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Abstract: In this paper, in order to perform delicate and advanced grip control like human, a proximity
and tactile combination sensor using miniaturized microcantilevers one-fifth the size of previous
one as the detection part was newly developed. Microcantilevers were arranged with higher spatial
density than in previous works and an interdigitated array electrode to enhance light sensitivity
was added. It is found that the interdigitated array electrode can detect light with 1.6 times higher
sensitivity than that in previous works and the newly fabricated microcantilevers have enough
sensitivity to applied normal and shear loads. Therefore, more accurate detection of proximity
distance and spatial distribution of contact force become available for dexterous gripping control to
prevent ‘overshooting’, ‘force control error’, and ‘slipping’.
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1. Introduction

In recent years, as the declining birthrate and aging population increase, the labor force
declines, and the burden on nursing care increases in developed countries, including Japan [1,2].
On the other hand, by advances in automation technologies, robots are being introduced not only
in the manufacturing industries but also in various fields such as agriculture and medical welfare,
and it has received increasing attention [3–7]. By introducing robots to human tasks, it is expected
to contribute reduction of personnel expenses, efficiency of work, and reduction of human burdens
and risks [2,8]. However, there are a lot of problems in robotization. One of them is manipulation
control such as gripping. Objects handled in the field of manufacturing industries are typically rigid
and have stated shape with constant mass, thus there is hardly any obstacle to manipulation. However,
in the case of considering objects with fragile body and indefinite and complex shape such as fruits
and human body, precise manipulation control is necessary to no damage or no destruction during
handling them [9]. Humans have dexterity enable to competently grip or handle objects with smart
sensation, distinguishing the shape and hardness of objects. This is because human fingers are the most
prominent part of discrimination ability as a tactile sensor by tactile receptors located high density,
in addition owing to feedback and feedforward based on this information and proximity information
by visual sense [10,11]. Therefore, even in robots, if prevention of ‘overshooting’, ‘force control error’,
and ‘slipping’ is realized by acquisition of proximity information and contact information between
a hand and target object using a sensor corresponding to proximity and tactile sense, dexterous
gripping control similar to human capability is expected [12]. Although there are many studies on
tactile sensors for accurate gripping control including the miniature sensor with microcantilevers
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embedded in polydimethylsiloxane (PDMS) [4,13], gripping control similar to a human needs not
only tactile sensing but also sensing of contact information by the proximity sensor. Some studies of
sensors that integrated proximity information with tactile information have been conducted in recent
years. Mizoguchi et al. integrated on robot hand a tactile sensor using pressure-sensitive conductive
rubber and a proximity sensor using optical elements [14]. On the other hand, Tsuji and Kohama
reported a study on a proximity/tactile sensor based on change of static capacitance [15]. However,
these sensors are relatively large and have complicated designs because they need assembly processes.
Considering that the sensors are installed on a robot hand, space saving and high accuracy are valued
traits. Furthermore, it is important that distributional contact information is detectable by arraying
multiple sensors.

In our previous works, single element proximity and tactile combined sensor fabricated by
micromachining process for manipulation control not only in the manufacturing industries but also
in various fields has been developed [16]. In this sensor, normal and shear loads can be obtained
distinctively using this sensor with three cantilevers embedded in PDMS elastomer by measurement
of sensitivities to each axis load in advance. As compared to other devices which can detect both
proximity and tactile information mentioned above, our sensor features a smaller and simpler design,
and can be installed on manipulators of various shapes, thus promising high versatility and low
cost due to mass production. In addition, combined proximity and tactile detection is implemented
using a single small sensitive element without assembling; hence, no need for multiple systems,
which makes space saving and easier arraying possible. We have also developed manipulation system
using a miniature electromotive manipulator with this sensor has been constructed [17]. It has been
shown that this manipulator system can grip objects without damage or destruction occurred by
‘overshoot just after gripping’, and ‘force control error after gripping’. Furthermore, flexible objects
with different hardnesses have been gripped by this system successfully. However, the detection part
of this sensor is comparatively large at 290 × 200 µm in length and width, respectively, thus it is
difficult to place the detection part with high density for detection similar to spatial acuity of tactile
receptors (0.5 mm for Merkel cells [4]) of humans, and detection of normal and shear force distribution
at micro scale have limitations. In addition, for proximity sensing, a LED separate from the sensor
serving as a probe light source is needed [16], however, it brings increase of mounting area and the
shadowing effect in detection just before contact. To decrease mounting area and prevent shadowing,
a smaller LED chip with lower light intensity will be mounted on surface of the sensor, thus, light
sensitivity of the sensor should be improved. In this work, in order to perform delicate and advanced
grip control similar to human, cantilevers are miniaturized to locate at high density from previous one.
Furthermore, interdigitated array electrodes which enhance light sensitivity to detect farther proximity
distance have been integrated on the chip.

