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Abstract

Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated
downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across
scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar
SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical
network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the
model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with
recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal
neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted
spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca2+ current (IT). Further,
although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of
disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the
downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this
phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption
of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC
neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that
thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread
quasi-synchronous cortical downstates, and demonstrate with the first model of stage 2 NREM sleep a possible mechanism
whereby this widespread synchrony may arise.
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Editor: Lyle J. Graham, Université Paris Descartes, Centre National de la Recherche Scientifique, France

Received January 8, 2014; Accepted August 12, 2014; Published September 25, 2014

Copyright: � 2014 Mak-McCully et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by NIH R01 MH099645, R01 EB009282 (http://www.nih.gov/), ONR (MURI) N000141310672 (http://www.onr.navy.mil/), NSF GRFP
(http://www.nsfgrfp.org/) and Chateaubriand Fellowship (http://www.chateaubriand-fellowship.org/). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: rmakmccu@ucsd.edu

. These authors contributed equally to this work.

Introduction

The EEG during deep non-rapid eye movement sleep (NREM

stage N3) is dominated by very large slow oscillations (SO) at

,1 Hz. Intracellular recordings show that the SO represents

alternating ‘upstates’ when neural activity is comparable to

waking, and ‘downstates’ when most pyramidal (PY) and

interneurons (IN) stop firing and synaptic activity is very low [1–

3]. The same pattern is observed in humans where the cortical

silence during downstates is reflected in a severe drop in high

gamma power [4]. The most common sleep stage is N2, a lighter

form of NREM sleep, characterized by K-complexes (KC) and

sleep spindles. Recently, it was shown that the main component of

the KC is the cortical downstate, occurring in relative isolation,

i.e., without a preceding upstate [5]. The fact that the KC can be

evoked by a weak sensory input, and reflects cortical inactivity,

supports a role for the KC as a sleep protective mechanism,

suppressing arousal in response to stimuli that are judged by the

sleeping brain to be safe [6,7]. In addition, KC, SO, and sleep

spindles have been observed to reflect the hippocampal-cortical

PLOS Computational Biology | www.ploscompbiol.org 1 September 2014 | Volume 10 | Issue 9 | e1003855

http://creativecommons.org/licenses/by/4.0/
http://www.nih.gov/
http://www.onr.navy.mil/
http://www.nsfgrfp.org/
http://www.chateaubriand-fellowship.org/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003855&domain=pdf


interaction during memory replay and may play a critical role

orchestrating the consolidation of temporary episodic memories

into the permanent semantic store [8,9].

SOs are ubiquitous in mammalian sleep, allowing their neural

substrate to be well-delineated. The occurrence of SOs in the

undercut cortex [10] and in cortical slices [11,12], suggests that

intracortical mechanisms are critical for SO generation. During

the SO, possible mechanisms for the downstates that follow

upstates include synaptic fatigue, active K+ currents, or synaptic

inhibition [2,11,13–16]. However, these mechanisms inadequately

explain the KC origin because they depend on a preceding upstate

which typically does not occur before the KC. In these

mechanisms, the downstates of the SO not only arise locally as a

consequence of the upstate, but it is the upstate which spreads and

the spread of the downstate is again dependent on a preceding

upstate which is not present before the KC. This spread of SO

upstates is modeled as carried by local excitatory cortico-cortical

connections, and thus comprise travelling waves. Travelling waves

have been observed in an in vitro model of SO [14], and have

been inferred to travel from prefrontal to posterior cortex based on

scalp EEG during SO [17]. Since the KC is identical to an isolated

component of the SO, it has often been assumed that it also is a

cortico-cortical travelling wave. On the other hand, qualitative

descriptions of KCs in EEG suggest that they appear quasi-

synchronously across the scalp [6,7]. Since this issue is crucial for

constraining mechanistic models of the KC, we first examined it

quantitatively before constructing our model. Using scalp EEG,

we confirmed earlier reports that KCs can appear quasi-

synchronously across frontal and posterior sites. However, the

scalp KC is comprised of multiple overlapping EEG components

whose overlap could affect their apparent latencies. Thus, we

confirmed the EEG findings with widespread recordings directly

from the pial surface (ECOG) as well as recordings from electrode

pairs that span the cortex (bipolar SEEG). Although KCs were not

absolutely synchronous across the cortical surface, their relative

latencies between distant locations were too short to be consistent

with current models of cortical travelling waves, and we therefore

define them as quasi-synchronous.

In addition to KCs, N2 is characterized by sleep spindles, which

are waxing and waning bursts of 10–14 Hz oscillations, each

lasting ,1 s. Like KCs, scalp EEG also suggests that sleep spindles

are widely synchronous, but simultaneous magnetoencephalo-

graphic and intracranial recordings have demonstrated multiple

asynchronous generators [18–20]. Unlike KCs, spindles can be

generated by the isolated thalamus [21] through the interaction of

GABAergic thalamic reticular nucleus (RE) neurons and excitato-

ry thalamocortical (TC) neurons, reinforced by intrinsic currents

[22]. Burst firing of RE neurons hyperpolarizes TC neurons,

deinactivating IT, and inducing rebound burst firing that excites

RE neurons, triggering another cycle. Although spindles and

KCs/SOs can thus be generated by the isolated thalamus or

cortex, respectively, the close anatomical and physiological

integration of these structures suggests that both are involved in

generating, and especially synchronizing, both phenomena

[21,23–30].

In sum, recent evidence has shown that KCs are isolated states

of profound thalamocortical silence, which can appear quasi-

synchronously across both hemispheres and multiple lobes. What

mechanism could produce such a phenomenon? As we noted

above, current models of the SO are not sufficient because the

downstates are triggered by preceding upstates in these models,

but KCs are not preceded by upstates. Further, these models do

not predict that downstates will be synchronous, but that they will

spread like a wave across the cortical surface. These models also do

not include the thalamus (thus preventing the potential synchro-

nizing effects of the thalamocortical interactions to be assessed),

and they do not include spindles, which commonly occur in close

proximity to KCs during N2. Finally, given the crucial roles that

the H and T currents play in generating thalamocortical sleep

rhythms, it is essential that they be included in models for these

phenomena. Here we describe the first such model, including both

the thalamus and cortex, which produces spindles, as well as

spontaneous and evoked KCs. In the model, the same limited

number of RE, TC, PY, and IN cells are interconnected in local

and distant feedback and feed forward loops, as is typically

observed in vivo [2]. However, in some simulations we also

included connections from a limited set of PY neurons to all of the

RE neurons, reflecting the recent anatomical finding in rhesus

monkeys, that PY neurons in areas 46, 13, and 9 are unique in

projecting widely to the RE neurons [31]. Activation of these PY

neurons would widely excite RE neurons, thus inhibiting TC

neurons; the sudden removal of tonic TC drive would trigger a

widespread synchronized cortical KC.

Using a detailed conductance based thalamocortical network

model of N2, we find that, indeed, these widespread RE

connections from a limited PY region are necessary for

spontaneous KCs to occur. Furthermore, applied depolarization

of this focal prefrontal area does lead to a KC, as predicted, but it

is via an unexpected mechanism: RE depolarization inactivates IT,

thus disrupting thalamic spindles, which removes tonic thalamo-

cortical excitation. In order to test the robustness of the model’s

predictions for empirical data, we analyze rare human recordings

made simultaneously from the cortex and thalamus during NREM

sleep and find that a drop in thalamic spindling precedes the

prefrontal KC. In summary, this paper presents the first

comprehensive computational neural model of stage N2 sleep,

and demonstrates, using a combination of modeling and empirical

observations, a possible mechanism whereby an interaction of

network and channel properties results in quasi-synchronous

cortical downstates (KCs), triggered by the interruption of

thalamic spindling.

Author Summary

EEG in the most common stage of human sleep is
dominated by K-complexes (KCs) and sleep spindles
(bursts of 10–14 Hz oscillations) occupying the thalamus
and cortex. Recently, we discovered that KCs are brief
moments when the cortex becomes almost completely
silent. Here, using recordings directly from the cortex of
epileptic patients, we show that KCs can be quasi-
synchronous across widespread cortical areas, and ask
what mechanism could produce such a phenomenon. We
created the first network model of realistic cortical and
thalamic neurons, which spontaneously generate KCs as
well as sleep spindles. We showed that the membrane
channels in the reticular nucleus of the thalamus can be
inactivated by excitatory inputs from the cortex, and this
disrupts the spindle-generating network, which can trigger
widespread cortical silence. The model prediction that
thalamic spindle disruption occurs prior to KC was then
observed in simultaneous recordings from the human
thalamus and cortex. Understanding the cellular and
network mechanisms whereby KCs arise is crucial to
understanding its roles in maintaining sleep and consol-
idating memories.

Thalamic Spindling Disruption May Trigger Quasi-synchronous KCs
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Results

First, we present evidence from scalp EEG and direct cortical

recordings that help place constraints on the model. Scalp EEG

demonstrates that KCs can be quasi-synchronous over the scalp

and direct cortical recordings show that evoked and spontaneous

KCs can be quasi-synchronous over much of the cortical surface in

humans. Second, we describe the KCs produced spontaneously by

the thalamocortical model when the cortex contains neurons

which project diffusely to RE, and how the rate of KCs depends

on the strength and number of such connections. The mechanism

whereby KCs arose was studied in the model by examining

different intracellular and network parameters associated with the

spontaneous KCs, as well as those associated with KCs evoked by

direct depolarization of RE neurons or by stimulating the cortical

neurons projecting diffusely to RE. The model KCs resulted from

removal of cortical excitation when TC neurons stopped firing.

Although this can result from inhibitory input from RE neurons

that are strongly stimulated, in most cases direct or indirectly-

induced depolarization of RE neurons resulted in decreased firing

of both RE and TC neurons by disruption of spindling, a

consequence of inactivation of IT. Third, as an empirical test of the

model’s predictions, we report a single patient with simultaneous

direct thalamic and cortical recordings showing spindling in the

human thalamus that is disrupted before the KC.

Empirical Measures
KCs measured with scalp EEG do not always show a

systematic propagation from anterior to posterior

channels. The prevailing view in the field is that slow

oscillations propagate systematically in an anterior to posterior

direction via a cortico-cortical mechanism, and it has often been

assumed that KCs travel in the same manner. We demonstrate

here with a spontaneous KC measured using scalp EEG that this

systematic front-to-back propagation is not the rule for all KCs

(Figure 1A). Figure 1A shows the overlay of all scalp EEG

channels participating in the KC from a healthy control subject.

KC waveforms are color-coded to indicate their frontal (green),

central (pink), or occipital (purple) positions. There is no evidence

of a systematic propagation from anterior to posterior, as would

be visualized as a progression from green to pink to purple

channels. Furthermore, the vertical black line marks the time

point where the following channels, which span the anterior to

posterior axis, appear absolutely synchronous (i.e. a 0 ms delay in

the timing of the most negative peak of the KC, at a resolution of

1.7 ms): Fp1, Fpz, F1, Fc2, C4, Po3, and Po8. The average

latency delay of the most negative peak of the KC in frontal

channels compared to the most negative peak of the KC in

occipital channels is ,8 ms. As the signal from scalp EEG is

smeared by the skull, and latencies of individual components can

be shifted by overlapping components, we do not undertake a

systematic investigation into the travelling versus quasi-synchronous

KCs as measured in scalp EEG. Rather, we quantitatively

investigate the existence of quasi-synchronous KCs using direct

cortical recordings, as outlined below.

