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High-fat diet could lead to a series of metabolic diseases, including obesity, and

its mechanism is not clear. In this study, the rabbit individuals were fed with

high-fat diet, the liver tissues were collected, high-throughput sequencing

technology was used to reveal the expression of lncRNA and miRNA

difference, and the molecular regulation mechanism of lncRNA-miRNA. A

total of 24,615 DE lncRNAs and 52 DE miRNAs were identified, including

15 novel discovered DE miRNAs (5 upregulated and 10 downregulated).

Furthermore, five miRNAs and three mRNAs were verified by qRT-PCR, and

the results showed that the expression of the DEmiRNAs and DE lncRNAs in the

two groups was consistent with our sequencing results. GO and KEGG analyzed

7,57,139 target genes respectively, enriching the pathways related to lipid

metabolism, including mucin O-glycan biosynthesis pathway, insulin

resistance and glucagon signaling pathway. Moreover, 65 targeting

relationships were obtained. Among them, LOC103348122/miR-450a-5p,

LOC103350359/miR-450a-3p and LOC103350429/miR-148a-5p were

proposed the first time. Significantly, LOC103348122/miR-450a-5p and

LOC103350429/miR-148a-5p were related to lipid metabolism in the liver.

This study is of great significance to the CeRNA regulatory network related to

lipid metabolism in the liver of rabbits, and provides a basis for understanding

hepatic steatosis in rabbits.
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Introduction

The World Health Organization (WHO) defined obesity as

the body mass index (BMI) higher than 30 kg/m2. During the

past two decades, obesity is spreading quickly not only in

developed but also in developing countries (Wang and Wang.,

2018). Overall, obesity is a complex pathological process, and

available and cheaper highly palatable and fat-dense foods are

important contributors (Boyd and Gary, 2011; Llewellyn &

Wardle, 2015). Obesity poses a series of medical diseases, such

as fatty liver, cardiovascular disease, type 2 diabetes, etc,

becoming a considerable public problem leading to serious

effects on health (Sheng et al., 2019). Among these, fatty liver

is a serious threat to people’s health, becoming the second largest

liver disease after viral hepatitis. For healthy individuals, liver

tissue contains a small amount of fat, such as triglyceride,

phospholipid, and cholesterol, its weight is about 3%–5% of

the liver weight. The liver is the central organ that responds to fat

metabolism, and the fat in the liver mainly comes from food and

peripheral adipose tissue (Lopes et al., 2020). When the fat

content was more than 5% of the liver weight or

morphological observation revealed obvious steatosis, the fatty

liver was identified at diagnosis. Nowadays, the incidence of fatty

liver is increasing, and the onset age is getting younger and

younger (Iwamura, 1989; Sartini et al., 2015). Multiple works

indicated that the proportion of fat accumulation inside the liver

is associated with the development degree of obesity, but the

mechanisms underlying fatty liver remain incomplete, which

prevents the development of effective therapies beyond the

control of nutrition and physical exercise (Sturm et al., 2012;

Gao et al., 2013).

Non-coding RNA is represented by circRNA, miRNA,

lncRNA, etc. These non-coding RNA and the interactions

between them are important for the regulation of multiple life

activities. For example, miRNA is a class of endogenous about

22 nt RNA molecules that play a gene-regulatory role by binding

to the mRNA 3′-UTR of the coding gene to direct their function

at the post-transcriptional level (Bartel, 2009). Zhang et al. (2013)