2. Design and Fabrication of Tactile Sensor

2.1. Design of the Sensor

Figure 1 shows a schematic diagram of cross-sectional view of the sensor. In our tactile sensor,
a strain gauge is formed on the microcantilever embedded in PDMS as tactile detection part (right part
of Figure 1). In previous works, the size of one cantilever is comparatively large as 290 × 200 µm,
and it was difficult to locate the cantilevers with high density similar to tactile receptors of human.
Therefore, in this work, we aim to (1) reduce the size of the cantilever; and (2) place the cantilevers more
densely. Furthermore; (3) an interdigitated array electrode (left part of Figure 1) is newly designed to
improve the sensitivity as proximity sensor [18]. The pattern of the new sensor was designed using
IC layout CAD (LayoutEditor, juspertor GmbH, Unterhaching, Germany). Figure 2a,b shows design
drawings of a conventional cantilever and a newly fabricated cantilever, respectively. Cr pattern
and NiCr meander wiring are formed on the cantilever. Etching windows for sacrificial etching of
SiO2 under the cantilever are also formed around and in the pattern of the cantilever. The cantilever
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will be warped upward by residual stress in a Cr layer after sacrificial etching, as shown in Figure 1.
Comparing Figure 2a,b, the area of the cantilever part is reduced to one-fifth from the conventional
one, and it is possible to locate more densely. Figure 3 shows the interdigitated array electrode for light
detection. When the sensor surface is irradiated with light, resistance, and depletion layer capacitance
in the Si layer decrease because of generation of electron–hole pairs (photocarriers). Because the
interdigitated array electrode is electrically connected to the Si layer via capacitance of Si3N4 insulation
layer as AC circuit shown in Figure 1, the impedance of the electrode decreases with increase of
the light intensity. Thus, the light intensity can be detected as decrease of the impedance of the
electrode [16]. In previous works, the light is detected as impedance between wiring electrodes [16,17].
It is found that contribution of depletion layer capacitance to light sensitivity is larger than that of
resistance in the Si layer [18], however, effect of resistance in the Si layer is comparably large because
of gap between wiring electrodes (>100 µm). Therefore, to decrease the gaps between electrodes and
effect of resistance, we employ interdigitated array electrodes with narrow gaps in this work. The size
of the interdigitated electrode array is 500 × 500 µm, and it is located so as not to interfere with the
cantilevers and wire. In addition, the interdigitated electrode array has mesh holes to increase the
amount of incident light on Si. This is because it has been demonstrated that light sensitivity can be
enhanced by forming a lot of mesh holes [18].
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2.2. Fabrication of the Sensor