Evoked and spontaneous KCs are downstates

occurring quasi-synchronously across much of the

cortex. Intracranial recordings were obtained from patients

undergoing evaluation for their epileptogenic focus: Patient 1 had

ECOG grid electrodes on the pial surface, and Patients 2 to 4 had

exclusively cortical SEEG. We examined KCs using both of these

recording techniques and found that KCs are: quasi-synchronous,

widespread across the cortex, and that spontaneous and evoked

have similar morphologies and topographies.

We compared the distribution and synchrony of evoked and

spontaneous KCs across the cortex using ECOG in Patient 1

(Figure 1B–E). In the single spontaneous KC shown in figure 1B,

almost all ECOG channels show a near-synchronous negativity at

the time of a KC chosen on the C4 scalp electrode. This

widespread and tightly synchronized negativity is apparent in both

the time-voltage plot (where each line represents color coded

voltage across time of a single channel Figure 1B, left), and the

superimposed KC waveforms across all channels (Figure 1B,

right).

Figure 1C compares the distribution and synchrony of averaged

spontaneous (black waveforms, n = 86) and evoked (red wave-

forms, n = 42) KCs across the cortex using ECOG grid electrodes

from the same patient. Of 54 tones delivered, 42 (,78%) resulted

in an evoked KC. Both spontaneous and evoked KCs were

detected on C4 and averaged on the most negative peak of this

scalp channel. Both evoked and spontaneous KCs are character-

ized by a quasi-synchronous surface negativity that is widespread

across the cortical surface (Figure 1C). Superimposed averaged

traces from all channels demonstrate the similar topography of

both types of KCs, implying they have the same generators

(Figure 1D). This was tested statistically by calculating the

correlation coefficient in the peak amplitudes between spontane-

ous and evoked KCs across the 71 channels: R was found to be

0.94. In Figure 1E, the scalp EEG channel and ECOG channels

selected to represent the most distant relative locations across the

cortex are enlarged to depict the similar and quasi-synchronous

spontaneous and evoked morphologies that occur for both

averaged and single trial KCs. The vertical black line demarcates

the KC peak in the scalp EEG channel. Relative to this time, the

peak latencies of the displayed channels for the spontaneous (black)

KC peaks ranged from 215.6 ms to 7.8 ms (mean 0 ms) for the

average, and from 27.8 ms to 7.8 ms (mean 3.1 ms) for the single

trial. In particular, the latency difference between the anterior

prefrontal channel (antPreF) and the lateral occipital (LatOc),

which represent the most distant anterior-posterior sites of the

selected channels, was 3.9 ms on average and 0 ms on a single trial

basis. The peak latencies for the evoked (red) KC peaks ranged

from 27.8 ms to 7.8 ms (mean 20.8 ms) for the average, and

from 211.7 ms to 11.7 ms (mean 1.6 ms) for the single trial. For

the evoked KCs, the latency difference between antPreF and

LatOc was also 3.9 ms for the average and 0 ms for a single trial.

The quasi-synchrony of the average ECOG peaks demonstrates

that KCs do not show a regular delay between prefrontal and

posterior sites that is comparable to that which has been reported

for the SO in the scalp EEG (,120 ms, [17]). Since the quasi-

synchrony can also be observed in single trials, the lack of large

latency differences in the average peaks is unlikely to be due to

KCs slowly propagating on each trial, but in different directions,

which would thus be masked in the average.

As is evidenced by the large differences between adjacent

ECOG contacts, ECOG is thought to mainly reflect the

immediately underlying cortex. However, it is subject to reference

effects as well as volume conduction [32]. In order to obtain

unambiguously focal cortical recordings, we examined SEEG

depth electrode trajectories to identify successive contacts on the

same probe, with one above the cortical gray matter in the CSF,

and the other just below it in the white matter. Often the external

electrode was in the subarachnoid space just lateral to the cortical

surface, but in some cases it was medial to midline cortex (i.e., just

lateral to the falx cerebri), or within a vertically-trending sulcus.

We calculated the transcortical local field potential (LFP) by

subtracting the SEEG recorded by the electrode below the gray

matter from that recorded by the electrode above it. These

Thalamic Spindling Disruption May Trigger Quasi-synchronous KCs
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contacts were selected to measure transcortical LFP in order to

have a very focal recording of local activity.

In Figure 2, spontaneous KCs were analyzed using exclusively

cortical bipolar SEEG recordings in three patients, with analyzed

channels chosen as described above. For all three patients, KCs

were detected on Fz. For each patient, a single spontaneous KC

(dashed lines) is displayed with the average KC (solid lines) chosen

on Fz and computed for each selected pair of bipolar contacts

across the cortex (Figure 2). For each patient, the postoperative

CT with the electrodes in place was superimposed on the

preoperative MRI to estimate the entry points of SEEG probes

on the reconstructed cortical surface, as well as the locations of

Figure 1. Quasi-synchrony and topography of spontaneous and evoked KCs in EEG and ECOG. A, An individual spontaneous KC shows
quasi-synchrony over frontal, central, and occipital scalp EEG channels. Overlaid channels participating in the KC are color-coded by scalp position:
frontal channels in green, central in pink, and occipital in purple. There is no evidence of a systematic propagation of green frontal to purple posterior
channels. The vertical black line is plotted at the time point where there is a 0 ms delay in the timing of the most negative peak of the KC in channels
across the anterior to posterior axis: Fp1, Fpz, F1, Fc2, C4, Po3, and Po8. B, Almost all ECOG channels show a quasi-synchronous surface negative
potential at the time of a single spontaneous KC detected at the scalp. The left plot depicts the color coded local field potentials while the right plot
depicts the waveforms of this KC. Regions listed are: temporal pole (TempPole), lateral occipital (LatOc), anterior orbitofrontal (antOrbF), anterior
prefrontal (antPreF), and ventral occipital (VenOc). C, Both spontaneous (black) and evoked (red) KCs in ECOG are characterized by a quasi-
synchronous and widespread surface negativity. KCs were averaged over trials on the most negative peak of the KC as detected at the pictured scalp
EEG electrode, C4. Waveforms are the average of 86 spontaneous (black) and 42 evoked (red) KCs. Patient is the same as in B. D, Traces of KC averages
from all channels pictured in C are superimposed to demonstrate the regularity of the waveforms across sites. E, On both an average and single trial
basis, spontaneous and evoked KCs show similar topographical profiles that are quasi-synchronous across the cortex. The scalp EEG electrode and
ECOG channels from across the cortex (selected to be maximally far apart) are pictured for the averaged spontaneous or evoked KC, as depicted in C
& D, as well as a single trial. The vertical black line indicates time zero of the most negative peak of the scalp KC on the average (left) and the single
trial (right). Channel location regions listed are the same as in B.
doi:10.1371/journal.pcbi.1003855.g001

Thalamic Spindling Disruption May Trigger Quasi-synchronous KCs
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individual contacts on coronal T1-weighted sections [33]. For each

bipolar SEEG recording, the same color is used to denote

corresponding waveforms, entry-points, contacts, and anatomical

labels. Patient 2 in Figure 2A had electrodes implanted unilaterally

in the dorsal and ventral prefrontal, temporal, and parietal

cortices. Over the average of 70 KCs, there was a 32 ms peak

latency difference between the bank of the inferior frontal sulcus

(LbiFg) and the angular gyrus (LAng) (marked by the yellow

arrows), which was reduced to 12 ms on a single trial example.

Patient 3 in Figure 2B shows a single example KC and an average

of 129 KCs that are quasi-synchronous between the hemispheres.

Mirrored sites in the left and right superior frontal gyrus (RsFg and

LsFg) have a 2 ms latency difference in their averaged KC peaks,

marked by the yellow arrows, and a 8 ms single trial KC peak

latency difference. Patient 4 in Figure 2C demonstrates the quasi-

synchrony of KCs across multiple dorsal and ventral prefrontal

and anterior cingulate areas in one hemisphere, as well as between

the frontal lobes. On the average of 172 KCs, mirrored sites in the

left and right precentral sulcus (LpCs and RpCs) showed a 18 ms

peak latency difference (marked by yellow arrows), which was

14 ms in the single trial example. As with the ECOG recording,

we include single as well as averaged KCs to demonstrate that

quasi-synchrony in the average is not due to travelling waves

propagating systematically in different directions on different trials.

Quasi-synchronous versus travelling waves. The primary

goal of the initial empirical studies was to constrain the important

characteristics of KCs that would need to be reproduced in an

adequate mechanistic computational model of the KC. Specifi-

cally, we sought to determine if the spread of KCs can be

accommodated within the range of conduction velocities previ-

ously demonstrated in vivo, in vitro, or in modeling to be

supported by short and medium range cortico-cortical fibers. We

did this by comparing the estimated conduction velocities observed

for the KCs in our recordings to those reported for cortical

travelling waves found in the mammalian neocortex during

sensory processing. These range from 0.1–0.4 m/s [34], up to

0.6 m/s [35]. These studies focus on active visual processing and

thus may not be directly relevant to propagation of the KC. For

this reason, we also specifically refer to the speeds observed by

Massimini et al. [17], which is the key study asserting that the slow

oscillation is a travelling wave, and to the references cited by that

study from the animal and modeling literature. Different

comparisons are made for speeds that are measured on the

cortical versus the scalp surface. In the scalp EEG recordings

presented by Massimini et al., propagation speed was estimated

between 1.2 and 7 m/s (mean = 2.5 m/s), with an approximate

120 ms delay from frontal to occipital EEG recording sites [17].

Source modeling by the same group estimated cortical propaga-

tion speeds as approximately 2.2 m/s [36]. In cortical recordings

from ferret slices, the propagation speed was measured at

0.011 m/s [12]. In a realistic neural model inspired by the latter

study, the propagation speed was calculated from 0.003 to

0.008 m/s [14].

We measured the average delay between anterior prefrontal

and occipital sites, and found it to be about 8 ms in scalp EEG

(Figure 1A), and 25 ms in intracranial recordings, averaged from

the intracranial subjects (Figures 1E and 2A). Assuming a distance

on the scalp of about 24 cm, and on the cortical surface of about

48 cm (both are underestimates), then this corresponds to a

velocity of 30 m/s at the scalp and 20 m/s on the cortical surface.

This is ,30–200 times faster than those observed in cortical

travelling waves [34,35]. It is also at least 10 times faster than that

described by Massimini et al. [17] for scalp recordings, ,2,000

times faster than the in vitro study [12] and ,4,000 times faster

than the modeling study [14] that they quote. Thus, our observed

average delays between KCs recorded at distant sites are not

consistent with the interpretation of KCs as cortical travelling

waves. Our observations also fail to support a consistent or

obligatory origin of KC in prefrontal cortex. Rather, our results

indicate that KCs appear in distant cortical locations with delays

that are inconsistent with propagation by short- or medium-range

cortico-cortical connections. Since long range cortico-cortical

connections are thought to be excitatory as well as sparse, we

explored a possible role for the thalamus in synchronizing KC

onset.

