under the instruc-
tions of animal center in our university. Nude mouse
xenograft model was performed as reported previously.29

2.20 Statistical analysis

SPSS 20.0 and GraphPad Prism 7.0 software were used
to analyse the experimental data and clinical data, which
included one-way analysis of variance, student’s t test,
Kaplan–Meier analysis and logrank test.

3 RESULTS

3.1 Dysregulated circRNAs in 5-FU
resistant GC

To investigate the circRNA andmRNA expression profiles,
we performed combined analysis by using a circRNA and
mRNAmicroarray in 5-FU resistant and sensitive GC cells
and tissues (Figure 1A). GC cells include AGS/AGS-5FU
and HGC-27/HGC-27-5FU. GC tissues were obtained from
two patients receiving neoadjuvant chemotherapy based
on 5-FU. We found hundreds of up-regulated or down-
regulated circRNAs and mRNAs in 5-FU resistant GC cell
lines and tissues. We first established a ceRNA regula-
tory network by Targetscan, miRDB, miWALK and Star-
base databases (fold change (FC) > 2, FC < 0.5, p < 0.05).
Considering the critical role of autophagy in drug resis-
tance, we further analysed autophagy pathway-related
genes including PARK2, PRKAA2 and SOGA3 by cluster-
Profiler for GO and KEGG. Next, genomics of drug sensi-
tivity in cancer (GDSC) database was used to analyse rela-
tion between these autophagy pathways-related genes and
5-FU sensitivity. Dividing genes into two groups according
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F IGURE 1 Dysregulated circRNAs in chemoresistant gastric cancer (GC). (A) Schematic illustration of screening the autophagy-related
ceRNA regulatory network in regulating 5-fluorouracil (5-FU) resistance. (B) Volcano plot for the mRNA matrix generated on the basis of
genomics of drug sensitivity in cancer (GDSC) statistics. (C) Left panel: Pearson correlation between genes and 5-FU sensitivity according to
the GDSC database. Right panel: PRKAA2 was negatively correlated with the IC50 values for 5-FU. (D) The Kaplan-Meier (KM) plotter data
of gastric cancer patients receiving 5-FU-based chemotherapy. (E) Kaplan–Meier analysis of the correlation between PRKAA2 expression and
overall survival. (F) Expression of PRKAA2 in 5-FU-resistant and 5-FU-sensitive GC tissues by qRT-PCR. (G) CCK8 assay of the effect of
silencing PRKAA2 on the drug sensitivity of AGS-5FU cells. (H) Expression of five-candidate circRNAs in 5-FU-resistant and 5-FU-sensitive
GC tissues by qRT-PCR. (I) Kaplan–Meier analysis of the correlation between circ0027497 expression and overall survival. (J) CCK8 assay of
the effect of silencing circ0027497 on the drug sensitivity of AGS-5FU cells. (K) Pearson correlation analysis between the expression of
circ0027497 and PRKAA2
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F IGURE 2 Characterization of circular CPM (circCPM). (A) Validation of head-to-tail splicing of circCPM using Sanger sequencing. (B
and C) The relative expression changes of circCPM and CPMmRNA in AGS-5FU and HGC-27-5FU after actinomycin D treatment for 4 h, 8 h,
12 h and 24 h. (D) The relative expression changes of circCPM and CPMmRNA in AGS-5FU and HGC-27-5FU after RNase R treatment. (E
and F) RT-PCR-based detection of circular and linear CPM using convergent and divergent primers in cDNA and genomic DNA (gDNA). (G)
qRT-PCR analysis confirming that circCPM and linear CPM are mainly located in the cytoplasm. (H) Fluorescence in situ hybridization
(FISH) results depicting the cytoplasm location of circCPM. Scale bar = 5 μm. (Graph represents mean ± SD; *p < .05, **p < .01 and
***p < .001)