Figure 4a shows a cross-sectional view of fabrication process of the sensor, and Figure 4b
shows a schematic illustration of cantilever. Si3N4 thin film was deposited as an insulating layer
on a Si-on-insulator (SOI) wafer, then NiCr as thin film strain gauge layer, Au as a surface electrode and
wiring layer, and Cr as a stress layer were deposited and patterned, respectively. Where, Si3N4, NiCr,
and Au were deposited by sputtering method, and Cr was deposited by electron beam evaporation
method. Thereafter, the Si active layer was anisotropically removed by reactive ion etching (RIE)
and a pattern was formed for sacrificial layer etching. SiO2 layer was etched in buffered hydrofluoric
acid (BHF, 20%, 30 ◦C) for 150 min to release the upper structure as a cantilever. The released cantilever
was warped by residual stress due to the difference in coefficient of thermal expansion between the
Cr layer and the Si layer [19]. Although poly Si can be used as the layer for the cantilever structure,
in this work, we employed single-crystal Si because of its uniformity of mechanical and optical
characteristics. Furthermore, poly-dimethyl-siloxane (PDMS) elastomeric layer was coated on the chip
in order to protect the chip surface, and a PDMS bump (1.6 mm diameter, 2 mm height) as a contact
part was attached to center of the chip.
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In this work, two types of sensors were newly fabricated. Figure 5a shows the sensor fabricated
in previous works. On the other hand, Figure 5b,c shows a newly fabricated sensor named Type A
and Type B, respectively. The size of the each sensor chip is 5 × 5 mm. In previous works, only three
cantilevers could be located in the 1 mm diameter circle. However, in this work, owing to reduction
in the size of the cantilever, it has become possible to locate 3 cantilevers in the 0.4 mm diameter
circle (Type A) and 12 cantilevers at a higher density in the circle of 1 mm (Type B). In addition,
by reducing the area occupied by the cantilever, it has also become possible to locate an interdigitated
array electrode in the newly fabricated sensor. In the newly fabricated cantilever, the length and width
are different from the previous one, thus the height of tip of warped cantilever is also different [20].
The sensitivities of the sensor to normal load and shear load depends on tip height of the cantilever.
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Therefore, tip height of fabricated cantilever was measured with a laser displacement meter (LT-9000,
Keyence, Osaka, Japan). Measurements were performed for a total of nine cantilevers in three sensors
of Type A. As a result, it is confirmed that their average is 9.60 µm with the standard deviation of
0.70 µm which results in similar bending angle. This standard deviation value is smaller than that in
previous works.
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3. Proximity and Tactile Measurement Principle

3.1. Optical Responsivity of Interdigitated Array Electrode

The tactile sensor fabricated in this work is employed single crystal silicon which is a typical
semiconductor material as the main substrate material. Hence, when the sensor is irradiated with
light, electron–hole pairs as photocarriers are generated by excitation of valence electrons due to
the photoconductive effect, and electric resistivity and depletion layer capacitance in Si layer are
modulated. By detecting these changes as an impedance change in the Si layer by reflected light from
the object, proximity distance can be measured. To confirm the optical responsivity, the dependence of
impedance change of the interdigitated array electrode on light illuminance was measured, as shown
in Figure 6. This measurement was performed in a darkroom, and the impedance was measured using
an LCR meter (Hioki 3532-50, Hioki E.E. Corporation, Nagano, Japan) at the measuring frequency
of 5 MHz. The impedance decreases with increasing light illuminance in both cases of the sensor
with and without interdigitated array electrode. It is found that the optical responsivity of the sensor
with interdigitated array electrode is 1.6 times higher than that without interdigitated array electrode.
This is because the change of depletion layer capacity when light is irradiated is increased by electrode
of mesh structure. Therefore, proximity detection with higher sensitivity than previous works is
expected using the sensor designed in this work.
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3.2. Optical and Load Responsivity of Fabricated Cantilever

In order to detect the force and proximity separately, it is required that the strain gauge resistance
on the cantilever is sensitive only to strain and has no sensitivity to light. Therefore, the illuminance
dependency of the strain gauge resistance of the newly manufactured cantilever was measured.
This measurement was performed in a darkroom, and the strain gauge resistance was measured
by a digital multimeter (Advantest R6581, Advantest Corporation, Tokyo, Japan). Figure 7 shows
resistance of the strain gauge as a function of light illuminance. It is found that the resistance is
nearly independent of light illuminance. Thus, it is possible that the sensor can detect separately force
and proximity.
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Figure 7. Optical responsivity of the strain gauge resistance.