Model Simulation Results
The cardinal features identifying human N2 are the occurrence

of spindles and KCs, and thus any model of this state must

produce both of these phenomena. As demonstrated above using

empirical recordings, the model must also produce both sponta-

neous and evoked KCs that occur quasi-synchronously across the

cortex. We used a conductance based thalamocortical model (see

Materials and Methods section) composed of 100 pyramidal (PY)

neurons, 25 inhibitory interneurons (IN), 50 thalamic reticular

(RE) neurons, and 50 thalamocortical (TC) neurons. Our initial

model was based on that described by [2] to produce SOs. We

modified this model by decreasing the strength of the PY to PY

AMPA synapses from 0.15 mS to 0.09 mS. In a very similar model,

it has recently been shown that decreasing these intracortical

connections causes a transition from N3 to N2 [37]. In our model,

decreasing AMPA synaptic strength effectively decreased the

relative strength of cortico-cortical, as compared to cortico-

thalamo-cortical connections, with the result that spontaneous

SOs were eliminated while allowing spontaneous spindles to

emerge. However, this model was still inadequate because it did

not generate spontaneous KCs.
KCs are produced spontaneously. Inspired by recent

anatomical work demonstrating widespread connections from

restricted prefrontal locations to the RE [31], we modified our

model to include a fraction of PY neurons (15 PY neurons in these

simulations) which project to all RE neurons (see Figure 3C). This

modification resulted in spontaneously occurring KCs, as well as

spontaneous spindles, thus faithfully reproducing the essential

features of N2.

Figure 4 plots an example spontaneous KC produced by the

model. For each of the four neuronal populations in the model

Figure 2. Bipolar SEEG recordings illustrate widespread spontaneous KC quasi-synchrony across lobes and hemispheres. Single
spontaneous (dashed lines) and averaged (solid lines) KCs detected on Fz for each patient and computed for each selected pair of bipolar contacts.
The color of each waveform corresponds to the colored arrow indicating its location on the reconstructed hemispheres and coronal MRI sections for
each patient. A, A single trial and the average of 70 KCs for Patient 2 with contacts across the frontal, temporal, and parietal lobes. On average, there
is a 32 ms delay between the anterior (inferior frontal sulcus, LbiFg) and posterior (angular gyrus, LAng) channels shown by the yellow arrows. B, A
single trial and the average of 129 KCs for Patient 3 with contacts in both hemispheres. The yellow arrow marks mirrored locations in the left and
right superior frontal gyrus (RsFg and LsFg), which have an average KC peak latency delay of 2 ms. C, A single trial and the average of 172 KCs for
Patient 4 with contacts in both hemispheres for subfrontal and frontal regions. In mirrored sites in the left and right precentral sulcus (LpCs and
RpCs), highlighted by the yellow arrow, there is an average 18 ms peak latency difference.
doi:10.1371/journal.pcbi.1003855.g002
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(PY, IN, TC, RE), we measured the individual membrane

potential of each neuron in the population (Figure 4, top plot

for each population). For each population, we calculated the

averaged membrane potential and the averaged spiking rate.

Average membrane potential was calculated by averaging over

each neuron’s membrane potential and applying a 250 mv

spiking threshold to approximate the local field potential (LFP)

(Figure 4, second plot for each population). For each population,

the spiking pattern of a representative neuron is plotted, with the

y-axis specifying the number of that neuron in the population

(Figure 4, third plot for each population). The average spiking rate

over each population (Figure 4, fourth plot for each population)

was calculated over a 100 ms bin by counting each time a neuron’s

membrane potential reached above 220 mv and dropped below

230 mv the following millisecond. High gamma power (HGP,

70–200 Hz) was calculated for the PY neurons and spindle power

(8–13 Hz) was calculated for the TC and RE neurons using Morlet

wavelets. We did not distinguish between slow and fast spindles

because this is a level of detail that would require a larger model;

rather, we observed that spindles occurred in the model at a rate of

8–13 Hz and used this as our bounds for quantifying the strength

and time-course of spindles. For both HGP and spindle power,

power was calculated for individual neuronal membrane potentials

and then averaged.

In Figure 4, blue asterisks and ‘‘KC’’ indicate a spontaneously

occurring KC, characterized by a sustained drop in membrane

potential and spiking across all populations. A drop in HGP in the

PY neurons further confirmed the event as a KC (black asterisk).

Spindling in the average membrane potential of TC and RE

neurons is marked by green asterisks and shows a clear and

sustained drop at or before the time of the KC, along with a drop

in spindle power (red vertical lines and red asterisks).

We investigated whether, on average, spontaneous KCs exhibit

the same characteristic as the individual spontaneous KC pictured

in Figure 4: a drop in TC and RE spindling power at the time of

the KC. Figure 5 shows the average of 39 spontaneous KCs

generated over 200 seconds of the same simulation described in

Figure 4, with 15 PY neurons projecting to all RE neurons. The

39 KCs were chosen based on the PY firing rate criteria for a KC:

less than 10 spikes per 100 ms, for at least 200 ms. As expected

from these criteria, and as seen in the individual KC, these KCs

were characterized by a drop in PY membrane potential and

decreased firing in all populations (blue asterisks and ‘‘KC,’’

respectively). In addition, the averaged KCs also showed a drop in

HGP in PY (black asterisk) and a disruption of spindling in RE and

TC neurons (red asterisks). A red arrow indicates the 15 PY

neurons that project to all RE neurons, whose membrane potential

and spiking are plotted separately. The firing of these neurons

increases before the KC (yellow asterisk).

The rate of spontaneous KCs depends on the number of

PY neurons projecting to all RE neurons. To better

understand the mechanism underlying the generation of sponta-

neous KCs, we tested which model parameters affected the rate at

which KCs are generated. When a subset of PY neurons projected

to all RE neurons, increasing the number of such PY neurons in

the model increased the number of KCs in a near-linear fashion

(Figure 6A). In doing so, however, the overall input strength from

the cortex to thalamus was increased. To test if the increase in

spontaneous KCs was due to the changed connectivity versus the

increased strength, we systematically tested the effects of gradually

increasing the strength of each PY neuron projecting to RE

neurons in the model, while maintaining the original connectivity

where each PY neuron projects to 5 RE neurons. This increased

connection strength had little or no effect on the rate of

spontaneous KC production until 2.5 or 5 mS, a level correspond-

ing to 5 to 10 times the baseline connection strength of 0.5 mS

(Figure 6B). The total PY-RE strength in the baseline model is 500

synapses (100 PY – 5 RE) times 0.5, or 250 mS. Adding 10 PY

neurons which project to all RE neurons (Figure 6A, black arrow)

produces a total synaptic strength of 475 mS, less than that for the

model with the original connectivity when each synapse is set to

1 mS (Figure 6B, red arrow), which totals 500 mS. However, the

Figure 3. Network geometry and altered projections of thalamocortical model. A, The network contained 100 PY, 25 IN, 50 TC, and 50 RE
neurons. The number of projections between PY and RE neurons was altered to test two ways of evoking KCs. B, In the original network geometry,
each PY neuron projected to 5 RE neurons. To evoke KCs, all RE neurons were depolarized. C, In the altered connectivity, a subset of PY neurons
projected to all RE neurons, while the remaining PY neurons projected to 5 RE neurons. To evoke KCs, only the PY neurons projecting to all RE
neurons were stimulated.
doi:10.1371/journal.pcbi.1003855.g003
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former simulation resulted in ,8 KCs per minute (black arrow)

whereas the latter resulted in baseline levels (red arrow).

Eventually, increasing the strength of all PY-RE synapses with

the original connectivity did result in the sharp increase of

downstate production. However, these did not appear as isolated

downstates (i.e., as KCs) but rather as continuous SOs (0.25–1 Hz)

(i.e., resembling N3 rather than N2) [2]. These simulations suggest

that widely projecting connections from PY to RE neurons can

effectively transform a model that generates spindles to one that

also generates spontaneous KCs.

Note that the baseline rate of ,3–4 KCs/min produced

spontaneously by the model is close to rates reported in the

literature: ,2 KCs/min (slightly higher for young subjects and

slightly lower for older subjects) [38]; 1.3 KCs/min at baseline and

2.6 KCs/min for recovery sleep [39]; and a 5–10 second evoked

KC refractory period (which is equivalent to ,3–6 KCs/min if

assuming a 50% rate of evoking KCs with stimuli delivered at a

rate with this refractory period in mind) [40].

KCs are evoked either by directly depolarizing all RE

neurons or by stimulating a subset of PY neurons projecting

to all RE neurons. In addition to occurring spontaneously,

KCs may be evoked by sensory stimuli in humans. We tested

whether KCs could be evoked in the model in two ways: (1) by

directly depolarizing all RE neurons in the baseline model where

Figure 4. Characteristics of a single spontaneous KC. A KC generated when 15 PY neurons projected to all RE neurons. For each of the
neuronal populations, the membrane potential of the individual neurons (Vm), the average membrane potential (Avg Vm), the spiking of a single
neuron (Cell), and the average spiking rate (Avg Spikes/Sec) are pictured. In addition, high gamma power is plotted for PY neurons and spindle power
is plotted for RE and TC neurons. The KC is characterized by a cessation of firing by all cell types, with a drop in membrane potential (blue asterisks),
and high gamma power (black asterisk) in PY neurons. The model exhibited spindling (green asterisks), which dropped in the RE and TC neurons
during the cortical KC (red asterisks). The red arrow indicates the 15 PY neurons that are connected to all RE neurons, and the red vertical lines mark
the start of RE spindle disruption. The membrane potential color scale displayed in the middle of the figure is the same for all cell populations.
doi:10.1371/journal.pcbi.1003855.g004
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each PY neuron projects to 5 RE neurons; or (2) by stimulating the

subset of PY neurons which project to all RE neurons. Each

allowed direct testing of a part of the PY-RE interaction observed

in a spontaneous KC by intervening at different stages of the

network. We first illustrate the effects of depolarization with a

detailed example (Figure 7) and then provide summary data from

parametric analysis (Figure 8).

As predicted by our hypothesized mechanism, a KC was

reliably evoked by injection of a depolarizing current into all RE

neurons in the baseline model. These events were identified as

KCs by a drop in the PY membrane potential and decreased PY

spiking (Figure 7A, blue asterisks and ‘‘KC’’). The orange box

marks the 350 ms duration of depolarization applied at 85.8pA.

We had expected RE depolarization (Figure 7A, purple asterisks)

to lead to increased firing in the RE neurons; surprisingly, this was

not the case. RE firing actually decreased during most levels of RE

depolarization tested (see Figure 7A, orange asterisk, for an

example and Figure 8A for summary data). In seeking the

mechanism of this counter-intuitive result, we noted that the RE

depolarization systematically leads to RE and TC spindling

Figure 5. Characteristics of 39 averaged spontaneous KCs. KCs generated when 15 PY neurons projected to all RE neurons, as in Figure 4. For
each of the populations, the membrane potential of the individual neurons (Vm), the average membrane potential (Avg Vm), and the average spiking
rate (Avg Spikes/Sec) (averaged over the 39 KCs) are pictured. High gamma power is plotted for all PY neurons. In addition, the membrane potential
(Vm) and the averaged spiking (Avg Vm) of the 15 PY neurons projecting to all RE neurons, averaged over the 39 KCs, are plotted separately. The red
arrow indicates the 15 PY neurons that are connected to all RE neurons. The color scale of the PY membrane potential is the same for all PY neurons
and these 15 PY neurons. The averaged KC exhibited the same characteristics as the individual KC shown in Figure 4: cessation of firing by all cell
types, and a drop in all PY neurons in membrane potential (blue asterisks), and high gamma power (black asterisk). Spindling also dramatically
decreased in the RE and TC neurons during the cortical KC (red asterisks). The 15 PY neurons showed a marked increase in spontaneous firing before
the KC (yellow asterisk).
doi:10.1371/journal.pcbi.1003855.g005
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disruption (see Figure 7A, red asterisks, for an example and

Figure 8A for summary data). Note that we had observed a

similarly decreased spindling in the spontaneous KCs. These

processes, including the cortical KC, start at a short latency (,

200 ms) after the onset of RE depolarization, and thus do not

represent a post-depolarization rebound phenomenon.