found that increased miR-15b abundance in non-alcoholic fatty

liver disease (NAFLD) models may lead to decreased cell

proliferation and glucose consumption while inducing the

storage of intracellular triglycerides, which are all hazards of

HFD-induced fatty liver. Serum levels of miR-34a and miR-122

were found to be significantly higher among fatty liver patients

and were positively correlated with VLDL-C and triglyceride

levels (Salvoza et al., 2016). In addition, the function of lncRNA

also has been identified, including functioning as miRNAs

sponges, trans-acting through base pairing with target RNA,

and trans-acting through protein binding to sequences motifs or

RNA structures (Hui et al., 2019). Chen et al. (2018) found that

knockdown of AK012226 by siRNA significantly reduced the

lipid accumulation in the NCTC1469 cells treated with free fatty

acids. Moreover, NEAT1 aggravated FFA-induced lipid

accumulation in hepatocytes by regulating the c-Jun/SREBP1c

axis by sponging miR-139-5p (SiSi et al., 2021). Overall, although

the past decade output many scientific research for fatty liver

research, the molecular mechanisms of HFD induced fatty liver

by mediating the lncRNA-miRNA regulation axis require further

research. Thus, we aim to investigate the profile of miRNAs and

lncRNAs in HFD induced steatosis by sequencing and analyzing

the liver tissue from the rabbits fed a CON or HFD to obtain new

insights into lncRNA-miRNA molecular regulatory mechanism

and contribute to the understanding of epigenetic mechanisms

influencing fat metabolism in obese rabbit liver.

Materials and methods

Ethics statement

All experiments in the current work involving animals were

performed under the direction of the Institutional Animal Care

and Use Committee from the College of Animal Science and

Technology, Sichuan Agricultural University, China (DKY-

B2019302083).

Animals

Thirty six female Tianfu black rabbits were raised in the

rabbit farm of Sichuan Agricultural University and randomly

divided into two groups. Eighteen rabbits were fed standard

diet (CON), 18 rabbits were fed high-fat diet (HFD: 10% lard

was added to CON), and the feed was supplied three times a

day and free drinking water was used. Feed the individual in a

clean iron cage (600 mm × 600 mm × 500 mm). After 5 weeks,

three obese and the normal rabbits were randomly selected

from each group and slaughtered under the conditions of

animal welfare. The liver tissues were collected according to

Yuan et al. (2018) method, stored in liquid nitrogen, and sent

to Nuohe (https://magic.novogene.com/customer/main#/

login) for sequencing.

Hematoxylin-eosin staining

The morphological differences of the liver in CON and HFD

groups were observed by Hematoxylin-eosin (HE) staining

(Cardiff et al., 2014). Four gram of liver tissue was separated,

cleaned with PBS, and then mixed with 10% neutral formalin

fixative. The sample was fixed in 4% paraformaldehyde for 24 h

and then washed with sterile water. Secondly, the specimens were

successively de-hydrated and embedded in paraffin. Then, a

microtome (RM2235, Leica, Nussloch, Germany) was used to

get the 5-µm-thick sections. Finally, images were captured using

an inverted microscope (Olympus, Tokyo, Japan).
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RNA extraction and quantitative real-
time PCR

Total RNA from the liver sample was extracted using RNAiso

Plus Reagent (Invitrogen, Hong Kong, China), following the

guidelines of the manufacturer. Subsequently, the purity,

concentration, and integrity of RNA were determined by

Agilent 2100 Bio-analyzer system (Agilent Technologies,

Carlsbad, CA, United States), and only RNA meeting quality

criteria (A260/A280 = 1.6–1.8; concentration ≥200 ng/μl) was

used for the trial. Reverse transcription of mRNA and miRNA

was performed using the RT EasyTM II (With gDNase)

(FOREGENE, Chengdu, China) and the Mir-XTM miRNA

First-Strand Synthesis Kit (Takara, Dalian, China),

respectively. Then, qRT-PCR was performed in triplicate using

the 2*TSINGKE Master qPCR Mix (SYBR Green I) (Tsingke,

Chengdu, China) on a CFX96 instrument (Bio-Rad, Hercules,

CA, United States), and the relative levels of mRNA and miRNA

were calculated using the 2−ΔΔCt method. The mRQ 3′ primer in

theMir-XTMmiRNA First-Strand Synthesis Kit (Takara, Dalian,

China) was served as a reverse primer for miRNA quantification,

and U6 was used as an internal reference. Besides, GAPHD was

used as the internal reference for mRNA quantification. The

sequences of primers were showed in Table 1 and synthesized by

Gene Pharma (Shanghai, China).

Analysis of miRNA

TruSeq small RNA sample preparation kit (Illumina, San

Diego, United States) was used to construct six small RNA

libraries (CON-1, CON-2, CON-3, HFD-1, HFD-2, and HFD-

3) according to the manufacturer’s instructions. Sequencing the

library on the Illumina HiSeq 2500 platform (Illumina, San

Diego, United States), SOAPnuke software (https://github.

com/BGI-flexlab/SOAPnuke) was used to filter sequencing

readings (Shao et al., 2021), and Bowtie2 was used to align

18 nt or larger small RNA readings with the rabbit reference

genome (http://bowtie-bio.sourceforge.net/bowtie2/manual.

shtml) and com-pared with Rfam database (http://rfam.xfam.

org), GenBank database (https://www.ncbi.nlm.nih.gov/

genbank/), and RepBase databases (https://www.girinst.org/

repbase) removed known types of RNA sequences and repeats

(Geisler & Renquist, 2017; Parry et al., 2020; Bai et al., 2021).