Next, in order to measure the load response characteristics of the newly fabricated cantilever,
resistance change of the strain gauge was measured when normal and shear loads were applied to the
sensor. Figures 8 and 9 show the comparison of resistance changes for normal and shear loads between
the sensors fabricated in previous and this works, respectively. From Figure 8, the newly fabricated
cantilever has sensitivity to normal load, however, it is two-thirds lower than that of previous one.
On the other hand, from Figure 9, it is found that sensitivity to shear load of the newly fabricated
cantilever is approximately 2.1 times higher than that of the previous one. It is considered that this
sensitivity difference is due to the size and tip height of the cantilever. The cantilever in previous
cantilever has tip height of 30 µm and length of 290 µm, hence, its angle is approximately calculated as
5.9◦ using arc tangent. On the other hand, that of the new cantilever with tip height of 9.6 µm and
length of 155 µm is calculated as 3.5◦, which is smaller than previous one. Conversely, it is suggested
that we can calibrate the sensitivities to normal and shear loads by controlling the tip height of the
cantilever. In addition, it has been confirmed that the warp of the newly fabricated cantilever is
not uniform and only its tip is locally lifted up. As a result, it is considered that the sensitivity is
enhanced by the large deformation of the cantilever when applied shear load. From the above results,
it is demonstrated that the sensor with miniaturized cantilever in this work has sensitivities to both
normal and shear loads similar to that in previous works.
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3.3. Demonstration of Tactile Sensing with High Density Cantilever Array

To demonstrate tactile sensing with cantilevers located at higher density, responses from
12 cantilevers (Type B shown in Figure 5c) to an applied shear load have been characterized. Shear load
was applied uniformly on the sensor surface to direction shown in Figure 10a. Figure 10b shows
responses of 12 cantilevers in the sensor Type B. The value in ppm shows resistance change rate
when applied shear load is 0.24 N. Cantilevers numbered 10, 11, and 12 as shown in Figure 10a
show similar response (positive resistance change) to shear load because their direction is similar
to the direction of shear load. On the other hand, cantilevers 4, 5, and 6—which are located at the
opposite side—show negative resistance change because their direction is opposite to the direction
of shear load. Furthermore, the other cantilevers located at orthogonal direction to shear load has
less response. From these results, it is found that response of the cantilever depends on relationship
between directions of it and shear load. Therefore, it is demonstrated that condition of contact load
distribution during gripping control can be detected using the sensor with high density cantilever
array fabricated in this work.
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4. Conclusions

In this paper, a sensor with a smaller cantilever than the previous one and an interdigitated
array electrode for optical detection was newly designed, fabricated, and evaluated. In the design
of the sensor, the size of the cantilever was miniaturized to one-fifth size from previous one. Table 1
shows a comparison between the sensor fabricated in previous and this works. It is found that the
optical responsivity of interdigitated array electrode with mesh holes is 1.6 times higher than that in
previous works and it is demonstrated that proximity detection can be possible with high sensitivity.
Furthermore, although the sensitivity to normal load of the newly fabricated cantilever is slightly
smaller, the sensitivity to shear load is 2.1 times higher than previous one, and it is confirmed that
the cantilever fabricated in this work has enough sensitivity to both normal and shear loads without
hysteresis and detailed applied load distribution can be measured using developed sensor with high
density array of 12 cantilevers. Therefore, it is expected that feedback gripping control of flexible objects
is performed by detecting complicated deformation of the elastomer with higher spatial resolution.
However, response sensitivities of each cantilever to applied force vector or distribution become
drastically more complicated than the previous sensor with three cantilevers. In future work, a more
efficient method such as application of deep-learning will be employed.
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Table 1. Comparison of the structures of the previous sensor and newly fabricated sensor.

Work Cantilever Size Strain Gauge
Resistance

Tip Height
of Cantilever

Interdigitated
Array Electrode SEM Image

Previous work Width: 200 µm,
Length: 290 µm 7 kΩ 20–30 µm

(±5.0 µm) N/A
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