We then tested the reconfigured model described above

where 6 of the PY neurons project to all RE neurons at the

baseline strength of 0.5 mS (Figure 3C). Depolarization of these

widely projecting PY neurons provided a more direct test of our

hypothesized mechanism. As predicted, directly depolarizing

the 6 widely-projecting PY neurons triggers a KC (see Figure 7B

for an example and Figure 8B for summary data). The black

box in Figure 7B delineates the 200 ms duration of depolariza-

tion applied at 15pA to these 6 PY neurons. The KCs evoked in

this manner are characterized by a drop in both the PY

membrane potential and the PY spiking (Figure 7B, blue

asterisks and ‘‘KC’’). They thus closely resemble the electro-

physiological characteristics observed in spontaneous KCs

(Figures 4 & 5) and KCs evoked by direct RE depolarization

(Figures 7A & 8A). As expected, the 6 PY neurons indicated by

a red arrow that project to all RE neurons are depolarized

before the KC (Figure 7B, yellow asterisk). As in the case of

directly depolarizing all RE neurons, the RE neurons are also

depolarized when stimulation is applied to the 6 PY neurons

that project to all the RE neurons (see Figure 7B, purple

asterisks for an example and Figure 8B for summary data). In

this case as well, the RE depolarization is not accompanied by

increased RE firing (Figure 7B, orange asterisk for example and

Figure 8B for summary data), but in most cases by decreased

RE firing. As was observed after direct RE depolarization,

stimulation of the widely projecting PY neurons also disrupted

TC and RE spindling (Figure 7B, red asterisks for an example

and Figure 8B for summary data).

Parametric analysis supports a critical role of TC and RE

spindle disruption in KC generation. The simulations

described above support the hypothesis that a lack of drive from

TC neurons to PY neurons can trigger both spontaneous and

evoked KCs. However, contrary to our hypothesis, this decreased

drive did not occur due to increased firing in RE neurons. Rather,

the consistent finding was that decreased TC firing reflected

disrupted spindling by the TC-RE circuit.

Figure 6. Parametric modulation of spontaneous KC frequency by changing the projection from PY to RE. A, Increasing the number of
PY neurons projecting to all RE neurons increased the number of spontaneous KCs in a near linear fashion. B, In contrast, increasing the strength of
projections from PY neurons to RE neurons had little effect until a threshold strength was reached and the system began oscillating almost
continuously (i.e., generated SOs rather than KCs). In A, the PY to RE configuration schematic on the left illustrates one PY cell projecting to all RE
neurons, while each of the remaining PY neurons maintain a projection to 5 RE neurons (as in Figure 3C). The schematic on the right shows how the
projection pattern changes with the addition of a second PY neuron projecting to all RE neurons. In B, the schematic on the left illustrates the original
model configuration (as in Figure 3B), while the right schematic shows the increasing strength of PY to RE connections. For each value on the x-axis,
10 simulations of 200 s with different random seeds were run. The number of spontaneous KCs was calculated for each run; each value represents the
average number of KCs per minute in the 10 runs 6 SEM. The black arrow marks 10 PY neurons projecting to all RE neurons while the red arrow
marks the original connectivity with a strength of 1 mS between PY and RE neurons.
doi:10.1371/journal.pcbi.1003855.g006
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In order to systematically investigate the relationship between

cortico-thalamic input to RE, spindling in RE and TC, TC firing,

and KCs, we examined different baseline corrected properties of

the network response over a range of RE depolarization

(Figure 8A) and PY stimulation (Figure 8B) values. Each point is

the mean of five baseline corrected runs 6 standard error of the

mean (SEM) (see Methods, baseline corrected values). For each

network property, the PY (black), TC (blue), and RE (red) values

are plotted together. The basic network diagram to the left of

Figure 8 provides color coding for the cell types and illustrates the

effects of RE depolarization (red bolt, A) or PY stimulation (black

bolt, B) on 1) RE neurons, 2) TC neurons, and 3) PY neurons,

ultimately leading to a KC.

In the case of directly depolarizing all RE neurons, there is a

depolarization threshold–both in terms of duration (not shown)

and amplitude –for evoking KCs (Figure 8A). The points plotted

occur 300 ms into the 350 ms of RE depolarization. The RE Vm

directly reflects the increasing amount of applied depolarization

(Figure 8A, purple asterisk). RE firing initially decreases with

increasing RE depolarization (Figure 8A, red line, blue asterisk),

and only increases when a high level of depolarization is applied

(Figure 8A, orange asterisk). The purple box highlights a threshold

level of depolarization to produce a KC characterized by a drop in

PY firing (blue asterisk) and HGP (black asterisk). A green box

highlights a subthreshold depolarization, while the red box

outlines a KC produced when RE depolarization is strong enough

to increase RE firing. Therefore, there are two ways in which RE

could affect TC firing–via spindling suppression from increasing

depolarization of thalamic neurons and via direct TC inhibition

from a depolarization high enough to increase RE spiking, as

originally hypothesized.

Figure 8B examines the stimulation of 6PY neurons projecting

to all RE neurons at different levels of stimulation. In the top panel

of Figure 8B, the points plotted occur 100 ms into the 200 ms of

PY stimulation. At this time point, stimulation at 20pA or 80pA

leads to a drop in both TC and RE spindling (Figure 8B, red

asterisk). The bottom two panels of Figure 8B correspond to time

points that occur 100 ms after PY stimulation has ended (300 ms

from the beginning). At 20pA, there is a KC characterized by a

drop in PY firing (Figure 8B, blue asterisk) and PY HGP

(Figure 8B, black asterisk). The green box highlights a subthresh-

old level of PY stimulation. In this configuration, drops in TC and

RE spindling can be indicative of a KC; however, there is not an

absolute threshold as was the case with depolarizing all the RE

neurons. For example, at 80pA there was a drop in TC and RE

spindling at 100 ms that did not result in a KC at 300 ms

(Figure 8B, green asterisks). This may be explained by a

depolarizing effect of direct PY stimulation and the rebound in

TC neurons at the stimulus offset. Thus, while all KCs that we

observed had disrupted RE and TC spindling, the converse was

not true: a RE and TC spindling decrease was not always

predictive of a KC. However, this should be considered a strong

exception to the otherwise universal association of KCs with

decreased spindling, because it was only observed with high levels

of PY stimulation, which had additional effects of directly

activating TC neurons as well as other PY neurons. In summary,

parametric analysis of this model supports a strong association

between disruption of spindling and KCs, mediated by removal of

TC-PY activation.

Inactivation of RE IT underlies RE and TC spindling

disruption that leads to a KC. We next sought to understand

the underlying mechanism of the TC and RE spindling disruptions

critical to generating both spontaneous and evoked KCs. We

hypothesized that because the low-threshold Ca2+ current, IT, in

both RE and TC neurons is crucial for spindle generation [41–43],

and because it is easily inactivated by RE depolarization, that it

may mediate the observed effects. Specifically, we hypothesized

that depolarization of RE would inactivate IT and this would

prevent spindling from occurring. Furthermore, since IT is

responsible for burst firing during spindles, this would decrease

the overall firing of RE neurons during depolarization. Figure 9

compares the spontaneous KC from Figure 4 and the evoked KCs

from both depolarizing all RE neurons and stimulating a subset of

6 PY neurons projecting to all RE neurons from Figure 7. We

examine RE IT inactivation (by monitoring the inactivation

variable, h, of the IT current, RE IT h), PY to RE currents, and

TC IT, in comparison to spindling power and PY spiking in all

three cases.

IT is fully inactivated when RE IT h drops to zero. For all three

KCs, RE IT h first decreases towards zero (Figure 9, purple

asterisks), which is followed by a drop in RE and TC spindling

(Figure 9, red asterisks) and PY spiking (Figure 9, ‘‘KC’’). For the

evoked KCs, this drop in RE IT h occurred during the period of

RE depolarization (Figure 9, orange box) or PY stimulation

(Figure 9, black box). During the KC, RE IT h increases as it

becomes deinactivated (Figure 9, green asterisks), and ultimately

spindling resumes, as does firing, in all populations.

In order to directly test the hypothesis that RE IT inactivation

produces a KC by disrupting RE and TC spindling, we attempted

to induce a KC by abruptly increasing the amount of RE IT

inactivation. RE IT h was scaled to 40% of its original value to test

if it would result in a drop in RE and TC spindling and a KC, in

both model configurations used to evoke KCs (Figure 10). The

black vertical line indicates the time point at which RE IT h was

scaled to 40% of its value in both the original configuration

(Figure 10A) and the configuration where 6 PY neurons project to

all RE neurons (Figure 11B). The sudden increase in RE IT h

(visualized as a drop towards zero) is seen in both cases (Figure 10,

purple asterisks). This leads to a drop in RE and TC spindling

(Figure 10, red asterisks) and PY spiking (Figure 10, ‘‘KC’’),

indicating a KC. The scaling of RE IT h also leads to

accompanying drops in PY to RE currents and TC IT.

In the case of both spontaneous and evoked KCs, RE IT

inactivation causes a disruption of TC and RE spindling that

decreases the drive to PY from TC, leading to a cortical KC

characterized by a drop in membrane potential, spiking, and HGP

Figure 7. Evoking KCs by directly versus indirectly depolarizing RE. A, KCs are evoked by directly depolarizing all RE neurons for 350 ms at
85.8pA. B, KCs are evoked by stimulating 6 PY neurons, indicated by the red arrow, for 200 ms at 15pA. In A & B, the membrane potential of individual
neurons (Vm), the average membrane potential (Avg Vm), the spiking of a single cell, and the average spiking rate (Avg Spikes/Sec) are graphed for
each population. The membrane potential color scales are the same for both panels for each cell population. The number of the individual cell
graphed is also the same between panels. The length of the RE depolarization is outlined by the orange box and the length of the stimulation of the
6 PY neurons is outlined by the black box. In both cases, the KC was quantified by a drop in the PY membrane potential and the spiking in cell
populations (blue asterisks and ‘‘KC’’). There was a marked increase in the membrane potential of the stimulated 6 PY neurons projecting to all RE
neurons (yellow asterisk). In both cases, RE membrane potential was depolarized for the duration of RE current injection or PY stimulation (purple
asterisks), but this did not correspond to an increase in RE spiking (orange asterisks). Like the spontaneous KC (Figures 4 & 5), a drop in the TC and RE
spindling occurred at the same time as the evoked KC (red asterisks) in both cases.
doi:10.1371/journal.pcbi.1003855.g007
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Figure 8. Parametric analysis of evoking KCs by directly versus indirectly depolarizing RE. The effect of increasing levels of RE
depolarization or PY stimulation was inspected at individual time points. The schematic to the left outlines the connectivity and the order of effects
on: 1) RE neurons, 2) TC neurons, and 3) PY neurons, based on RE depolarization (A) or PY stimulation (B). Five simulations with different random
seeds were run for each value plotted, as well as a no stimulation baseline run. Baseline correction was performed for membrane potential (Vm) and
high gamma power. Percent change was calculated for spindling power and firing. The average of five runs at a particular stimulation value and time
point is plotted 6 SEM. A, As the level of applied RE depolarization increases, so does the RE membrane potential (purple asterisk); however, RE firing
does not increase until high levels of depolarization are reached (red box and orange asterisk). The green box highlights a level of RE depolarization
that is subthreshold for evoking KCs. At 114.4pA (purple box), PY firing and high gamma power drop (blue and black asterisks, respectively),
indicating a KC. Spindling also decreases in all three cell populations (red asterisk). The red box outlines a level of stimulation where RE firing
increases, leading to the production of a KC. B, When stimulating 6 PY neurons projecting to all RE neurons, the spindling in all three populations
drops 100 ms after stimulation is applied at a level of 20pA or higher (red asterisk). At 20pA (purple box), the firing in all cell populations (blue
asterisk) and high gamma power in PY neurons (black asterisk) drop 300 ms after stimulation, indicating a KC. The green box highlights a
subthreshold level of PY stimulation. At 80pA of PY stimulation (grey box), there is a drop in spindling but no KC, presumably because the direct
cortical excitation is sufficient to counteract the removal of thalamic input (green asterisks).
doi:10.1371/journal.pcbi.1003855.g008
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Figure 9. Currents and conductances underlying KCs. A, A spontaneous KC (same KC as in Figure 4), B, a KC evoked by depolarizing all RE
neurons (same KC as in Figure 7A), or C, a KC evoked by stimulating 6 PY neurons projecting to all RE neurons (same KC as in Figure 7B), all show a
drop in PY spiking (‘‘KC’’), and in RE and TC spindling (red asterisks). The orange box in B and the black box in C indicate the length of the applied RE
depolarization or PY stimulation, respectively. In all three cases, these characteristics of the KC were preceded by RE IT inactivation dropping towards
zero (RE IT h, purple asterisks), indicating greater inactivation. A decrease in PY to RE currents and a decrease in TC IT accompanied this RE IT
inactivation drop. During the KC, an increase in RE IT h indicates greater deinactivation (green asterisks), and rebound spindling.
doi:10.1371/journal.pcbi.1003855.g009
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in PY neurons. In the case of evoked KCs, RE IT inactivation is

