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Abstract
Sediments in estuaries are of important environmental concern because they may act as

pollution sinks and sources to the overlying water body. These sediments can be accumu-

lated by benthic organisms. This study assessed the mutagenic potential of sediment

extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Sal-
monella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (base-

shift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98,

regardless of the presence or absence of exogenous metabolic activation (S9 induction by

β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the

strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the

responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens.

The mutagenicity of the sediment extracts increased when S9 was added. Chemical analy-

sis showed a poor correlation between the content of priority polycyclic aromatic hydrocar-

bons and the detected mutagenicity in each sample. The concept of effect-directed analysis

was used to analyze possible compounds responsible for the detected mutagenic effects.

With regard to the mutagenicity of sediment fractions, non-polar compounds as well as

weakly and moderately polar compounds played a main role. Further investigations should

be conducted to identify the responsible components.

Introduction
Sediments in estuaries are of important environmental concern because they may act as poten-
tial sinks for a multitude of hazardous compounds. These sediments may also act as sources of
such pollutants to the overlying water bodies and can be accumulated by benthic organisms.
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Thus, contaminated sediments in rivers and estuaries may have a potential hazard to the ben-
thic biota and the human health through the food chain.

In vitro bioassays are useful in assessing sediment quality. These bioassays can be conducted
in a well-controlled and predetermined environment; they can provide rapid results, cost less,
and are more reproducible [1]. Mutagenicity has been an increasing concern in recent years
because it causes permanent changes in the structure and/or amount of the genetic material of
an organism that can lead to heritable changes in its function [2]. Salmonella/microsome assay
is a generally accepted biotest to detect mutagenicity of individual compounds and environ-
mental samples [3]. The assay used the standard tester strains TA98 and TA100. The two dif-
ferent type strains could be applied to detect frame-shift mutations and base-substitution
mutations, respectively. In the present study, the Ames fluctuation assay was used to detect the
mutagenicity of sediment extracts from the Yangtze River estuary. This assay is an improved
version of the conventional Ames test, which used incubated agar plates, whereas the Ames
fluctuation assay is performed completely in liquid culture, in which the amount of microor-
ganisms is quantitatively measured using turbidity or pH indicating reagents [4,5,6]. This assay
is conducted in accordance with the ISO guideline and has been widely used to assess muta-
genic potential of sediments, suspended particulate matter (SPM), and water; it is a qiute useful
assay that measures the ability of compounds to cause back mutations in Salmonella bacteria
[7,8,9,10].

However, biotesting alone does not provide information on the possible related compounds
that cause ecotoxicological effects. Therefore, it is not a sufficient basis for risk reduction mea-
sures, such as remediation or emission control. Effect-directed analysis (EDA) is a powerful
tool that is used to identify toxic substances in complex environmental samples. It can exten-
sively evaluate the toxic potency substances in environmental matrix [11,12]. Several studies
have successfully applied EDA to identify toxic chemicals in sediments, such as mutagens and
ethoxyresorufin-O-deethylase inducers in aquatic sediments from the Neckar catchment area
in Germany [13] and endocrine disruptors of sediments from Zierikzee harbor [14]. Lübcke-
von Varel et al. [15] applied EDA in the sediment extracts of Bitterfeld. They identified and
quantitatively confirmed that dinitropyrenes and 3-nitrobenzanthrone act as major mutagens
in that area. Higley et al. [8] used the EDA method to analyze the mutagenic effects of sediment
extracts from the upper Danube River in Germany. The EDA of three sediment extracts from
the polluted sites of the river Elbe basin suggests that the polar compounds are the dominant
substances for the investigated mutagenicity [16].