Next, the software package miRDeep2 2.0.0.8 (https://github.

com/rajewsky-lab/mirdeep2) was used to identify novel miRNAs

from unmodified sequences (Vergani, 1969). Differential

expression miRNAs were identified using the EdgeR data

analysis package of R with a threshold of |log2 (fold

change)| ≥ 1 and a p value < 0.05.

Target gene prediction and enrichment
analysis for miRNA

The miRNA targets prediction was performed by the

software miRanda (http://www.microrna.org/microrna/home.

do) and RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/

rnahybrid/), and the intersection of the predicted results was

taken as the outcome (Jan and Marc, 2006). Next, the online

software DAVID Bioinformatics Resources 6.7 (https://david.

ncifcrf.gov/home.jsp) was used for GO and KEGG pathway

enrichment analysis (Duvaud et al., 2021).

Analysis of lncRNA

Sample RNA was prepared, the first cDNA strand was

synthesized in M-MuLV reverse transcriptase system, the

second cDNA strand was synthesized in dNTPs and DNA

polymerase I, poly (A) tails were added and sequencing

connectors were connected to generate 250–300 BP cDNA,

and PCR amplificated to build the cDNA libraries using the

NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (New

England Biolabs, Ipswich, MA, United States), following the

manufacturer’s method. The cDNA library was sequenced

using the Illumina HiSeq platform of Chengdu life baseline

Technology co LTD. (Chengdu, China). The DEseq package

from R was used for the differential expression analysis. The

TABLE 1 Primer information for each gene.

Gene symbol Primer sequences (59 → 39)

LOC103350359 Sense GGCCCCTAGCATGCAGTTTT

LOC103350359 Antisense GGTCCCATGAGTGTCTCTGC

LOC103348122 Sense CTACTCGCCACCCACACTTT

LOC103348122 Antisense CTCCCAACAGGTGAGCCAAT

LOC103350429 Sense GATCGAGCCATTGCGTTTCC

LOC103350429 Antisense AAGCCTTTTCTCCTCCTCGC

LOC108178671 Sense CTATGCCAGCGTGAGAACCAA

LOC108178671 Antisense GCGATGCTTAGTAAACGGGTG

LOC108176670 Sense ATCGTCCTCTCCCTAACATCACC

LOC108176670 Antisense AACCTCAGTCCTCCTGCCGC

LOC108178230 Sense TTCGCAGCCTTAGTCCTCAC

LOC108178230 Antisense ATGCTTGATGTGAGCCTTGGA

miR-29a-5p ACTGATTTCTTTTGGTGTTCAGA

miR-30c-5p TGTAAACATCCTACACTCTCAGCT

miR-148a-5p AAAGTTCTGAGACACTCCGACT

miR-375-5p ACTTGGGCCAAGGGAATGCAAACT

miR-450a-3p ATTGGGAACATTTTGCATGCAT

miR-135a-3p ATATAGGGATTGGAGCCGTGGC

miR-450a-5p TTTTGCGATGTGTTCCTAATAT

miR-181d-3p CCCACGGGCAGGTGAATGTCAT
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threshold was defined as |log2 (fold change)| ≥ 1 and p

value ≤ 0.05.

Target gene prediction and enrichment
analysis for lncRNA

Combinedwith the correlation between lncRNAs and genes, the

genes whose genome location overlapped with lncRNAs and the

upstream and downstream 100 kb genes were selected as the

candidate CIS target genes for lncRNAs regulation. Next, the

potentially trans-regulated target genes of the DE lncRNAs were

predicted based on the Pearson correlation coefficient. Then GO seq

and R package were used for GO enrichment and KEGG pathway

analysis of the candidate DE lncRNA target genes, respectively.