to the IC50 value of 5-FU drug sensitivity (false discov-
ery rate (FDR) < .05 FC > 1.3), we found that the expres-
sion of PRKAA2 was up-regulated (Figure 1B). And anal-
ysis of the Pearson correlation coefficient between genes
and 5-FU drug sensitivity indicated that high PRKAA2
expression was positively correlated with 5-FU resistance
(Figure 1C). Kaplan–Meier plotter results displayed that
only patient with high PRKAA2 expression had worse
survival compared with those with low PRKAA2 expres-
sion (https://kmplot.com/analysis/) (Figure 1D). Follow-
updata fromour center also had similar results (Figure 1E).
qRT-PCR analysis showed that PRKAA2 expression was
up-regulated in 5-FU resistant tissues (Figure 1F). Cell
viability analysis also confirmed that reduced PRKAA2
expression facilitated the chemosensitivity in chemoresis-
tant cells (Figure 1G and Figure S1A). Based on the pre-
liminary constructed ceRNA regulatory network, we per-

formedmiRNA second-generation sequencing to optimize
the ceRNA network further. Combing bioinformatic pre-
diction and sequencing results, we found several mRNA-
related miRNAs, which included hsa-miR-21-3p, hsa-miR-
9-5p, hsa-miR-162-5p, hsa-miR-126-5p and hsa-miR-31-5p
(FC > 2). Then, we selected five-candidate circRNAs that
may regulate PRKAA2. Results of qRT-PCR showed that
circ0027497 expression (also termed as circCPM in this
study) was up-regulated in 5-FU resistant tissues (Fig-
ure 1H). Follow-up data analysis showed only high circ-
CPM expression had a negative correlation with patients’
survival (Figure 1I and Figure S1B-E). Cell viability assays
showed reduced circCPM expression reduced IC50 in 5-
FU resistant GC cells (Figure 1J and Figure S1F-N). Linear
correlation pattern analysis indicated a positive associa-
tion between PRKAA2 expression and circCPM expression
(Figure 1K). There is onemiR-21-3p that links circCPMand

https://kmplot.com/analysis/
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F IGURE 3 Circular CPM (CirCPM) enhances gastric cancer (GC) chemoresistance via autophagy in vitro. (A) The effect of
overexpressing circCPM on the drug sensitivity of GC cells was measured by a CCK8 assay. (B) Colony formation assays of AGS-5FU and AGS
cells were performed to assess the proliferative ability. Right upper panel: Quantification data for AGS-5FU transfected with si-circ with or
without 5-FU exposure (25 μM 48 h). Right lower panel: Quantification data for AGS transfected with circCPM overexpression plasmids with
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PRKAA2 in the ceRNA regulatory network. Therefore, we
ultimately chose the circCPM-miR-21-3p-PRKAA2 axis for
subsequent studies.

3.2 Characterizations of circCPM

CircCPM originates from the fourth, fifth and sixth exons
of Carboxypeptidase M (CPM) genes, which has not been
described previously. Sanger sequencing identified the
head-to-tail splicing structure of circCPM with expected
size (Figure 2A). Actinomycin D assay showed circCPM
expression was not affected while linear CPM mRNA
expression decreased (Figure 2B,C). And circCPM was
more resistant to RNase R compared with linear CPM
mRNA (Figure 2D). Next, to test the circular structure
of circCPM, we designed divergent primers and conver-
gent primers to amplify circCPM and linear CPM mRNA.
Complementary DNA (cDNA) and gDNA extracted from
AGS-5FUandHGC-27-5FUwere applied as templates (Fig-
ure 2E,F). The results indicated that divergent primers only
amplified circCPM in cDNA. The qRT-PCR result demon-
strated circCPM was predominantly localized within the
cytoplasm (Figure 2G and Figure S1O). FISH results
demonstrated similar results (Figure 2H). Collectively, our
results implied that circCPM is a stable and cytoplasmic
circular RNAderived fromCPM,whichmay play an essen-
tial role in 5-FU resistance.