The Yangtze River estuary at the eastern coast of China is one of the most important indus-
trial and agricultural areas of the country. Given the increasing development of agriculture and
industry in this area, lots of organic pollutants enter into the Yangtze River, such as polychlori-
nated biphenyls (PCBs) [17], polycyclic aromatic hydrocarbons (PAHs) [18], perfluorinated
compounds (PFCs) [19], and other emerging contaminants, such as polybrominated diphenyl
ethers (PBDEs) [20,21]. Although these organic pollutants have been detected in the Yangtze
River estuary for decades, the potential for biological effects in exposed non-target organisms is
seldom reported [22,23]. In our previous study in the same sampling area, we applied neutral
red retention and 7-ethoxyresorufin-O-deethylase assays in the rainbow trout (Oncorhynchus
mykiss) liver cell line RTL-W1. The results showed that the cytotoxicity and AhR-mediated
activity of sediments from the Yangtze River estuary range from low to moderate level com-
pared with the ecotoxicity of sediments from other river systems [24]. The present study con-
stitutes a follow-up approach to investigate the mutagenic potential of sediments in Yangtze
River estuary. The aims are to (1) assess the mutagenicity of the surface sediment samples from
the Yangtze River estuary using the Ames fluctuation assay with bacteria strains TA98 and
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TA100 and (2) apply the concept of EDA to identify the potential mutagenic components
through fractionation of sediment extracts.

Materials and Methods

Sample collection
Surface layers of sediment samples (0–5 cm) were collected from nine locations of the Yangtze
River estuary in March 2012 using a stainless steel grab sampler. Locations of the sample sites
are shown in Fig 1. The details of the sampling information are available elsewhere [24]. The
sampling locations were collected along the salinity gradient of the estuary. Samples Y1 to Y3
were fresh water dominated sediments. Sites Y4 and Y5 were located in the turbidity maximum
zone and the samples were brackish water dominated sediments. Sites Y6 to Y9 were located in
the river plume zone and the samples were marine sediments. All samples were transported to
the laboratory and stored at −20°C until further analyses. Samples were freeze-dried at −50°C,
passed through a 100-mesh screen (150 μm), and stored in combusted glass with Teflon-lined
lids at −20°C in the dark until further analysis [25].

Sediment crude extract procedure
Detailed descriptions of sample preparation have been published previously [24,25]. In brief,
20 g of the dried sediment samples was separately extracted with acetone (Merck, HPLC) for
48 h using standard reflux (Soxhlet) extractors at approximately six cycles per hour. The
extracts were reduced to approximately 2 mL by using a rotary evaporator. One half of the
sample was re-dissolved in 1 mL of dimethylsulfoxide (DMSO) (Sigma, Deisenhofen, Ger-
many) for in vitro biotests, resulting in final concentrations of 10 g sediment dry weight per
mL DMSO (10 g/mL). The other subsample was re-dissolved in 1 mL of n-Hexane (Merck,
HPLC) for multilayer fractionation, which was used for the EDA analysis to identify unknown
mutagens in the sediments [26], resulting in final concentrations of 10 g sediment dry weight
per mL n-Hexane (10 g/mL). Extracts were stored at −20°C until further analysis.

Multilayer fractionation procedure
Sediments used for fractionation were selected on the basis of the maximum mutagenic poten-
tial detected in the crude extracts. Multilayer fractionation was performed according to previ-
ously described methods [24]. Sediment extracts were eluted to non-polar paraffinic
components (F1), weakly and moderately polar components (F2) and more polar components
(F3) with n-hexane (Merck, HPLC), n-hexane/dichloromethane (Merck, HPLC; 7/3, v/v) and
acetone/methanol (Merck, HPLC; 1:1, v/v), respectively. The eluates were initially reduced to 2
mL using a rotary evaporator and further evaporated to near dryness under a gentle nitrogen
stream. The final concentration was set to 10 g/mL DMSO. Fractions were stored at −20°C in
darkness until analysis.