Co-analysis of miRNA and lncRNA

MiRanda database (https://www.microRNA.org) was used to

predict DEmiRNAs related target genes. The database was one of

the few software that could directly input sequences for

prediction. It mainly emphasized the evolutionary

conservation of the connecting sites between miRNAs and

target genes, so it was widely used. The target genes were then

overlapped with DE lncRNAs to screen the interaction pairs of

DE miRNAs (upregulated) and DE lncRNAs (downregulated) or

DE miRNAs (downregulated) and DE lncRNAs (upregulated).

Finally, the molecular regulatory network was drawn by using the

after-sales tool platform of Nuohe Zhiyuan company (https://

magic.novogene.com/customer/main#/login).

Statistical analysis

Statistical analysis was performed by using GraphPad Prism

v5.0 software (San Diego, CA, United States). Differences

between measurements from the two rabbit groups were

assessed using Student’s t tests. Data were presented as

means ± SEM. p < 0.05 was considered significant.

Results

Morphologic observation of rabbits’ liver

The results showed that the CON liver tissue structure was

complete, the hepatocytes were arranged orderly, and there were

no obvious histopathological differences. On the contrary, the

HFD hepatocytes sections showed obvious steatosis, the number

of lipid droplets around the nucleus increased, the hepatocyte

arrangement was disordered (Figure 1A), and triglyceride

content increased (Figure 1B).

Quality assessment of miRNA sequencing

As shown in Table 2, a total of 62,449,703 clean reads were

obtained from the six small RNA sequencing libraries when the raw

reads were quality filtered. The CON and HFD groups had

comparable levels of Q20 (percentage of reads with a Phred

quality value > 20) with ranged from 99.59% to 99.85%. The GC

content of libraries ranged from 44.98 % to 45.52% with an average

content of 45.22%. Moreover, the mapped rate (the clean reads were

mapped to the rabbit reference genome) had been further studied,

and themapped rate of all samples was higher than 93.4%. Therefore,

all librarieswere of high quality and could be used for further analysis.

Identification of differentially expressed
miRNA

The sequence length of miRNA was analysed, and the

results showed that the average length of most reads was 23 nt

FIGURE 1
Morphologic observation of the CON andHFD rabbits’ liver (A) Paraffin section stainedwith HE showed the obvious difference between the liver
tissues. (B) Triglyceride test results showed that there were significant differences. The data are presented as means ± SEM. *p < 0.05; **p < 0.01.
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TABLE 2 Statistics of miRNA data output quality of CON and HFD rabbits.

Sample Clean reads Q20 (%) GC (%) Mapped genome(%)

CON1 10,473,567 99.85 45.08 64.59

CON2 10,224,598 99.59 45.52 73.39

CON3 10,312,663 99.62 45.13 69.22

HFD1 10,424,133 99.84 44.98 64.49

HFD2 10,611,101 99.71 45.33 64.36

HFD3 10,403,641 99.68 45.29 66.38

FIGURE 2
Identification of DEmiRNA (A) Tags length distribution of liver samples. (B)Quantitative statistical results of the knownDEmiRNAs and the novel
DE miRNAs. The volcano plot was constructed for the known (C) and the novel (D) DE miRNAs based on log2(fold change) and -log10(p-value).

FIGURE 3
Validation of DE miRNAs (A) and DE lncRNAs (B). The data are presented as means ± SEM. *p < 0.05; **p < 0.01.
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in the six small RNA libraries, which was consistent with the

length characteristics of animal miRNAs (Figure 2A).

Reads >18 nt were compared to the Rfam, GenBank, and

Repbase databases, and the results were listed in Figure 2B.

The number of high-quality miRNA sequences obtained for

each sample were 9,121,967 for CON-1, 8,590,722 for CON-2,

9,060,088 for CON-3, 9,439,855 for HFD-1, 9,129,172 for

HFD-2, and 8,985,083 for HFD-3 in Supplementary Table

S1. Next, the possible miRNA reads were compared to mature

rabbit miRNAs in the miRbase database to identify samples

known miRNAs (Supplementary Table S2), these known

miRNAs could be directly used for subsequent analysis.