triggered by RE depolarization, either directly or from a

stimulated group of widely-projecting PY neurons.

KCs are produced by a lack of drive from TC neurons to

PY neurons. Our findings above provide evidence that

decreased TC and RE spindling driven by IT inactivation leads

to a KC due to disruption of the thalamocortical drive to the

cortex. In order to directly test the hypothesis that a lack of drive

from TC neurons to PY neurons can trigger a KC, we

hyperpolarized all TC neurons. In Figure 11, 116pA of hyperpo-

larization for 300 ms is applied to all TC neurons. The top panel

shows a clear hyperpolarization in TC (Figure 11, blue asterisk).

This produces a disruption of RE and TC spindling (Figure 11,

red asterisks) and a complete lack of cortical firing (Figure 11,

‘‘KC’’), as was seen in all previous cases of KCs. During this

period, we also see RE IT deinactivation (Figure 11, green

asterisk), as pictured in Figures 9 and 10. As opposed to previously

examined KCs, RE IT does not become more inactivated

preceding the KC, because we are directly hyperpolarizing the

TC neurons. Furthermore, the lack of PY firing and the spindle

disruption only lasts as long as the application of TC hyperpo-

larization. Once the hyperpolarization is removed, the KC is

followed by a rebound increase above baseline of TC Vm, RE and

TC spindling, and PY spiking (Figure 11, black arrows). TC

hyperpolarization triggering a cortical downstate for the duration

of the hyperpolarization is consistent with our previous findings,

except in those cases, depolarization of RE neurons hyperpolar-

ized the TC neurons. Strongly depolarizing RE neurons that then

inhibit TC neurons is one way in which this hyperpolarization

could occur (Figure 8). More commonly, suppression of firing in

TC neurons was accomplished by weakly depolarizing RE

neurons, which depresses spindling in RE and TC, leading to a

cortical KC (Figures 7 & 8). Hyperpolarization of TC was tested

over a range of levels (not shown). As the level of hyperpolarization

increased (became more negative), a downstate would occur

during the time of hyperpolarization, followed by a rebound

upstate as pictured in Figure 11, but the system could not recover

and was followed by a long-lasting downstate. These findings

Figure 10. Inducing KCs by abruptly increasing RE IT inactivation (RE IT h). A, In the original configuration and, B, in the 6 PY neurons
projecting to all RE neurons configuration, RE IT h is scaled to 40% of its original value (purple asterisks) at 1 s (vertical black line). In other words, the
proportion of deinactivated IT channels is abruptly decreased. In both cases, this drop in RE IT h leads to a decrease in PY to RE currents and TC IT, as
well as a drop in RE and TC spindling (red asterisks), which ultimately leads to a KC, as indicated by decreased PY spiking (‘‘KC’’).
doi:10.1371/journal.pcbi.1003855.g010

Thalamic Spindling Disruption May Trigger Quasi-synchronous KCs

PLOS Computational Biology | www.ploscompbiol.org 15 September 2014 | Volume 10 | Issue 9 | e1003855



demonstrate that hyperpolarization of TC neurons is sufficient to

produce a KC.

Depolarizing or hyperpolarizing other populations in the

model does not produce KCs. Using the original model

configuration, we also tested whether depolarizing or hyperpolar-

izing the other neuronal types could trigger KCs. We found that

depolarizing TC or PY neurons only lead to a downstate after an

upstate. Depolarizing inhibitory interneurons (IN) could trigger a

downstate, but the downstate only lasted as long as the

depolarization was applied to the IN. KC generation using this

mechanism would require a widespread projection to the IN.

Simultaneous SEEG Recordings from Thalamus and
Cortex during Sleep

Thalamic spindling power drops before and during

frontal KCs. As we cannot intracellularly measure the human

cortex or thalamus to directly test whether RE IT inactivation

causes spindle disruption leading to KCs, as suggested by the

model, we sought instead to empirically test the model prediction

that thalamic spindle disruption precedes the KC. We tested this

hypothesis using rare simultaneous bipolar SEEG recordings from

a patient with temporal lobe epilepsy, who had electrodes

implanted in the prefrontal cortex and the thalamus (Patient 5).

During N2 and N3, we selected 229 KCs on a prefrontal bipolar

SEEG channel estimated to lie in Brodmann’s area 10. The KCs

chosen on this channel exhibited a classic KC morphology,

without a preceding upstate, on an individual trial and averaged

basis (Figure 12A & B). Using the times of the frontal KCs, a time

frequency analysis (5–120 Hz) was performed on the 1st thalamic

channel (Figure 12C) and there appeared to be a drop in thalamic

spindling power preceding the prefrontal KC (blue arrow in

Figure 12C). In order to test whether this drop was statistically

significant across trials, we first accurately identified the onset of

the KC by measuring the drop in local high gamma activity.

Amplitude of the prefrontal bipolar SEEG from 60–120 Hz was

measured during each trial using the Hilbert transform. This

amplitude was compared at each point to a baseline period (21.5

to 21 s, outlined by a black box in Figure 12D–F, before the KC

peak at time zero), and the period of significant (p,0.01, FDR

corrected) drop in high gamma was identified. The period of

cortical high gamma drop identified in this way is highlighted by a

grey box in Figure 12D, E & F. We then identified the onset of the

thalamic spindling drop in the same manner for the 1st

(Figure 12D), 2nd (Figure 12E), and 3rd (Figure 12F) thalamic

bipolar channels (with the 1st thalamic channel being the most

medial). The amplitude of each thalamic bipolar channel was

measured from 12–16 Hz continuously on each trial using the

Hilbert transform and compared to a baseline period (21.5 to 2

1 s) in order to identify periods of significant (p,0.01, FDR

corrected) drop in thalamic spindling. These significant periods of

thalamic spindling drop are outlined for each individual thalamic

bipolar channel by a blue box in Figure 12D–F. The scale for the

thalamic spindling amplitude is individualized for each bipolar

contact to better visualize the significant drop in each. In all three

thalamic bipolar channels, the drop in thalamic spindling (blue

box) occurs prior to the drop in cortical high gamma (grey box).

We also tested all grey matter bipolar channels along the electrode

targeting the thalamus (but lateral to the thalamus) and did not

find any statistically significant decreases in thalamic spindling

prior to the cortical high gamma drop. While this result is

consistent with the computational model, further studies are

needed to determine its reliability in different patients and

thalamocortical regions, given their high anatomical and physio-

logical variability.

Discussion

We describe a neural model for KCs during N2 sleep with

detailed conductances and synaptic connections for the major cell

types in the cortex and the thalamus. KCs in this model are

cortical downstates, without a preceding upstate, that occur quasi-

synchronously across the cortex, either spontaneously or evoked by

a variety of external stimulations. These cardinal features of

human KCs have been empirically demonstrated in this and

previous studies [5–7]. Analysis of simulations with this model

yielded an unexpected result: KCs were systematically preceded by

an induced or spontaneous decrease in thalamic spindling. The

decrease in spindling was caused by a depolarization-induced

Figure 11. Hyperpolarizing TC neurons produces a KC by decreasing the thalamocortical drive to cortex. All TC neurons were
hyperpolarized at 116pA for 300 ms. The length of TC hyperpolarization is outlined by the blue box. For the duration of TC hyperpolarization (blue
asterisk), RE and TC spindling dropped (red asterisk), RE IT became deinactivated (green asterisk), and PY spiking dropped to zero (‘‘KC’’), indicating a
KC. This was followed by a rebound upstate, as marked by TC depolarization, increased RE and TC spindling above baseline levels, and high PY
spiking (black arrows).
doi:10.1371/journal.pcbi.1003855.g011
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inactivation of IT. Decreased thalamic spindling caused an abrupt

decrease of thalamocortical excitatory drive, leading to the

synchronous cortical downstate. We then tested the main

prediction of this model in a simultaneous recording from the

human thalamus and cortex in a single patient; we found that,

indeed, decreased thalamic spindling preceded cortical KC

downstates.

The first cardinal feature of KCs reproduced in the current

model is that they occur intermingled with sleep spindles, as is

characteristic of human N2 [6,7]. Thus, our model includes the

thalamic and cortical circuits and currents crucial for generating

spindles [41–43], together with the intracortical circuits which are

crucial for SO generation [2,14,16,22]. Although cortico-cortical

connections are sufficient for generation of rhythmic upstates and

downstates, thalamocortical interactions have been increasingly

implicated in the synchronization and control of SOs [29], and

thus may play a similar role for the KC. Indeed, our model

suggests that thalamocortical and corticothalamic connections

may both play key roles in triggering KCs. As expected from the

strong projection of TC neurons to the cortex, directly hyperpo-

larizing TC neurons abruptly removes excitation from cortical

neurons, causing a KC. Similarly, as expected from their known

synaptic connections, strong RE activation directly inhibits TC

neurons, and the model found that this results in a KC, due to

abrupt removal of TC excitatory drive from the cortex. However,

at low levels of depolarizing input to RE neurons, these neurons

may actually decrease their firing rate, yet a KC is still observed.

Analysis of the model found that this apparently anomalous result

occurs because weak depolarization of RE inactivates IT, which

disrupts thalamic spindling. Since burst firing during spindling is

the main activity of TC projection neurons in N2, the disruption of

spindling causes a profound suppression of firing, thus triggering

KCs.

A second cardinal feature of KCs produced by our model is

the generation of KCs without preceding upstates. In previous

models, downstates arose as the direct product of a preceding

upstate, resulting, for example, from synaptic exhaustion or

inward potassium currents due to high activity [2,3,13–15].