Ames fluctuation assay
All crude sediment extracts and fractions were analyzed in the Ames fluctuation assay accord-
ing to the protocol given by Reifferscheid et al. [5]. The assay used S. typhimurium strains
TA98 and TA100 with or without exogenous metabolic activation (S9 induction by β-naphtho-
flavone/phenobarbital) to measure frameshift mutations and base pair substitutions, respec-
tively. The extracts were serially diluted with DMSO on each plate to yield a concentration
range from 200 mg to 6.3 mg sediment equivalents per mL test medium. Each extract was
tested in triplicate in each concentration. Details about the assay procedure were described
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previously [8]. Prior to use in the assay, the bacterial strains were grown overnight with shaking
at 37°C. The bacteria were diluted in exposure medium and exposed to sediment extracts, 2%
DMSO solvent control, and positive control. Subsequently, the plates were incubated at 37°C
with shaking for 100 min. A bromocresol purple indicator medium (2.5 mL) was then added to
each well. Transfer 50 μL from the 24-well plates (TPP, Trasadingen, CH) into the 384-well
plates (Greiner Bio-one) for controls and samples. The volume of one 24-well plate is sufficient
for 3 replicates in one 384-well plate. The plates were incubated at 37°C for 48 h. The number
of yellow wells per replicate group was counted and compared with the solvent control. The
maximum induction factors (IFmax) were computed, which give the induction of the highest
inducing sample concentration referred to the negative control induction.

Chemical analysis of total organic carbon (TOC)
The TOC was determined with the Shimadzu TOC-VCPN with solid sample module (SSM-
5000A; Shimadzu, Japan). The overall standard deviation of measurements was less than 3%
(n = 3).

Fig 1. Map of the sampling locations in the Yangtze River estuary.

doi:10.1371/journal.pone.0143522.g001
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Statistical analysis
Data were expressed as mean ± SD. All statistical analyses were performed using SPSS 17.0
(SPSS Inc., Chicago, IL, USA). Homogeneity of variance was assessed with the Levene’s test.
Normality of data distributions was assessed by Shapiro–Wilk’s test. ANOVA was used to
compare the results of whole extracts of sediment in the Ames fluctuation assay to the controls.
The Williams multiple sequential t-test was performed to analyze the differences of all samples
from controls. p< 0.05 was considered statistically significant.

Results and Discussion

Mutagenicity of crude sediment extracts
The mutagenicity of sediment extracts was investigated with the Ames fluctuation assay using
the tester strains TA98 and TA100 with and without metabolic activation S9. Fig 2 and S1
Table showed the results of the tester strain TA98 expressed as IFmax values. The mutagenic
effects in the bacteria strain TA98 were observed in most of the sediment extracts, regardless of
the presence of S9. The results indicate the presence of potential mutagenic compounds, which
did not need metabolic activation. As shown in Fig 2, the sediment extracts from site Y7 exhib-
ited the highest mutagenic potential among the samples in the bacteria strain TA98 with S9
(IFmax value 7.2). In addition, significant mutagenic effects were observed in TA98 with S9
when exposed to sample extracts of Y1, Y2, and Y9, with IFmax values of 3.7, 3.6, and 4.4,
respectively. Sample site Y2 caused the most mutagenic potential in the bacteria strain TA98
without S9 (IFmax value 3.9), followed by sample sites Y4, Y9, and Y7, with IFmax values of 3.3,
3.2, and 3.0, respectively. Overall, most of the samples elicited stronger mutagenic effects in the
TA98 strain if S9 was added (except Y2 and Y4). Sample site Y3 showed very low mutagenic
potency regardless of S9 addition.

In contrast to the bacteria strain TA98, the sediment extracts did not cause a significant
increase in revertants in the bacteria strain TA100, regardless of the presence of bioactivation
enzyme S9 (data not shown). Although both the Salmonella strains TA98 and TA100 were suit-
able for the detection of mutagenic potential in the Yangtze River estuary sediment extracts,
they showed considerable variation in sensitivity. The different levels of mutagenicity displayed
by the two strains may be due to the differences in the type of induced genotoxicity. The strain
TA98 usually detects frame shift mutations, whereas the strain TA100 detects base substitution
mutations [3]. The current study indicated that the mutagenic potential of the estuarine sedi-
ment samples was manifested in the bacteria’s genome by frameshift mechanism (strain
TA98). Wu et al. [22] found that the water samples from the Yangtze River estuary exhibit
mutagenicity when tested with the strain TA98. However, they detected no mutagenic activity
in all samples with the strain TA100. Other research also reported that frameshift mutagens
are particularly responsible inducers in the Ames test, when testing water samples of other riv-
ers in China [27,28,29]. The same observation was found with sediment extracts from the Ger-
man Rhine River [30] and the upper Danube River in Germany [8]. These studies showed that
significant mutagenic effects was only observed with the strain TA98 and after metabolic acti-
vation, which are consistent with the results of this study. The present study showed that the
frameshift mutation was the main mutagenicity pattern for the investigated environmental
samples.