Thirty six known DE miRNAs (16 upregulated and

20 downregulated) and 15 novel DE miRNAs

(5 upregulated and 10 downregulated) were identified

(Figure 2A). Values of log2(fold change)

and −log10(p-value) were used to construct volcano figures

for known (Figure 2C) and novel (Figure 2D) differentially

expressed miRNA. Moreover, five DE miRNAs were randomly

selected for qRT-PCR validation, and the results showed a

similar trend to that of microRNA sequencing (Figure 3A).

Enrichment analysis of differentially
expressed miRNA target genes

Sixteen the known DEmiRNAs target genes and 86 the novel

DE miRNAs target genes were obtained. Go analysis results

showed that there were 498 enriched GO items

[341 biological processes (BP), 62 cell components (CC) and

96 molecular functions (MF)] in the known DE miRNAs target

genes (Supplementary Table S3). The main biological processes

involved in the known DE miRNAs target genes included lipid

transporter activity, response to lipid, positive regulation of cell

development, positive regulation of stem cell proliferation.

Figure 4A showed the significantly enriched terms in the BP,

CC, and MF categories. Among the novel DE miRNAs target

genes, 789 BP, 490 CC and 179 MF were significantly enriched

(Supplementary Table S4). Some GO terms related to

development were significantly rich, included positive

regulation of cell development and regulation of cell

development (Figure 4B). Furthermore, the KEGG pathway

analysis results showed that the known DE miRNAs target

genes were enriched in 32 pathways, and RNA degradation,

FIGURE 4
Enrichment analysis of the DEmiRNAs target genes. GO analysis was performed for the known (A)DEmiRNAs target genes and the novel (B)DE
miRNAs target genes, and the termswith significant enrichment in BP, CC andMF categories were imaged. KEGG analysis was per-formed for known
(C) DE miRNAs target genes and novel (D) DE miRNAs target genes, and only the top 20 significantly enriched pathways were listed.
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riboflavin metabolism, thiamine metabolism, mRNA

surveillance pathway, mucin type O-glycan biosynthesis

pathways were significantly enriched (Supplementary Table

S5, Figure 4C). The novel DE miRNAs target genes were

enriched in 77 pathways, including sphingolipid signalling

pathway, Insulin resistance and glucagon signalling pathway

were enriched and the top 20 significantly enriched pathways

were presented in Figure 4D (Supplementary Table S6).

Quality assessment of lncRNA sequencing

On average, each individual obtained 80,494,151 high-quality

clean reads (range: 80,234,040–81,122,280), and the clean reads

rate was 100%. Using HISAT to align the clean reads with the

reference genome, the high localization efficiency was ≥91.26%
(Table 3). These the known miRNAs could be directly used for

subsequent analysis. Moreover, the window size was used to

calculate the information distribution on each chromosome, and

compared with the reference genome by reading. Finally, based

on the existing rabbit reference gene annotation, the highly

reliable lncRNAs was predicted (Supplementary Table S7).

Screening of DE lncRNAs and enrichment
analysis of target genes

The 24,615 DE lncRNAs were identified at p value ≤ 0.05. Of

these, 10,851 (44%) were upregulated and 13,764 (56%) were

downregulated in the HFD liver (Supplementary Table S8).

Three DE lncRNAs were randomly selected for qRT-PCR

validation, and the results showed a similar trend to that of

lncRNA sequencing (Figure 3B). Go analysis results showed that

1,332 GO items were significantly enriched [783 biological processes

TABLE 3 Statistics of lncRNA data output quality of CON and HFD rabbits.

Sample Clean reads Q20 (%) GC (%) Percentage of mapped
reads (%)

CON1 80,806,448 97.49 51.48 91.74

CON2 80,283,856 97.74 52.20 92.22

CON3 80,234,040 97.00 51.64 91.26

HFD1 81,122,280 97.38 51.72 91.60

HFD2 80,244,782 97.50 51.50 91.70

HFD3 80,273,500 97.70 51.59 92.60

FIGURE 5
Screening of the DE lncRNAs and enrichment analysis of target genes (A) GO analysis of the DE lncRNAs were performed, imaging only those
terms that were significantly enriched in the BP, CC, and MF categories. (B) KEGG analysis of the DE lncRNAs only listed the first 20 significant
enrichment pathways.
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(BP), 396 cellular components (CC) and 153 molecular functions

(MF)] (Figure 5A). Furthermore, KEGG analysis results showed that

some pathways related to lipid metabolism and immune diseases

were enriched. Figure 5B showed 20 enriched pathways, some of

which were related to adipocyte growth. 1,148 potential cis-acting

lncRNAs target genes and 7,56,155 trans-regulation lncRNAs target

genes were predicted. These data suggested that the most DE

lncRNAs at different growth stages were related to lipid metabolism.