3.3 CircCPM enhances GC 5-FU
chemoresistance and autophagy in vitro

To determine the biological functions of circCPM in GC
chemoresistance, we constructed circCPM overexpressing
cells and circCPM knockdown cells in 5-FU sensitive and
resistant cells, respectively (Figure S1P-S).
Subsequently, the results of cell viability showed that

reduced circCPM expression facilitated the chemosensitiv-
ity in 5-FU resistant GC cells, with a decrease in the IC50
value (Figure 1J and Figure S1J). However, overexpressing

circCPM in 5-FU sensitive GC led to the opposite results
(Figure 3A and Figure S2A). Besides, plate colony forma-
tion assay and cell apoptosis were also examined. Chloro-
quine (CQ), an autophagy inhibitor, was also applied in
these functional experiments. The results showed that
reducing circCPM expression decreased the plate colony
numbers and increased the apoptosis proportion in 5-FU
resistant cells, whereas enhancing circCPM expression in
5-FU sensitive cells led to the opposite results (Figure 3B,C
and Figure S2B,C). Then, we further explored the poten-
tial function of circCPM on autophagy. Silencing and over-
expression of circCPM inhibited and promoted the basic
autophagic level in 5-FU resistant and sensitive cells as
determined by LC3 and p62 levels (Figure 3E and Figure
S2E). Furthermore, the numbers of LC3 dots increased
after overexpressing circCPM in 5-FU sensitive cells, while
decreased after silencing circCPM in 5-FU resistant cells
(Figure 3D,G,H and Figure S2D,G,H). The results of TEM
confirmed that silencing circCPMresulted in decreasedAV
counts. The opposite result was observed with exogenous
expression of circCPM in 5-FU sensitive cells (Figure 3F,I,J
and Figure S2F,I,J).

3.4 CircCPM functions as a sponge of
miR-21-3p in GC

It is well known that circRNAs have a sponge-like effect on
miRNAs, and circCPM is mainly enriched in cytoplasm.
Therefore, we investigated the probability of circCPM
binding to miRNAs. CircCPM was predicted to potentially
bind to miR-21-3p by TargetScan (Figure 4A). To directly
confirm circCPM binds to miR-21-3p, we designed a wild-
type andmutant luciferase plasmid based on the predicted
binding sites. The luciferase reporter assay results dis-
played miR-21-3p extremely reduced luciferase activity in
293T cells transfected with Luc-circCPM-WT plasmid (Fig-
ure 4B). A miRNA pulldown assay revealed that biotiny-
lated miR-21-3p greatly enriched circCPM in AGS-5FU
and HGC-27-5FU cells (Figure 4C). CircRNAs are demon-
strated to have a sponge-like effect on miRNA by forming

or without 5-FU (5 μM 48 h) and/or chloroquine (CQ) (20 μM 24 h) exposure. (C) Apoptotic assays of GC cells to assess circCPMmodulation
on the drug sensitivity. Right upper panel: Quantification data for AGS-5FU transfected with si-circ with or without 5-FU exposure (25 μM 48
h). Right lower panel: Quantification data for AGS transfected with circCPM overexpression plasmids with or without 5-FU (5 μM 48 h)
and/or CQ (20 μM 24 h) exposure. (D, G and H) Immunofluorescence analysis using GFP-mRFP-LC3 staining. (G and H) The numbers of LC3
puncta (yellow puncta for autophagosome and red puncta for autolysosome) were quantified in AGS-5FU transfected with si-circ upon 5-FU
exposure (25 μM 48 h) and AGS transfected with circCPM overexpression plasmids upon 5-FU (5 μM for 48 h) and/or CQ (20 μM 24 h)
exposure. Scale bar 20 μm. (E) Western blot analysis of LC3 and p62 protein levels in cells transfected with si-circ or circCPM overexpression
vectors in AGS-5FU and AGS. (F, I and J) Transmission electron microscopy (TEM) images of ultrastructure microstructure in representative
AGS-5FU and AGS cells transfected with si-circ and circCPM overexpression plasmids. (I and J) The number of autophagic vacuoles (AV) of
15 cells was counted in each section. Scale bar = 2 μm or 0.5 μm. (Graph represents mean ± SD; *p < .05, **p < .01 and ***p < .001)
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F IGURE 4 Circular CPM (CircCPM) functions as a sponge of miR-21-3p in gastric cancer (GC). (A) Schematic illustration of the
predicted miR-21-3p binding sites on circCPM. (B) A luciferase reporter assay was used to detect the binding ability of circCPM and miR-21-3p
in AGS-5FU and HGC-27-5FU cell lines. (C) The biotinylated wild-type/mutant miR-21-3p was transfected into AGS-5FU and HGC-27-5FU
cell lines with circCPM overexpression. The circCPM levels were examined by qRT-PCR after capture. (D and E) RNA binding protein
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a circRNA-AGO2-miRNA complex. RIP assay confirmed
that AGO2 bound to both circCPM and miR-21-3p
(Figure 4D,E). Subsequently, FISH assay manifested
that circCPM and miR-21-3p co-localized in cytoplasm
(Figure 4F).
To investigate the potential mechanisms of circCPM