Table 1 shows the results of the chemical analysis. In this study, the TOC content of the sur-
face sediment samples ranged from 0.36% to 1.5%. The content of priority pollutant PAHs in
the sediment samples has been previously determined, and the concentrations of total PAHs
range from 21.5 to 190.5 ng/g dw sediment [24]. Marvin et al. [31] applied a bioassay-directed
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analysis method to identify the compounds which responsible for mutagenicity in the Randle
Reef sediment extract, and found that Benzo[a]pyrene, benzo-fluoranthenes, indeno[1,2,3-cd]
pyrene, benzo[g,h,i]perylene, and dibenz[a,h]anthracene were the major mutagens. The
research of Marvin et al. [32] also showed that polar polycyclic aromatic compounds are potent
mutagens that require reductive metabolic activation. Other investigations demonstrated that
PAHs can account for more than 10%–20% of the overall mutagenic activity and suggested
that various organic compounds may be responsible for the genotoxic effects [33,34]. However,
the study of Rhine River sediments found no correlation between the analyzed priority PAHs
and the corresponding biotests [30]. In the present study, a weak correlation was observed
between the PAH contents and the mutagenicity of the strain TA98 with S9 (r = 0.12,
p> 0.05). This result indicates that other pollutants in the extracts may cause the mutagenicity
of the Yangtze River estuary sediment.

The Yangtze River estuary is one of the largest worldwide with rapid economic develop-
ment, a number of petroleum and chemical plants, and harbor. Numerous industrial wastewa-
ter and domestic sewage are discharged in this region and may act as potential mutagenic
pollution sources. This area was a mixed pollution zone and the concentration of the pollutants
may distribute uneven in different area. The runoff and the particle size of the sediment sam-
ples may also influence the distribution of the pollutants. Thus, the combination of these fac-
tors may cause to the mutagenicity varied among different sites. In this study region, several

Fig 2. Mutagenic activity of nine sediment extracts from Yangtze River estuary.Mutagenic measured by the Ames fluctuation assay using both TA98
and TA100 bacteria strain with and without bioactivation enzymes (S9). TA100 with or without S9 is not shown because no mutagenic effects were observed
in any of the samples. Data are shown as maximum induction factor (IFmax) as the highest IF score of a particular sample within the dose-response curve.
Multiple symbols indicate different significant levels relative to the negative control (NC): *p<0.05, **p<0.01.

doi:10.1371/journal.pone.0143522.g002
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organic pollutants, such as PCBs and PFCs, which have been confirmed to possess mutagenic
or genotoxic properties and can cause severe effects on health (e.g., cancer formation), were
detected in the study region [35,36]. The concentration of PCBs in SPM of the Yangtze River
estuary ranged up to 51 ng/g [37]. The concentrations of PFOS ranged from 73 ng/g to 537 ng/
g in the South Branch of the Yangtze River estuary [38,39].

Associating the concentration of mutagenic/genotoxic chemicals analyzed in this study to
the measured mutagenicity is difficult. Numerous studies that combine chemical and biological
approaches for hazard assessment of complex environmental mixtures indicate that the prior-
ity pollutants often play a poor role in toxicity [13,40]. Several EDA studies showed that a
major portion of the mutagenic and genotoxic activities of sediment extracts is caused by non-
priority pollutants, such as methylbenzo[e]pyrene and methylperylene [13,34]. In our previous
report, we applied the concept of EDA and found that the priority PAHs seem only responsible
for a minor portion of the total AhR-mediated activities [24]. The results of these studies sug-
gest that hazard assessment of environmental matrices should not only focus on priority pol-
lutants but also need to consider the key toxic pollutants.