Analysis of lncRNA-miRNA molecular
regulatory network

The results showed that five up-regulated DE miRNAs could

control 9 downregulated DE lncRNAs, 16 downregulated DE

miRNAs could affect seven upregulated DE lncRNAs, and the

lncRNA-miRNA molecular regulatory diagram with 43 nodes

and 65 target relationships had been established (Figure 6).

Among them, miR-9-5p combined six lncRNAs, while miR-

125b-5p, miR-30c-5p, miR-450a-3p, miR-450a-2-3p, miR-135a-

5p and miR-182-5p only linked one lncRNA respectively.

Moreover, LOC103348122/miR-450a-5p, LOC103350359/miR-

450a-3p and LOC103350429/miR-148a-5p were proposed the

first time, then they were selected for qRT-PCR validation, the

results showed a similar trend to that of miRNAs and lncRNAs

sequencing (Figure 7). It was worth noting that miR-450a-5p and

miR-148a-5p were related to lipid metabolism in the liver.

Discussion

In higher vertebrates, the liver is the main metabolic organ

and plays an important role in the process of lipid metabolism

(Eduardo et al., 2014; Chadt & Al-Hasani, 2020). With the

improvement of people’s living standards, such as high-fat

diet, lipid accumulation in the liver exceeds the metabolic

capacity of the liver itself, leading to metabolic diseases.

Rabbit is an ideal model to study human diseases because it

has similar lipid metabolic pathways (Bai et al., 2021; Shao et al.,

2021). Here, our aim is to establish an obese rabbit model

through a high-fat diet, identify the expression differences of

lncRNAs and miRNAs in the process of liver steatosis through

high-throughput sequencing, and try to understand the key

lncRNA-miRNA molecular regulation mechanism of liver fat

accumulation.

White cavities around the nuclei were found by HE staining,

accompanied by an increase in liver TG levels (Supplementary

Table S9). In fact, in the case of over nutrition and obesity,

hepatic fatty acid metabolism changes (Parry et al., 2020), which

usually leads to the accumulation of triglycerides in hepatocytes

and a large amount of adipose deposition in cells to form lipid

droplets; The cell volume increases with the increase of lipid,

accompanied by the expansion of cell membrane, resulting in cell

arrangement confusion (Vergani, 1969; Geisler & Renquist, 2017;

Broadfield et al., 2021). This result is similar to that of Franco-

Mahecha & Carrasco (2021).

According to miRbase standard, 51 DE miRNAs were

identified. Among them, miR-107, miR-133, and miR-182-5p

participate in the related processes of lipid metabolism. MiR-107

induced triglyceride storage defects by impairing glucose uptake

and triglyceride synthesis in mature adipocytes (Ahonen et al.,

2019; Foley & O’Neill, 2012; Zhang et al., 2018). MiR-182-5p

improved HFD induced nonalcoholic steatohepatitis by

inhibiting toll like receptors (Liang et al., 2019). Fathi et al.

(2020) provided a comprehensive view of the network

transcription factors in which miR-133 plays a central role,

and supported the related role of myomiRs in regulating

physiological hypertrophy of the heart.

FIGURE 6
LncRNA-miRNA molecular regulatory network.
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Two hundred and thirty five target genes of 28 DE miRNAs

were obtained. Among them, CNOT1, SUCLG1, and FGF6 were

related to lipid metabolism. CNOT1 encodes the necessary

scaffold subunit of ccr4-not dead keratinase complex in

adipose tissue to affect the function of adipose tissue

(Takahashi et al., 2019; Takahashi et al., 2020). FGF6 is a fat

factor, which can regulate UCP1 and regulate systemic energy

metabolism through a transcriptional network separated from

brown fat (Shamsi et al., 2020; Bo et al., 2021). Midha et al. (2012)