and miR-21-3p in autophagy and chemoresistance, co-
transfection in GC cells was applied. CircCPM siRNA
and miR-21-3p inhibitor were transfected in 5-FU resis-
tant cells. Apoptosis assays indicated that the apoptosis
ratio was greatly improved by circCPM siRNA, which
was reducedwhen co-transfected withmiR-21-3p inhibitor
(Figure 4H and Figure S1T). The expression of apoptosis-
related protein caspase3 and cleaved caspase3(c-caspase3)
further confirmed the results (Figure 4G and Figure
S3A,B). Opposite results were observed in 5-FU sensi-
tive cells transfected with circCPM plasmid andmiR-21-3p
mimic with or without CQ treatment (Figure 4I,J,N and
Figure S1T).
Additionally, western blotting results revealed that cir-

cCPM siRNA distinctly inhibited the expression level of
LC3; however, the low expression levels of LC3 were res-
cued in 5-FU resistant cells when co-transfected withmiR-
21-3p inhibitor. Another autophagymarker p62 showed the
contrary results (Figure 4K and Figure S3C). The opposite
effects were observed in 5-FU sensitive cells transfected
with miR-21-3p mimic and circCPM overexpressing vec-
tors with or without CQ treatment (Figure 4M and Fig-
ure S3D). Moreover, we found that co-transfection of miR-
21-3p inhibitor reversed the effect of silencing circCPM
on decreasing autophagic level (Figure 4L,O and Figure
S3E,G), while co-transfection of miR-21-3p mimic and cir-
cCPM overexpressing vectors partially recovered the effect
of overexpressing circCPM in 5-FU sensitive cells with or
without CQ treatment (Figure 4P,Q and Figure S3F,H,I).
The analysis of TEM had similar results (Figure 4R and
Figure S3J).

Collectively, the above results indicated that circCPM
regulates GC autophagy and chemoresistance via miR-21-
3p.

3.5 MiR-21-3p regulates autophagy and
chemoresistance by targeting PRKAA2

PRKAA2 has been reported to participate in regulating
autophagy, which is an important cause of drug resis-
tance. Therefore, we hypothesized that PRKAA2 might
be involved in the formation of 5-FU resistance.30 The
potential binding sites of PRKKA2 for miR-21-3p is
5′UGGUGUU3’ (Figure 5A). Next, a luciferase reporter
assay was designed, containing a vector with either
wild type sequence or mutant binding site sequence
of PRKAA2. Compared to PRKAA2 3′ UTR-mut, co-
transfection of PRKAA2 3′ UTR-wt withmiR-21-3p expres-
sion plasmid decreased luciferase activity, which showed
the direct binding of miR-21-3p on PRKAA2 (Figure 5B).
Western blotting further confirmed that PRKAA2 expres-
sion was post-transcriptionally regulated by miR-21-3p
(Figure 5C,D).
Subsequently, fluorescence activated cell sorting (FACS)

andwestern blotting assay displayed thatmiR-21-3pmimic
induced apoptosis in 5-FU resistant cells. However, co-
transfection of PRKAA2 overexpression vector and miR-
21-3pmimic abrogated these effects (Figure 5E,G,I and Fig-
ure S4A). Opposite results were observed in 5-FU sensi-
tive cells (Figure 5F,H,J and Figure S4B). Autophagy lev-
els were reduced by overexpressing of miR-21-3p while res-
cued by overexpressing of PRKAA2 in chemoresistant cells
(Figure 5K,M and Figure S4C,E). Opposite results were
observed in chemosensitive cells (Figure 5L,N and Figure
S4D,F).
In summary, miR-21-3p regulates GC autophagy and

chemoresistance through targeting PRKAA2.