Mutagenicity in multilayer fractions of crude sediment extracts
According to the results of the Ames fluctuation assay with crude extracts (Fig 2), the sediment
samples from sites Y2, Y7, Y8, and Y9, which possessed the highest induction factors, were
selected for fractionation into three components according to polarity. Subsequently, the muta-
genicity of the multilayer fractions was detected. All fractions were only tested with strain
TA98. Fig 3 and S2 Table showed the mutagenic activity caused by the multilayer fractions (F1
to F3) of each sample. The results were given as IFmax. As shown in Fig 3, the mutagenic poten-
tial of the different fractions evidently varied. In general, all of the three fractions showed

Table 1. Content of total organic carbon (TOC) (%) and concentrations of the 16 US EPA-polycyclic aromatic hydrocarbons (PAHs) (ng/g dw) in
sediment samples from the Yangtze River estuary.

Sampling site Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

TOC (%) 0.7 0.4 1.5 1.3 1.3 1.5 1.5 1.4 0.8

Naphthalene 6.0 47.0 11.0 22.0 7.0 4.0 26.0 7.0 8.0

Acenaphthylene n.d. 4.0 n.d. 1.0 2.0 1.0 2.0 2.0 2.0

Acenaphthene n.d. 2.0 n.d. 2.0 2.0 n.d. n.d. 1.0 2.0

Fluorene 1.0 5.0 1.0 3.0 6.0 2.0 3.0 4.0 4.0

Phenanthrene 2.0 15.0 1.0 14.0 12.0 5.0 6.0 11.0 9.0

Anthracene 2.0 4.0 1.0 3.0 4.0 1.0 2.0 3.0 2.0

Fluoranthene 2.0 17.0 1.0 20.0 13.0 4.0 6.0 10.0 7.0

Pyrene 1.0 8.5 0.5 10.0 7.0 2.5 3.0 5.5 4.5

Benzo[a]anthracene 1.0 13.0 1.0 14.0 10.0 3.0 5.0 8.0 6.0

Chrysene 2.0 14.0 1.0 13.0 11.0 3.0 5.0 9.0 6.0

Benzo[b]fluoranthene 2.0 19.0 1.0 16.0 18.0 6.0 9.0 14.0 12.0

Benzo[k]fluoranthene 1.0 5.0 n.d. 6.0 5.0 1.0 3.0 4.0 3.0

Benzo[a]pyrene n.d. 14.0 1.0 13.0 10.0 n.d. 4.0 9.0 6.0

Indeno[1,2,3-cd]pyrene 1.0 10.0 1.0 9.0 8.0 2.0 4.0 7.0 5.0

Dibenz[a,h]anthracene n.d. 3.0 n.d. 2.0 2.0 n.d. 1.0 2.0 1.0

Benzo[g,h,i]perylene 1.0 10.0 1.0 8.0 8.0 2.0 4.0 7.0 5.0

Sum of EPA-PAHs 22.0 190.5 21.5 156.0 125.0 36.5 83.0 103.5 82.5

Note: The data of PAHs were obtained from Liu et al. (2014). n.d. = not detectable or below the detection limit.

doi:10.1371/journal.pone.0143522.t001
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mutagenicity in the strain TA98 with and without S9 activation for site Y2. Weakly and moder-
ately polar components (F2) showed the strongest mutagenicity with the tester strain TA98
with S9, and the IFmax value was 6.1. This value was much higher than that of the crude extracts
of site Y2. For site Y8, only fraction F2 showed strong mutagenicity with and without S9. The
value was also much higher than that of the corresponding crude extracts. However, for site
Y7, the crude extract indicated strong mutagenic potential, but very low potency occurred in
all fractions in the strain TA98 with or without S9. For site Y9, only fraction F1 showed relative
high mutagenicity with S9.