Such mechanisms may be important for downstates during the

SO of N3. However, they cannot explain the KC because

it is not preceded by an upstate. Conversely, the mechanism

modeled here could contribute not only to KC generation, but

also to synchronization during the SO [24]. We identified

cortical KCs in PY neurons by their hyperpolarized membrane

potential, decreased high gamma power, and decreased

firing rate, with the opposite changes identifying upstates. By

these criteria, our model generates KCs without preceding

upstates, as is observed in the human cortex during KCs [5],

and at a rate consistent with empirical observations in humans

[38–40].

The third cardinal feature of KCs, demonstrated by our

empirical recordings and reproduced by our model, is the quasi-

synchrony of KCs across the neocortex. When we began this

study, it was unclear whether KCs should be modeled as quasi-

synchronous downstates or as travelling waves. On the one hand,

qualitative observation of scalp EEG suggested that KCs may be

synchronous across the scalp [6]. On the other hand, the

prevailing view in the field, based on scalp EEG, is that SOs are

travelling waves [17] , and thus KCs, being composed of the

downstate segment of SOs, are also. However, scalp EEG patterns

do not uniquely determine their underlying cortical generators,

and they are particularly ambiguous when sources are highly

distributed, due to smearing across the skull and source

cancellation [44]. Furthermore, since the activity of multiple

cortical components are superimposed in each scalp EEG sensor,

apparent latency differences between different sensors may

actually arise from different proportions of underlying components

with fixed latencies. Thus, it is important to refer to direct cortical

recordings to resolve this issue. Using dual intracellular recordings

from cells separated by 4 to 12 mm, Volgushev et al. [45] found

that the onset of the downstate in anesthetized cats propagated on

average at ,7 m/s. In contrast, Sanchez-Vives and McCormick,

2000, found a propagation speed of 0.011 m/s in cortical

recordings from ferret slices [12]. While Volgushev et al.
considered that the onsets were essentially synchronous, their

conduction velocity was close to the range reported by Massimini

et al. as evidence that the SO are travelling waves: between 1.2

and 7 m/s on the scalp, with an approximate 120 ms delay from

frontal to occipital EEG recording sites [17]. Given the broad

range in conduction velocities and terminology in these studies of

the SO, and their questionable applicability to human KCs in

natural sleep, we also considered the literature on travelling waves

in the occipital cortex of animals during visual processing, which

have conduction speeds in the range of 0.1–0.4 m/s [34], or up to

0.6 m/s [35]. We found that the latencies of KC peaks across the

frontal and occipital scalp in EEG, or between frontal and parietal

cortex in ECOG and SEEG, indicate an average delay that would

correspond to propagation speeds at least 10 times faster

compared to scalp EEG estimates [17], about 2000 times faster

compared to in vitro estimates [12], about 4000 times faster than

modeling estimates [14], and about 30–200 times faster than those

observed in cortical travelling waves [34]. Based on these

empirical observations of the short delays between averaged

KCs recorded at distant sites, we attempted to model KCs as

quasi-synchronous rather than cortical travelling waves. We also

provide examples of recorded single KCs which are quasi-

synchronous, and thus our results with average KCs do not arise

from combining KCs with relatively large latency differences.

However, such KCs do exist, and it remains a challenge for future

research to determine if the apparent variability in the sequence of

Figure 12. Disruption of spindling in the human thalamus precedes the cortical KC. KCs chosen on a single prefrontal bipolar SEEG
channel located in Brodmann’s area 10 are displayed as single trials (A, 50 randomly selected individual KCs) and, B, the average of all 229 KCs, band
pass filtered to 0.1 to 5 Hz. C, Time frequency analysis (5–120 Hz) in the 1st (most medial) thalamic bipolar SEEG channel using the times of the frontal
KCs in B, thresholded at p,0.01 (uncorrected) compared to the 21.5 to 20.5 second baseline. The blue arrow shows that there appears to be a drop
in spindle power. D, The average absolute value of the Hilbert transform applied to the frontal KCs in B, band pass filtered for high gamma (60–
120 Hz), is plotted in black. The grey box indicates the time period where high gamma drops significantly compared to baseline, outlined with a black
box (21.5 to 21 seconds, p,0.01, FDR corrected). The blue line indicates the average absolute value of the Hilbert transform applied to the 1st

thalamic bipolar SEEG channel band pass filtered for spindling (12–16 Hz), using the times of the frontal KCs. The blue box indicates the time period
where spindling drops significantly compared to baseline (p,0.01, FDR corrected). The drop in thalamic spindling (blue box) occurs prior to the drop
in cortical high gamma (grey box). E& F, The same analysis as outlined in D is applied to the 2nd thalamic bipolar channel (E) and the 3rd thalamic
bipolar channel (F). The cortical data are the same in all three subplots; the thalamic spindling amplitude scales are individualized for each thalamic
bipolar contact in D–F. For all three thalamic bipolar channels, thalamic spindling drops significantly (blue box) prior to the significant cortical high
gamma drop (grey box).
doi:10.1371/journal.pcbi.1003855.g012
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KC onset across sites reflects measurement error due to

superimposed noise, propagation of slow activity under certain

circumstances, or a shifting focus of readiness to produce KCs as

has been suggested for the SO [17,20,45].

Consistent with our results, Wennberg, 2010 [46] reported that

KCs recorded with SEEG during normal sleep in humans

appeared to be synchronous, although he did not quantify their

relative latencies. In contrast to our findings, he reported dramatic

frontal to posterior amplitude decrements, with phase reversal in

the temporal lobes, which he interpreted as indicating that ventral

temporal and occipital areas do not generate KCs. Wennberg,

2010 recorded SEEG relative to an average reference. It can be

difficult to determine with certainty whether an SEEG contact is in

the subdural space or within the cortex, and this can have very

large effects on SEEG amplitude and polarity. Similarly, an

average reference constructed during a very widely generated

graphoelement would itself generally be large, unless it is

constructed from a complete sampling of the surface bounding

the generating structures, which is not possible in this case. In

contrast to Wennberg, 2010, we either recorded ECOG, which

has a consistent location relative to the grey matter imposed by

physical constraints, or from bipolar transcortical SEEG, which

must be locally generated given the amplitudes that we observed.

Nir et al., who recorded SEEG relative to a largely inactive

reference (linked earlobes), found KCs in ventromedial temporal

limbic structures associated with decreased unit firing, supporting

local generation [20]. Together with our observations, these data

suggest that ventral temporal structures also generate KCs. Nir

et al. also found that slow waves in the medial temporal lobe limbic

cortex systematically followed those in medial frontal cortex by

about 180 ms [20]. This difference from our results could reflect

the fact that their observations were mainly of SOs, or that they

were between cortical and limbic areas rather than between

neocortical locations. Nonetheless, significant variability is ob-

served in the local amplitude of KCs across sites and trials, which

remain to be systematically explored.

A fourth remarkable cardinal feature of KCs reproduced by the

model is that they can be either spontaneous or evoked by a

variety of sensory stimuli. Our previous findings showed that both

are cortical downstates [5], but there remains controversy

regarding whether they represent the same neurophysiological

phenomenon [47,48]. In particular, the original observation made

by the Loomis laboratory that different modality stimuli can evoke

KCs has led to the investigation of modality-specific evoked KC

responses. Modality-specific modulation of the topography or

source localization of the P200 component of the KC for auditory,

visual, and somatosensory stimuli has been reported [48,49];

however, it is difficult in these studies to disentangle the effects of

superimposed modality-specific (sensory) responses onto non-

modality-specific P200 activity (i.e., the early phase of the KC).

For auditory evoked KCs, our current results in Figure 1B–F show

that spontaneous and evoked KCs have the same topography and

highly correlated amplitudes across the cortex, at a resolution

unachievable with scalp recordings.

Some studies have shown that the efficacy of different stimuli in

evoking KCs varies with their complex cognitive characteristics,

but this remains controversial (reviewed in [6,7]). If such complex

control over evoked KCs does exist, then it would suggest that

there is a cortical control mechanism over the triggering of KCs;

for our schema, that would imply a cortico-RE projection, such as

has been found from focal prefrontal areas (Brodmann 9, 13, and

46) to widely distributed areas of the RE in rhesus monkeys [31].

We tested the hypothesis that excitation of these focal prefrontal

areas would broadly excite the RE neurons, thus resulting in a

synchronous isolated KC. We found that the addition of such

connections from a restricted cortical area to the RE was required

for spontaneous KCs to occur in our model, and further, that

spontaneous KC frequency was proportional to the intensity of

such connections. Recently, a parallel pathway from the

amygdala to widespread RE sites has been reported [50]. The

amygdala and posterior orbital cortex (including area 13) are

thought to interact in assigning emotional valence to stimuli [50].

It is an intriguing possibility that they also interact during sleep in

evaluating whether stimuli should be permitted to arouse the

subject.

We noted above that an unexpected finding of our

simulations was that all KCs showed disruption of TC and

RE spindling, which correlated with RE IT becoming more

inactivated. Evoked and spontaneous KCs were triggered when

the excitatory drive to the cortex from the thalamus was

abruptly decreased, consequent to sufficient excitation of the RE

neurons to inactivate RE IT. Furthermore, making RE IT more

prone to inactivation led to an immediate disruption of thalamic

spindling and a KC. The role of IT in spindle generation is well

known [51] and recent work has shown that thalamic network

dynamics are highly sensitive to the inactivation status of IT

[52]. Spindling is also more sensitive to knocking out the T-type

Ca2+ channel subtype abundantly expressed in RE neurons

(Cav3.3), than to knocking out the subtype exclusively expressed

in TC neurons (Cav3.1) [53,54].

The interaction between spindles and KCs has long been of

interest [6,55–58]. Our model predicts that thalamic spindling

would decrease before and during KCs, but the implications of the

model for scalp EEG, which reflects cortical spindles, are

uncertain. As our model predicts for thalamic spindles, scalp

spindles do not occur during KCs [59,60]. However, the presence

and termination of scalp spindles prior to KCs is not strongly

regular. For example, it has been demonstrated in scalp EEG that

only ,30% of KCs are preceded by spindles while ,70% of KCs

are followed by spindles [60]. Furthermore, KCs elicited by stimuli

delivered during, versus away from scalp spindles, did not show

the differences in either rate or amplitude [55] that one might

expect from the model, although this was not simulated, so the

implications for the model are not known. Although MEG spindles

are also generated in the cortex, it may be useful to consider them

in order to infer the properties of thalamic spindles. Whereas

spindles in scalp EEG are well-delineated discrete events that

occur only several times per minute [61], MEG spindles

commonly occur without EEG concomitants, in a quasi-contin-

uous fashion during N2 [18], similar to SEEG [26]. It appears that

spindles in focal cortical generators may be detectable in MEG,

but not in EEG until multiple focal generators become synchro-

nized and involve more diffuse generators, thus recruiting a

sufficient cortical domain to become visible in scalp EEG [18,26].

Since the MEG spindles imply thalamic spindles, EEG would

seem to give an incomplete sampling of when thalamic spindling

occurs, and thus would not provide a strong test of the model. The

necessary simultaneous SEEG recordings from thalamus and

cortex during natural sleep are rare, but we were able to perform

such recordings in one patient. As predicted, a simultaneous

SEEG recording of KCs from prefrontal cortex and spindling from

the thalamus found that spindle power in all bipolar contacts in the

thalamus decrease before the KC.

The interaction of spindles and KCs may be important for

memory consolidation. The organization of memory replay during

spindles and KCs is unknown, but the temporal coordination of

the SO upstate, fast spindles, and hippocampal sharp waves has

been implicated in memory consolidation [8,9]. One can speculate
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that a recursive rhythmic thalamocortical interaction evolves

during each spindle discharge to consolidate a particular memory.