immunoprecipitation (RIP) assays were performed to assess the binding ability of miR-21-3p or circCPM and AGO2. (F) Fluorescence in situ
hybridization (FISH) showed that circCPM and miR-21-3p were co-localized in the cytoplasm in AGS-5FU cells. The nucleus staining with
4,6-diamino-2-phenyl indole (DAPI) (blue). (G and K) Western blot analysis of caspase3, c-caspase 3, LC3 and p62 in AGS-5FU transfected
with si-circ or co-transfected with anti-miR upon 5-FU exposure (25 μM 48 h). (I and M) Western blot analysis of caspase3, c-caspase 3, LC3
and p62 in AGS transfected with circCPM overexpression vector or co-transfected with miR mimic upon 5-FU exposure (5μM for 48h). (H)
Apoptotic assays of AGS-5FU cells transfected with si-circ or co-transfected anti-miR upon 5-FU exposure (25 μM 48 h). (J and N) Apoptotic
assays of AGS cells transfected with circCPM overexpression vector or co-transfected with miR mimic upon 5-FU (5 μM 48 h) and/or
chloroquine (CQ) (20 μM 24 h) exposure. (L and O) Immunofluorescence analysis of AGS-5FU transfected with si-circ or co-transfected
anti-miR upon 5-FU exposure (25 μM 48 h). Scale bar 20 μm. (L) Quantification data of autolysosome and autophagosome in AGS-5FU. (P and
Q) Immunofluorescence analysis of AGS transfected with si-circ or co-transfected anti-miR upon 5-FU (5 μM 48 h) and/or CQ (20 μM 24 h)
exposure. Scale bar 20μm. (P) Quantification data of autolysosome and autophagosome in AGS. (R) Transmission electron microscopy (TEM)
images of AGS-5FU and AGS with specific treatments. Right upper panel: Quantification data of autophagic vacuoles (AV) counts in
AGS-5FU transfected with si-circ or co-transfected anti-miR upon 5-FU exposure (25 μM 48 h). Right lower panel: Quantification data of AV
counts in AGS transfected with si-circ or co-transfected anti miR upon 5-FU (5 μM 48 h) and/or CQ (20 μM 24 h) exposure. The number of AV
of 15 cells was counted in each section. Scale bar = 2 μm or 0.5 μm. (Graph represents mean ± SD; *p < .05, **p < .01 and ***p < .001)



FANG et al. 11 of 17

F IGURE 5 MiR-21-3p regulates autophagy and chemoresistance by targeting PRKAA2. (A) Schematic diagram shows the
putative-binding site of miR-21-3p with PRKAA2 predicted by TargetScan. (B) Luciferase reporter assay showed that luciferase activity
decreased obviously after co-transfection of miR-21-3p with the constructed PRKAA2 3′UTR-wt plasmid. (C and D) Western blotting analysis
of the expression of PRKAA2 in AGS-5FU and AGS cells transfected with miR mimic and anti-miR. (E and G) Apoptotic assays of AGS-5-FU
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3.6 CircRNA regulates chemoresistance
of GC through PRKAA2-mediated
autophagy

We further explored the relationship between circCPMand
PRKAA2. Firstly, FACS and Western Blot (WB) revealed
that overexpressing PRKAA2 can attenuate the increased
apoptotic cells induced by circCPM siRNA (Figure 6A,C,D
and Figure S5A). Similarly, the expression of autophagy
key proteins, confocal immunofluorescence and TEM
assays all indicated that autophagy was recovered by
enhanced PRKAA2 expression on the basis of silencing cir-
cCPM (Figure 6G,I,L,N and Figure S5C,E,G, Figure S5J).
The similar experiments were performed in 5-FU

sensitive cells by co-transfecting circCPM plasmid and
sh-PRKAA2. Results showed that sh-PRKAA2 could
rescue the decreased apoptosis level and increased
autophagy caused by circCPM overexpression (Fig-
ure 6B,D–F,H,J,K,M,N and Figure S5B,D,F, Figure S5H–J).
Taken together, circCPM regulates chemoresistance of

GC through PRKAA2-mediated autophagy.