changed that in mouse liver proteins were identified using

iTRAQ, offline 2DLC (SCX and RP) and MALDI-TOF/TOF

Ms. It was found that SU-CLG1 can be associated with the

physiological state of obese T2D (Meierhofer et al., 2015). Go

analysis results showed that GO terms including lipid transporter

activity, lipid response, positive regulation of cell development

and positive regulation of stem cell proliferation were

significantly rich, indicating that DE miRNAs played a role in

regulating adipogenesis. KEGG pathway analysis showed that

RNA degradation, riboflavin metabolism, thia-mine metabolism,

mRNA monitoring pathway, mucin O-glycan biosynthesis

pathway, insulin resistance and glucagon signaling were

significantly enriched. Insulin and glucagon could lead to the

imbalance between energy intake and energy consumption,

resulting in excessive accumulation of triglycerides in adipose

tissue (Magalhães et al., 2019). Therefore, the known DE

miRNAs rich in these pathways suggested that these DE

miRNAs might be important regulators in adipogenesis.

According to the standard of DEseq2, 24615 DE lncRNAs

were screened. Xia et al. (Xia et al., 2021) found that lncRNA

mainly performs its function by regulating the expression of

coding genes. There are two main modes of regulation: cis target

gene regulation and trans target gene regulation. It has been

reported that lncRNA can regulate genes that overlap with or

near it (Beylerli et al., 2020). The genes overlapped with lncRNA

at the genomic position and 100 kb upstream and downstream

are selected as candidate targets for lncRNA regulation, and

1,148 cis target genes are obtained. lncRNA could also remotely

influence gene expression through trans action. The highly

correlated lncRNA and mRNA were selected for sequence

similarity analysis, and 2,151 trans acting target genes were

obtained. Go analysis results revealed high concentration

related to lipid metabolism. KEGG analysis results showed

that insulin pathway entries were significantly enriched. It

could cause excessive accumulation of lipid droplets and

triglycerides in adipose tissue by regulating glucose

metabolism (Aleixandre et al., 2018).

Noncoding RNA molecules, especially miRNAs and

lncRNAs, are very common regulatory molecules. The

molecular regulatory mechanism between them has been

proved to play a variety of roles in many biological processes

(Paraskevopoulou & Hatzigeorgiou, 2016; Yang et al., 2020;

Dimitra et al., 2021). Some studies had found that the

molecular regulation of miRNA and lncRNA changed during

chicken obesity, and lncRNA-miRNA axis might be an important

regulator of chicken abdominal fat expression (Li et al., 2015;

Zhai et al., 2021). In this study, it was found that lncRNAs could

target multiple miRNAs in the molecular regulatory network.

The molecular regulation mechanism between five miRNAs and

lncRNAs were found for the first time, it was worth noting that

miR-450a-5p and miR-135a-3p were related to lipid metabolism

in the liver.

The molecular mechanism of LOC103348122/miR-450a-5p

and LOC103350429/miR-148a-5p involved in lipid metabolism is

still largely unknown. Some studies found that miR-450a-5p could

regulate fat formation by paracrine various factors (Wei et al., 2020;

Chen et al., 2020). It could inhibit the expression of WISP2 by

targeting its 3′-UTR, thereby promoting the occurrence of fat. MiR-

450a-5p also could be used as a potential target to improve insulin

resistance and treat patients with diabetes related diseases (Wei et al.,

2020). In addition, the expression of miR-148a in nonalcoholic fatty

FIGURE 7
Validation of DE miRNAs and DE lncRNAs. The data are presented as means ± SEM. *p < 0.05; **p < 0.01.
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liver disease decreased (Wang et al., 2018) (Ma et al., 2020) found

that miR-148a-5p was downregulated during abdominal

preadipocyte differentiation in chickens, which was consistent

with the results of this study. In a word, lncRNA-miRNA might

play an important role in the occurrence and development of lipid

metabolism. However, its function needs further verification.

Conclusion

24,615 DE lncRNAs and 52 DE miRNAs were identified and

their target genes were predicted respectively, including target genes

of 7,56,904 lncRNAs and 235 miRNAs. Moreover, GO and KEGG

analysis results showed that enriched the pathways related to lipid

metabolism, includingmucin O-glycan biosynthesis pathway, insulin

resistance and glucagon signalling pathway. Moreover, 65 targeting

relationships were obtained, among three novel lncRNA-miRNA

molecular regulatory networks were found for the first time.

Therefore, further functional verification is required in the future.
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