Over the course of the spindle, intracellular Ca2+ accumulates,

facilitating plasticity, but eventually causing inactivation and

termination of the spindle [23,41,62]. Our model indicates that

this would also evoke a KC in some cases. The KC downstate

would shut down most thalamocortical neural activity, followed by

rebound spindling. The KC may therefore provide closure to the

consolidation of one memory before the following spindle launches

consolidation of another memory. Indeed the increased coordi-

nation of upstates, downstates, and spindles has a powerful effect

on memory consolidation [63].

Although our model was arguably realistic in terms of active

channels, synaptic currents, cellular dynamics, cell types, and the

basic connections between them, it is obviously limited in the

number of modeled neurons. A distinction was not made

between slow spindles seen maximally in frontal areas and fast

spindles seen maximally in parietal areas in scalp EEG; these

separate spindle categorizations would require a much larger

model. In a related fashion, our model also did not distinguish

between matrix and core thalamocortical systems [64]. Matrix

projections are more widespread than core, and modeling

and empirical evidence suggest that they are important for

synchronizing EEG sleep spindles [18,19,23,26]. Additional

synchronization would be expected in our model if the posited

cortico-thalamic projections preferentially targeted TC matrix

neurons. We also failed to model the diffuse projections from

brainstem monoaminergic structures such as the locus coeruleus

to the cortex [65], although their role in KC generation is

unlikely because they fire at low rates during SWS and their

activation lasts much longer than the KC. We also did not model

direct inhibition of PY via a long range GABAergic inhibition

from the basal forebrain [66,67] or a diffuse cholinergic

projection to the IN, whose excitation could conceivably lead

to widespread indirect inhibition of PY neurons [67,68]. When

we modeled the effects of widespread excitation of the IN, we

found, as expected, that PY were inhibited as in the KC.

However, the PY inhibition did not significantly outlast the IN

excitation, which is inconsistent with empirical observations that

both cell types are silent during the downstate in humans

[4,5,69] and animals [16]. Nonetheless, this possibility deserves

further exploration with GABAB-mediated PY inhibition, which

would greatly outlast the IN excitation [70]. This mechanism

would make the empirical prediction that at least some of the IN

are activated immediately prior to the KC and may be

responsible for the synchrony leading to the KC [16].

In summary, we describe here the first neuronal model that

reproduces the four cardinal characteristics of the KC: (1) KCs

occur together with spindles in N2; (2) KCs are isolated

downstates without a preceding upstate; (3) KCs can appear

quasi-synchronously across multiple lobes in both hemispheres;

and (4) KCs can occur both spontaneously and be evoked by a

variety of sensory stimuli, with nearly identical mechanisms and

distribution. We present novel empirical evidence to constrain the

model from recordings made directly from the human cortex.

The model demonstrates a possible mechanism whereby wide-

spread quasi-synchronous cortical downstates (KCs) may be

triggered by the disruption of thalamic spindling. The prediction

of disrupted thalamic spindling prior to KCs was tested and

observed in rare simultaneous cortical and thalamic human

recordings; however, the further precise mechanism predicted by

the model, involving inactivation of IT by a depolarizing input to

RE neurons from a small cortical area, can only be fully tested in

animal models.

Materials and Methods

Ethics Statement
The institutional review boards of The Children’s Hospital,

Boston, and Partners Healthcare Inc., in addition to the ethics

committee of Comité Consultatifs de Protection des Personnes se

Prêtant à des Recherches Biomédicales Lyon-Centre Léon Bérard,

approved the parts of this study conducted at each respective site.

Written consent was obtained directly from all patients.

Empirical Measures
Cortical intracranial recordings were obtained in patients

(three women, one man) suffering from pharmaco-resistant

epilepsy who were candidates for surgical resection of their seizure

focus, preceded by intracranial EEG (iEEG) for localization of that

focus, at Massachusetts General Hospital, Brigham and Women’s

Hospital, and Children’s Hospital. The electroencephalogram

(EEG) and electrooculogram (EOG) were recorded simultaneous-

ly with iEEG, which could be either the stereoencephalogram

(SEEG) or the electrocorticogram (ECOG). At all programs,

electrodes are localized with respect to anatomical structures

using CT with the electrodes in place, and intraoperative

photographs [33]. Depth probes (SEEG) either had 6 contacts

with 8 mm center-to-center spacing or 8 contacts with 5 mm

center-to-center spacing. Each contact was 2.4 mm long with a

diameter of 1.28 mm. The probes usually passed approximately

perpendicular to the midsagittal plane. Subdural strip or grid

electrodes (ECOG) usually included 8 contacts at 1 cm center-to-

center, in 1 to 8 rows. 128–256 macro-contacts are recorded in

each patient using cable telemetry systems and dedicated

amplifiers. Fully informed consent was obtained prior to surgery

under the auspices of local institutional review boards and in

accordance with the Helsinki accords. The signals were sampled

at either 500 or 256 Hz and then band-pass filtered from 0.1–

120 Hz. Spontaneous KCs were recorded during natural NREM

sleep, and KCs were also evoked during N2 with simple auditory

tones that were presented randomly at 30–40 second intervals.

Intensity was increased until more than half of the tones elicited a

KC without arousal (see [5]).

A thalamocortical intracranial recording was obtained in

one female patient suffering from pharmaco-resistant epilepsy at

Neurological Hospital, Lyon, France. To delineate the extent of

the cortical epileptogenic area and to plan a tailored surgical

treatment, 12 SEEG recording electrodes were implanted

according to the stereotactic technique of Talairach and Bancaud.

Each electrode had ten to fifteen 2 mm contacts, with an inter-

contact interval of 1.5 mm and a diameter of 0.8 mm. The medial

pulvinar nucleus was a target of the thalamic implantation because

its reciprocal connections with temporal cortical areas may be an

important relay in the building of epileptic discharges. Further-

more, if the epileptic zone cannot be localized, this electrode

placement allows a determination of whether stimulating the

thalamus may decrease the frequency of seizures, with a view

toward the eventual placement of a chronically implanted

stimulator. Intracortical exploration of temporal neocortical areas

and of the medial pulvinar nucleus was possible using a single

multicontact electrode, so that thalamic exploration did not

increase the risk of the procedure by requiring an additional

electrode track. All patients were fully informed of the aim of this

investigation and gave their written consent for the implantation

and recording procedure, which was approved by the local ethics

committee. The data were sampled at 256 Hz and a 0.33–128 Hz

band pass filter was applied. Spontaneous KCs were recorded

during NREM sleep.
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EEG recording was obtained in one 23 year-old female

subject during a full night recording. The subject was free of any

neurological disorders, was not taking medication, and did not

have caffeine or alcohol on the recording day. Sixty-four channels

placed in a 10–10 montage were referenced to an average mastoid

and sampled at 600 Hz.

Patient Characteristics
One patient with ECOG and four patients with SEEG were

analyzed (Table 1). Activity identified as epileptic or abnormal,

including epileptiform KCs [71] and epileptiform spikes in

conjunction with KCs [72], were excluded based on visual

inspection.

Sleep staging and KC identification for cortical
intracranial recordings followed standard criteria and were

verified by one qualified rater (SC). Sleep staging relies on iEEG,

surface EEG (at least one scalp electrode referenced to the

mastoid), and submental EMG, when available. N2 is identified by

prominent KCs and spindles with only occasional delta activity in

the absence of rapid eye movements [73]. N3 is classified with the

onset of deeper sleep and the gradual diminishment of spindles

and increase in delta frequency waveforms. KCs were selected

based on multiphasic morphology during N2 or N3, occurring

spontaneously or evoked by a sensory stimuli, with a significant

surface negative and then surface positive potential occurring

,500 and 900 ms from the beginning of the waveform [6].

Chosen KCs were isolated (i.e. not part of a preceding oscillation)

and were not categorized based on preceding or following

spindling activity.

Sleep staging for the thalamocortical intracranial
recording was performed based on cortical activity across

intracranial contacts and a scalp electrode by one qualified rater

(HB).

Bipolar SEEG analysis was performed by examining voltage

differences across bipolar depth electrode contacts that spanned

the local cortical gray matter. Typically, one contact of the bipolar

pair lay above the cortical gray matter, in the CSF, and the other

just below it in the white matter. As KCs have such extensive

generators, distant sources, although individually weaker than

local sources, are so numerous that in sum they could contribute

substantially to the recorded iEEG signal [32]. When many

distributed generators are active, even extracranial locations

serving as a reference lead may record high voltage responses.

Our bipolar method obtains unambiguously focal cortical

recordings free of the volume conduction and reference lead

issues that may confound interpretation of iEEG. The surface

negative component is usually dominant and corresponds to a

downstate [5].

KC detection for cortical intracranial recordings was

performed on the midline scalp electrode Fz for Patients 2–

4,where KCs show the greatest amplitude, or the scalp electrode

C4 for Patient 1 where placement of a midline electrode was not

clinically feasible, during N2 and N3. For SEEG, only bipolar

channels with average KC amplitudes greater than 100 mV were

included for analysis.

KC detection for the thalamocortical intracranial
recording was performed on a prefrontal bipolar SEEG channel

estimated to lie in Brodmann’s area 10 during N2 and N3 based

on the multiphasic morphology outlined above.

KC detection for EEG was performed on the midline scalp

electrode Fz, where KCs show the greatest amplitude during N2.

Elimination of epileptiform activity. Sleep and epilepsy

can have a profound effect on one another [74] and their

interactions must be considered in analyzing the intracranial
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recordings obtained from patients with epilepsy. The types of

epilepsy which most commonly affect the graphoelements of N2

are generalized, frontal, or nocturnal frontal lobe epilepsy [74–76],

but these were not present in the patients studied here. A concern

in all patients with epilepsy is that typical KCs would be

contaminated with epileptiform KCs [71] or focal epileptiform

spikes in conjunction with KCs [72]. Fortunately, these are easy to

detect and each KC was examined visually and all such KCs were

excluded, as outlined above. In addition, we eliminated from

consideration any electrode leads with consistent delta slowing, or

frequent interictal spikes, or which participated in the seizure

focus. The majority of the patients examined here present with

temporal lobe seizures, which more often are enhanced during

wakefulness as compared to sleep [75]. While these intracranial

recordings must be interpreted within this clinical context, we have

sought to rigorously exclude epileptic activity and to include a

normal control subject’s data as well.

Computational model
Intrinsic currents: Thalamus. Single-compartment models

of thalamocortical (TC) and reticular nucleus (RE) neurons

included voltage- and calcium-dependent currents based on

Hodgkin-Huxley kinetics:

Cm
dV

dt
~{gL V{ELð Þ{I int{Isyn, ð1Þ

with membrane capacitance Cm = 1 mF/cm2; leakage conduc-

tance gL (gL = 0.01 mS/cm2 for TC and gL = 0.05 mS/cm2 for

RE); and reversal potential EL (EL = 270 mV for TC and EL = 2

77 mV for RE). Iint expresses a sum of active intrinsic currents and

Isyn a sum of synaptic currents. Area of an RE cell was SRE = 1.43

?1024 cm2 and area of a TC cell was STC = 2.9 ?1024 cm2.

In both RE and TC, we implemented a fast sodium current,

INa, a fast potassium current, IK, a low-threshold Ca2+ current, IT,

and a potassium leak current, IKL = gKL(V-EKL), EKL = 295 mV.

TC also included a hyperpolarization-activated cation current Ih.