3.7 CircCPM strengthens 5-FU
resistance in vivo

To further evaluate the clinical value of circCPM, cells
with silencing or overexpressing circCPM were subcuta-
neously injected into BALB/c nude mice in conjunction
with chemotherapy drugs and allowed to proliferate for
4 weeks. Tumours were weighed andmeasured separately.
Results indicated that silencing circCPM in 5-FU resistant
cells hugely decreased xenograft tumour weight and vol-
ume and enhanced the effects of 5-FU treatment in GC,
while overexpressing circCPM showed the opposite results
(Figure 7A,B). FISH showed the circCPM and miR-21-3p
were co-localized in tissues from 5-FU resistant or 5-FU
sensitive GC patients. FISH assay showed circCPM expres-
sion was higher in 5-FU resistant GC tissues (Figure 7C).

Elevated protein levels of c-caspase3 were observed by
IHC in tumour transfected with sh-circCPM combined
with 5-FU chemotherapy than the control group, while
PRKAA2 displayed the opposite results (Figure 7D). We
also established an organoid model to observe chemother-
apy sensibility of 5-FU. Cell viability assays documented
that organoids transfected with the circCPM siRNA had
lower cell activity. Morphologically, responding organoids
became dark and disaggregated (Figure 7E).
Overall, circCPMpromotesGC 5-FU chemoresistance in

vivo.

4 DISCUSSION

The distribution of GC in the world has prominent
regional characteristics, and about 50% of GC patients
are distributed in East Asia.4 In China, more than 80%
of patients have been the advanced stage at the time
of diagnosis, contributing to a very low 5-year sur-
vival rate of only 25%.31 Chemotherapy is the recom-
mended treatment for advanced GC patients with or with-
out radical resection.32,33 Currently, 5-FU is one of the
first-line chemotherapy agents for advanced GC, which
is widely applied in the clinic. However, 5-FU resis-
tance leads to poor chemotherapy efficacy and patients’
prognosis.14–16 Several factors contribute to 5-FU chemore-
sistance, including deficient drug transport mechanisms,
alterations of target enzymes, activation of DNA repair
pathways, resistance to apoptosis, changes in the tumour
microenvironment, and other serious problems have been
reported.13
Autophagy acts as an essential homeostatic and

catabolic process, playing a vital role in several cellular
functions, including tumour formation and resistance
to cancer therapy.19,20 Emerging evidence confirms that
excessive activation of autophagy can safeguard tumours
against apoptosis induced by various factors, including
anticancer drugs.34,35 This may provide new thinking that