In general, the study found that non-polar components as well as weakly and moderately
polar components yielded stronger mutagenicity than the more polar ones. The research by
Vahl et al. [41], who reported that less polar extracts displayed higher mutagenic activity values
than the methanol extract values of sediments from the River Elbe (Germany) by using the
Ames test. Similar results of Brack et al. [13] indicated that the nonpolar aromatic fraction and
the moderately polar fraction were significantly mutagenic with and without S9 activation in
the Neckar river basin (Germany), whereas the aliphatic fraction and the very polar fraction
did not exhibit mutagenicity. The study of Lübcke-von Varel et al. [42] found that the moder-
ately polar fractions present stronger mutagenicity than the polar fractions of sediments from
the Elbe river basin. In contrast to the results of this study, Picer et al. [43] found that coastal
Adriatic sediments (Croatia) contaminated with industrial and municipal waste water have
detectable mutagenic activity (TA98 with S9), which was primarily attributed to polar

Fig 3. Mutagenic activity of three fractions of samples Y2, Y7, Y8 and Y9.Mutagenicity measured by the Ames fluctuation assay using TA98 bacteria
with and without bioactivation enzymes (S9). Mutagenic activity is expressed as maximum induction factor within the dose-response curve.

doi:10.1371/journal.pone.0143522.g003
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compounds. Wölz et al. [10] showed that the SPM at River Rhine indicates more polar frac-
tions as mutagenic active with SPM sampled after the discharge peak (IFmax = 14.7). The study
of Higley et al. [8] showed that sediment fractions which contain more polar compounds
induce significant mutagenic effects at all sites from the upper Danube River in the bacteria
strain TA98 without S9. The difference among the results of these studies may be attributed to
the varied genotoxic pollutants in these sample extracts [44]. Consequently, further studies
should be focused on identifying possibly mutagens.

In addition, the level of mutagenicity in the present study is different among the crude
extracts and fractions. This result may be due to the interactions of the different substances
changed the toxic levels of the matrices, such as synergistic or antagonistic effects [45]. These
interactions of different substances contained in the sediments could result in mutagenic activ-
ity in a single fraction exceeding that of the crude extract, such as fraction F2 from sites Y2 and
Y8, as well as fraction F1 from site Y9. This finding indicates the presence of compounds that
inhibit mutagenicity or the enzymatic activation of the mutagens in the crude sediment
extracts. These antagonistically acting substances may have been separated in the elution pro-
cess during fractionation, and then mutagenic compounds could exhibit their activity. The
multilayer fractionation in the present study was performed with the silica gel/aluminum oxide
column. Alumina adsorption appears to be an effective cleanup for subsequent mutagenicity
testing [16]. The phenomenon of suppressive effects of chemicals in mixture on the Salmonella
plate test response in the absence of apparent toxicity have already been determined [46]. In
the earlier study by Liu et al. [24], cytotoxicity of Y8 and Y9 was observed. It seems that the
crude extracts contained cytotoxic components were cleaned off during the multilayer fraction-
ation and the mutagenic ones elicited their full activity.

In this study, several fractions displayed lower or no mutagenicity compared with the crude
extracts, especially in the fractions of site Y7. Clear dose dependency was not observed for
mutagenicity with and without S9 activation in all the three fractions. This result indicates that
the combined activity among the substances may add up to the detected mutagenic responses
in the crude extracts. The concept of effect additively could be applied in this occasion. The
synergistic or additive mechanisms, which may occur in such complex mixtures, could influ-
ence the genotoxic responses [34]. The present study showed that the decreasing component
complexity caused the reduced mutagenicity of the mixture, since the mutagenicity was not
observed in several fractions.

Conclusions
The present study showed that the sediment from the Yangtze River estuary exhibited mutage-
nicity in the tester strain TA98 with and without metabolic activation. Mutagenicity was not
found in the strain TA100. A weak correlation was observed between the detected PAHs and
the mutagenicity of the sediments. Several non-detected pollutants may contribute to the
mutagenicity. Further investigations into the quality of the sediments should include the deter-
mination of concentrations of priority and non-priority pollutants. Results of the fractionation
showed that non-polar components as well as weakly and moderately polar components play a
main role in mutagenicity. Responsible pollutants should be identified in the future.
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S1 Table. Mutagenic activity of nine sediment extracts from Yangtze River estuary.Muta-
genic measured by the Ames fluctuation assay using TA98 bacteria strain with and without
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S2 Table. Mutagenic activity of three fractions of samples Y2, Y7, Y8 and Y9.Mutagenicity
measured by the Ames fluctuation assay using TA98 bacteria with and without bioactivation
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response curve.
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