The expressions for voltage- and Ca2+-dependent transition rates

for all currents are given in [16,77]. The maximal conductances

were gK = 10 mS/cm2, gNa = 90 mS/cm2, gT = 2.2 mS/cm2,

gh = 0.017 mS/cm2, gKL = 0–0.03 mS/cm2 for TC and

gK = 10 mS/cm2, gNa = 100 mS/cm2, gT = 2.3 mS/cm2,

gKL = 0.005 mS/cm2 for RE. In some cases, IT inactivation in

RE was scaled to a percentage of its original value.

Intrinsic currents: Cortex. Two-compartment models of

cortical pyramidal (PY) neurons and interneurons (IN) included

channels modeled by Hodgkin-Huxley kinetics [78]:

Cm
dVD

dt
~{gL VD{ELð Þ{g VD{VSð Þ{I int

D {Isyn

g VS{VDð Þ~{I int
S ,

ð2Þ

with dendritic compartment membrane capacitance (Cm) and

leakage conductance (gL); reversal potential EL; membrane

potentials of dendritic (VD) and axo-somatic compartments (VS);

sums of active intrinsic currents in axo-somatic (IS
int) and dendritic

compartments (ID
int); sum of synaptic currents (Isyn); and

conductance between axo-somatic and dendritic compartments

g. This model was first proposed in [78] as a reduction of a multi-

compartmental pyramidal cell model, based on the assumption

that the current dynamics in axosomatic compartment are fast

enough to ensure that VS is always at equilibrium state, as defined

by the second equation in (2). Indeed, this reduced model has

relatively high Na+ and K+ conductance values (gNa = 3000 mS/

cm2, gK = 200 mS/cm2 [78]) in the axosomatic compartment

(representing axon hillock in the model). Because of the high

conductance densities, smaller integration steps were needed to

ensure stability of calculation when capacitance was included in

the axosomatic compartment. Both models (reduced and com-

pleted) showed identical firing patterns [78].

The fast Na+ channels, INa, were high density in the axo-somatic

compartment and low density in the dendritic compartment. The

axo-somatic compartment contained a fast delayed rectifier

potassium K+ current, IK. The axo-somatic and dendritic

compartments both included a persistent sodium current, INa(p).

The dendritic compartment contained a slow voltage-dependent

non-inactivating K+ current, IKm, slow Ca2+ dependent K+

current, IK(Ca), high-threshold Ca2+ current, IHVA, and a

potassium leak current, IKL = gKL(V-EKL). See [11,16] for the

voltage- and Ca2+-dependent transition rates for all currents. The

maximal conductances and passive properties were Ssoma = 1.0

?1026 cm2, gNa = 3000 mS/cm2, gK = 200 mS/cm2, gNa(p) =

0.07 mS/cm2 for axo-somatic compartment and Cm = 0.75 mF/

cm2, gL = 0.033 mS/cm2, gKL = 0–0.0025 mS/cm2, Sdend = Ssoma

r, gHVA = 0.01 mS/cm2, gNa = 1.5 mS/cm2, gKCa = 0.3 mS/cm2

gKm = 0.01 mS/cm2 gNa(p) = 0.07 mS/cm2 for dendritic compart-

ment. EL = 268 mV and EKL = 295 mV. No INa(p) was modeled

for IN. The resistance between compartments was R = 10 MV.

The firing properties in Eq. (2) depend on the ratio of dendritic

area to axo-somatic area r [78] and the coupling conductance

between compartments (g = 1/R). A model of a regular-spiking

neuron was used for PY (r = 165) and a model of a fast spiking

neuron was used for IN (r = 50).
Synaptic currents. All synaptic currents were calculated

using:

Isyn~gsyn O½ � V{Esyn

� �
, ð3Þ

with maximal conductivity gsyn; fraction of open channels [O](t);

and reversal potential Esyn. Esyn
AMPA = 0 mV for AMPA and

NMDA receptors; Esyn
GABAA = 270 mV for GABAA receptors in

RE and PY and Esyn
GABAA = 280 mV for GABAA receptors in

TC [79]; and Esyn
GABAB = 295 mV for GABAB receptors. A

simple phenomenological model described short-term depression

of intracortical excitatory connections [11,80–82]. According to

this, a maximal synaptic conductance was multiplied to depression

variable, D#1, representing the amount of available ‘‘synaptic

resources.’’ D~1{ 1{Di 1{Uð Þð Þexp { t{tið Þ=tð Þ, where

U = 0.07 is the fraction of resources used per action potential,

t= 700 msec the time constant of recovery of the synaptic

resources, Di is the value of D immediately before the ith event,

and (t - ti) is the time after ith event.

First-order activation schemes modeled GABAA, NMDA, and

AMPA synaptic currents [83]. NMDA receptors’ dependence on

postsynaptic voltage was 1= 1zexp { Vpost{Vth

� �
=s

� �� �
, where

Vth = 225 mV, s= 12.5 mV [83–85]. A higher-order reaction

scheme modeled GABAB receptors, which took into account

activation of K+ channels by G-proteins [41,83,86]. For all

synaptic current equations see [11,16,77]. The maximal conduc-

tances (for each synapse) were gAMPA(PY-PY) = 0.09 mS, gNMDA

(PY-PY) = 0.01 mS, gAMPA(PY-TC) = 0.0820.025 mS, gAMPA(PY-RE)

= 0.5 mS (for most simulations, but in the case of increasing

this value to generate increasing number of KCs, the maximum

value was 5 uS), gAMPA(TC-PY) = 0.1 mS, gAMPA(PY-IN) = 0.05 mS,

gNMDA(PY-IN) = 0.008 mS, gGABAA(IN-PY) = 0.05 mS, gAMPA(TC-

IN) = 0.1 mS, gGABAA(RE-RE) = 0.2 mS, gGABAA(RE-TC) = 0.2 mS, gGA-

BAB(RE-TC) = 0.04 mS, gAMPA(TC-RE) = 0.4 mS.
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Spontaneous miniature IPSPs and EPSPs on the cortical synapses

followed the same equations as the regular PSPs. Poisson processes

[87] modeled their arrival times, with time-dependent mean rate

u1 tð Þ~ 2= 1zexp { t{t0ð Þ=400ð Þð Þ{1ð Þ=100 or u2 tð Þ~log
t{t0z50ð Þ=50ð Þ=400, where t0 is a time instant of the last

presynaptic spike [11]. The mini amplitude was ,0.75 mV.
Network geometry and stimulation. The simulated geom-

etry was a two layer network representing the cortex and the

thalamus (Figure 3A). Each layer was one-dimensional. The

cortical layer consisted of 100 PY neurons and 25 INs. The

thalamic layer consisted of 50 RE neurons and 50 TC neurons.

The fan-out from PY to PY was radius 5 for AMPA and NMDA

connections, radius 1 for AMPA and NMDA PY to IN synapses,

radius 5 for GABAA IN to PY synapses, radius 10 for AMPA TC

to PY, radius 2 for AMPA TC to IN synapses, radius 5 for AMPA

PY to TC and PY to RE, and radius 5 for AMPA and GABAA

synapses between TC and RE neurons (Figure 3A & B). In some

simulations, a subset of PY neurons projected to all RE neurons,

while the remaining PY neurons maintained their original

projections to 5 RE neurons each (Figure 3C). Depolarization

was applied to all RE neurons in the original configuration

(Figure 3B) and to the subset of PY neurons projecting to all RE

neurons in the reconfiguration (Figure 3C). GABAergic IN-IN

synapses were not included. Some of the intrinsic parameters of

the neurons in the network were initialized with random

variability (Gaussian distribution with s= 5–10%) to insure the

robustness of the results [77]. Neurons were stimulated by

injecting currents into RE (14 to 915pA) or PY (0.5 to 80pA)

neurons. Spontaneously occurring KCs were produced without

the addition of these currents. Most simulations ran for 10 s, while

simulations of spontaneous activity ran for 200 s.

Measures of Model Activity
The average membrane potential for each population was

calculated by averaging over each cell’s membrane potential;

application of a 250 mv spiking threshold prevented the signal

from being contaminated by spiking activity. This was taken as an

approximation of the LFP for this population [88].

Firing rate was calculated using the membrane potentials

from each cell. The firing rate for an individual cell was calculated

over a 5 ms or 100 ms bin: a spike was counted each time a cell’s

membrane potential reached above 220 mv and then dropped

below 230 mv the following millisecond. Firing rate for a

population was calculated in spikes per second by multiplying

the number of spikes in a bin by the number of bins in 1 sec (e.g.

5 ms = 20bins/sec) and dividing by the number of neurons in the

population (e.g. 100 for PY neurons).

Population specific measures of conductance, current,

calcium levels, and inactivation and activation states were

measured for PY, TC, and RE neurons. For PY neurons, these

measures were: average axosomal INa(p); average dendritic INa(p);

average IK(Ca); average IKL; and level of calcium. For TC neurons,

these were: average gh conductance; average Ih; average IT;

average IKL; IT inactivation and activation states; sum of PY to TC

total currents; and level of calcium. For RE neurons, these were:

average IT; average IK current; IT inactivation and activation

states; and sum of PY to RE total currents.

Spindle and High Gamma Power were calculated using

Morlet wavelets or the Hilbert transform with customized Matlab

routines incorporating the publicly available FieldTrip toolbox

[89]. For modeling results, spindling power was calculated from 8–

13 Hz (the standard deviation of the wavelet was 2 Hz in the

frequency domain and 80 ms in the time domain), while HGP was

calculated from 70–200 Hz (the standard deviation of the wavelet

was 10 Hz in the frequency domain and 16 ms in the time

domain). Although the spindle band for this analysis is lower than

is typically observed in scalp EEG, it corresponds to the

frequencies present in the spindles generated by the model. Power

was calculated for individual neurons and trials and then averaged.

No distinction was made in the model corresponding to the

distinction between frontal maximum slow spindles and parietal

maximum fast spindles seen in scalp EEG, because it is not clear

what their intracortical basis is, and their modeling would require

more neurons than are currently practical to compute.

For thalamocortical SEEG data, the cortical bipolar channel

was band pass filtered to between 60–120 Hz (to measure high

gamma) and the thalamic bipolar channel was band passed filtered

to between 12–16 Hz (to measure spindling). Because the normal

spindle frequency in the human thalamus is unknown, the spindle

frequency band for the thalamus used for analysis was chosen

based on the dominant frequencies present in spontaneous

spindles in these recordings. The data were epoched using cortical

KC times and the Hilbert transform was applied to each KC. The

absolute value of the Hilbert was averaged over all KCs for the

cortical (for high gamma) and thalamic (for spindling) channels.

Time frequency analysis (5–120 Hz) of thalamic data was

performed using EEGLAB [90], with the most negative peak of

the KC at time zero using 21.5 to 20.5 seconds as a comparison

baseline at a p,0.01 threshold.

Baseline corrected values were calculated when multiple

simulations evoking KCs were run with the same input values. In

these cases, the same random seed was used for an evoked KC run

and a no stimulation run. Both runs used the same parameters,

except that the evoked KC run either applied PY stimulation or

RE depolarization. Each evoked KC run was baseline corrected

using its corresponding no stimulation run. At a time point of

interest, the baseline corrected value was calculated by subtracting

the value in the no stimulation condition, B, from the

corresponding value in the evoked condition, A. The calculation

for a percent change was: ((A–B)/B)*100.

Cortical KCs were identified in PY neurons by their

hyperpolarized membrane potential, decreased membrane poten-

tial fluctuations (as indicated by HGP), and decreased firing rate

(less than 10 spikes per 100 ms, for at least 200 ms).
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