cells transfected with miR mimic or co-transfected PRKAA2 overexpression vector upon 5-FU exposure (25 μM 48 h). (F and H) Apoptotic
assays of AGS cells transfected with anti miR or co-transfected with sh-PRKAA2 in AGS upon 5-FU exposure (5 μM 48 h). (I and K) Western
blot analysis of caspase3, c-caspase 3, LC3 and p62 in AGS-5FU transfected with miR mimic or co-transfected with PRKAA2 overexpression
vector upon 5-FU exposure (25 μM 48 h). (J and L) Western blot analysis of caspase3, c-caspase 3, LC3 and p62 in AGS transfected with
anti-miR or co-transfected with sh-PRKAA2 in AGS upon 5-FU exposure (5 μM 48 h). (M) Immunofluorescence analysis (scale bar 20 μm)
and transmission electron microscopy (TEM) images (scale bar = 2 μm or 0.5 μm) of AGS-5FU transfected with miR mimic or co-transfected
PRKAA2 overexpression vector upon 5-FU exposure (25 μM 48 h). Left lower panel: Quantification data of autolysosome and autophagosome
in AGS-5FU. Right lower panel: Quantification data of autophagic vacuoles (AV) counts in AGS-5FU. (N) Immunofluorescence analysis (scale
bar 20 μm) and TEM images (scale bar = 2 μm or 0.5 μm) of AGS transfected with anti-miR or co-transfected with sh-PRKAA2 upon 5-FU
exposure (5 μM 48 h). Left lower panel: Quantification data of autolysosome and autophagosome in AGS. Right lower panel: Quantification
data of AV counts in AGS. The number of AV of 15 cells was counted in each section. (Graph represents mean ± SD; *p < .05, **p < .01 and
***p < .001)
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F IGURE 6 Circular CPM (CircRNA) regulates gastric cancer (GC) chemoresistance through PRKAA2-mediated autophagy. (A and C)
apoptotic assays of AGS-5FU cells transfected with si-circ or co-transfected with PRKAA2 overexpression vector upon 5-FU (25 μM 48 h)
exposure. (B and E) Apoptotic assays of AGS transfected with circCPM overexpression vector or co-transfected with sh-PRKAA2 upon 5-FU (5
μM 48 h) and/or chloroquine (CQ) (20 μM 24 h) exposure. (D and G) Western blot analysis of caspase3, c-caspase 3, LC3 and p62 in AGS-5FU
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suppression of autophagy may be able to reverse tumour
chemoresistance. To clarify the relationship between
autophagy and chemoresistance, we have already carried
out several studies and identified several non-coding
RNAs. In this study, to further clarify the possible mecha-
nism of autophagy on 5-FU resistance in GC, microarray,
miRNA sequencing and bioinformatics analysis were
performed. Autophagy-related gene PRKAA2 was found
to be up-regulated in 5-FU resistant cells and tissues and
associated with lower overall survival of patients who
received 5-FU-based chemotherapy. PRKAA2 knock-
down inhibited autophagy and promoted apoptosis
and chemosensitivity of GC cells to 5-FU in virto and
in vivo. Further analysis and experiments probed an
autophagy-related circCPM-miR-21-3p-PRKAA2 axis. As
far as we know, this is the first study in clarifying the role
of PRKAA2 in GC 5-FU resistance.
In mammals, AMPK is a serine/threonine kinase con-

sisting of α, β and γ subunits.36 AMPKα contains two
isoforms α1 and α2. Both isoforms are closely related to
autophagy. AMPKα1 activates autophagy by directly phos-
phorylating ULK1, BECN1 and Vps34, key autophagy-
related proteins.37,38 AMPKα2 (also termed as PRKAA2)
mediates autophagy by transcriptionally regulating several
autophagy-related genes, including SKP2-CARM1 signal-
ing cascade.30 Besides, AMPKα2 can regulate autophagy
by directly elevating ULK1 activity and indirectly reduc-
ing mTOR activity to induce autophagy.39 Previous stud-
ies have proved that PRKAA2 is regulated by several miR-
NAs, including miR-124-3p and miR-4999-5p.40,41 In this
study, we first identified that PRKAA2 is downstream
of miR-21-3p. It is proved that circCPM could signifi-
cantly promote PRKAA2 expression; thus, circCPM-up-
regulated GCmay have an increased ability for 5-FU resis-
tance through increased autophagy. It is noteworthy that
although we have proved that circCPM functions as a reg-
ulator of PRKAA2 via miR-21-3p, there may have other
regulatory mechanisms, such as post-translational regu-
lation. For example, L.-Y. Li et al. reported that PRKAA2
could be phosphorylated by RSK2 at Thr172 residue.42 In
addition, PRKAA2 was reported to take part in regulat-
ing metabolic phenotype, including glucose and fatty acid
metabolism.43 Moreover, metabolic reprogramming has

been reported to participate in chemoresistance.44 How-
ever, whethermetabolic phenotype switch influences 5-FU
resistance in GC remains unknown.
Abundant evidence shows that circRNAs play impor-

tant roles in a variety of cellular processes, includ-
ing chemoresistance.25,26 However, chemoresistance-
associated circRNAs in GC 5-FU resistance have rarely
been reported. Here, we found the higher expression
of circCPM in chemoresistant tissues and cells through
ceRNA arrays. Follow-up data analysis indicated that
circCPM was correlated with the overall survival of
patients receiving 5-FU chemotherapy. Various experi-
ments proved circCPM could promote 5-FU resistance
via autophagy in GC. Silencing circCPM could promote
apoptosis and improve chemotherapy sensitivity in virto.
The data of xenograft and organoid model in vivo showed
that silencing circCPM in 5-FU resistant cells hugely
limited xenograft tumour growth and reduced tumour cell
activity. Besides, we found that circCPM and CPM mRNA
are both up-regulated in GC cells or tissues. According to
previous studies, linear CPM may serve as a potentially
predictive serum biomarker, possibly suggesting that
underlying connections may exist between the linear
CPM and 5-FU chemoresistance. The upstream regulatory
mechanism of circCPM and CPM mRNA needs further
exploration in our future research.
The most-known function patterns for circRNAs are

working as miRNA sponges, regulating transcription of
genes in the nucleus and encoding proteins.23,24 Consid-
ering the exonic sequence, distribution and abundance of
circCPM, we selected a ‘sponging’ model for circCPM and
miR-21-3p to interact in GC. Thismechanism has been ver-
ified in several studies we carried out before. Wang et al.
reported circOSBPL10 ‘sponges’miR-136-5p to promoteGC
cell proliferation andmigration.45 Through bioinformatics
prediction, luciferase reporter assay and RNA pull down
assays, we proved that circCPM showed a sponge-like
effect on miR-21-3p. Many studies have reported that miR-
21-3p participates in a variety of diseases including cancer,
atherosclerosis and so on. For instance, Gao et al. reported
that hsa-miR-21-3p affects cell stemness in esophageal
squamous cell carcinoma.46 Zhu J et al. reported that
exosomes containingmiR-21-3p accelerates atherosclerosis

transfected with si-circ or co-transfected with PRKAA2 overexpression vector upon 5-FU (25 μM 48 h) exposure. (F and H) Western blot
analysis of caspase3, c-caspase 3, LC3 and p62 in AGS transfected with circCPM overexpression vector or co-transfected with sh-PRKAA2
upon 5-FU (5 μM 48 h) and/or CQ (20 μM 24 h) exposure. (I-N) Immunofluorescence analysis (scale bar 20 μm) and transmission electron
microscopy (TEM) images (scale bar = 2 μm or 0.5 μm) of AGS-5FU and AGS. (I and L) Quantification data of autolysosome and
autophagosome and autophagic vacuoles (AV) counts in AGS-5FU transfected with si-circ or co-transfected with PRKAA2 overexpression
vector upon 5-FU (25 μM 48 h) exposure. (J, K and M) Quantification data of autolysosome and autophagosome and AV counts in AGS
transfected with circCPM overexpression vector or co-transfected with sh-PRKAA2 upon 5-FU (5 μM 48 h) and/or CQ (20 μM 24 h) exposure.
(Graph represents mean ± SD; *p < .05, **p < .01 and ***p < .001)
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F IGURE 7 Circular CPM (CircCPM) strengthenes 5-fluorouracil (5-FU) resistance in gastric cancer (GC) cells in vivo. (A) Xenograft
tumours comprising AGS-5FU or AGS transfected with sh-circ or circCPM overexpression vector with 5-FU treatment (0.5 mg/kg, three times
a week) at the end of the experiment. Left lower panel: Tumour volumes were measured weekly in all mice. Right lower panel: Tumours were
extracted and weighed. (B) Xenograft tumours comprising HGC-27-5FU or HGC-27 transfected with sh-circ or circCPM overexpression vector
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through regulating phosphatase and tension homologue
(PTEN)-mediated vascular smooth muscle cells (VSMC)
migration and proliferation.47 In this study, we confirmed
that circCPM regulated 5-FU resistance in GC by targeting
miR-21-3p, which in turn enhanced autophagy by increas-
ing PRKAA2 translation.

5 CONCLUSION

We performed functional experiments and adopted sev-
eral models to prove that circCPM is up-regulated in 5-
FU resistant GC cell lines and tissues and induces GC 5-
FU chemoresistance by working as a sponge of miR-21-3p,
thereby up-regulating PRKAA2 expression. Besides, circ-
CPM functions as a valuable prognostic factor in GC 5-FU
resistance. All the results indicate that circCPM could be
a biomarker for 5-FU resistance and a target to overcome
drug resistance in GC.
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