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Jean-Pierre Métraux*
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Abstract

Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a
fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including
H2O2 and O2

2, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F
and can be prevented by diphenylene iodonium (DPI) or catalase. H2O2 was shown to protect plants upon exogenous
application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry
conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and
aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants
contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants
impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and
were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced
ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated
with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly
linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea
could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such
plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls,
demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive
properties of the cuticle are linked with the induction ROS and attending innate defenses.
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Introduction

The cuticle is mainly considered as a constitutive barrier against

water loss, irradiation, xenobiotics or pathogens [1,2]. The structure

of this lipid boundary layer covering aerial parts of plants is made of

waxes covering and interspersed in cutin, a polymer layer formed by

a network of esterified V-hydroxylated fatty acids that are produced

and secreted by the epidermis cells [3]. Waxes comprise a mixture of

very long-chain fatty acids (24–36 carbon atoms) that seem

ubiquitously present in most plant species. In addition, triterpenes,

b-diketones as well as phenylpropanoids are associated with the wax

fraction [4,5]. The enzymatic machinery for wax biosynthesis is in

the endoplasmic reticulum and members of a subfamily of ATP

binding cassette (ABC) transporters export the resulting products

through the membrane to the cell wall [5]. In many plant species the

cutin polyester contains C16 or C18, fatty acids as well as glycerol

[6,7]. The fatty acids in the cutin can be hydroxylated at midchains

(C8, C9, or C10) or in V-positions and are linked together or to

glycerol by ester bonds. It is still unclear if the cutin polymers exist as

free polymers or if they are anchored in some ways to the cell wall

[8]. The polymerization and the transport of the cutin precursors

are likely to occur in the cell and conveyed to the cell wall via

oleophilic droplets, secretion vesicles, lipid transfer proteins (LTP) or

ABC transporters [7,8]. While considerable knowledge is available

on single components, the detailed chemical structure of the entire

cuticle is still not known and the relation between the structure and

the biological function of the individual components remains to be

defined.
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The cuticle has been proposed to be a physical barrier to the

penetration by pathogens. This intuitive view is supported by the

fact that most pathogens that penetrate directly through the cell

wall produce cutinase. However, the biological relevance of

cutinase or cutinolytic lipase could not be documented in all cases.

Studies using antibodies directed against cutinase support a role

for this enzyme in pathogenicity [9,10]. Moreover, the effects of

cutinase disruption were studied in various fungal pathogens, but

only few studies found supportive evidence [11,12], while most

other results question the function of cutinase as a breaching

enzyme [13–16]. These contradictory results might be the

consequence of the functional redundancy of these enzymes,

making gene disruption experiments difficult to interpret.

Components of the cuticle might function as important

developmental cues perceived by invading microorganisms [6].

For instance, cutin monomers can induce the expression of

cutinase [17,18] or act as a plant signal for the induction of

germination and appressorium in fungal pathogens [17–20].

Similarly, surface waxes can also affect the development of fungi

at the plant surface [21].

The plant itself might also perceive degradation products of its

own cuticle. Synthetic cutin monomers of the C18 fatty acid family

applied on leaves of barley or rice increased resistance to Erysiphe

graminis and Magnaporthe grisea respectively, without detectable

direct fungicidal activity [22,23]. Cell cultures of Solanum tuberosum

respond to cutin monomers by medium alkalinization, ethylene

(ET) production and accumulation of defense-related genes [23].

Abraded cucumber hypocotyls respond to cutin hydrolysates of

cucumber, apple and tomato by producing H2O2 [24] that has

been repeatedly associated with defense either as a signal, as an

executer of cell death or as cofactor in the strengthening of the cell

wall [25–27]. A decrease in the lesion size caused by Rhizoctonia

solani was observed when bean leaves were inoculated with spore

droplets amended with a fully active cutinase compared to droplets

with an inactive cutinase or without cutinase [28]. These

observations support the notion that plants have the potential to

recognize breakdown products of the cuticle and activate defense-

related mechanisms. Experiments with transgenic plants over

expressing an active fungal cutinase in the apoplasm (CUTE

plants) also support these observations [29].

An alternative explanation was provided by observations in CUTE

plants as well as a series of mutants with defects in the formation of the

cuticle such as lacerata (lcr; affected in the cytochrome P450-dependent

enzyme CYP86A8, likely to be involved in fatty acid hydroxylation of

cutin monomers) [30], bodyguard (bdg; impaired in a member of the a/

b hydrolase family associated with the organization of the cutin

polyester) [31] or bre1/lacs1 (a mutant of the long-chain acyl-CoA

synthetase2, LACS2, involved in the development of the cuticle and

essential for its biosynthesis) [32]. All those mutants display a strong

resistance to B. cinerea; this was always associated with an increased

cuticular permeability and production of a diffusate endowed with

growth-inhibiting activity against B. cinerea [32]. The increased

cuticular permeability was proposed to allow the diffusion of toxic

compound(s) from the cell to the surface or facilitate the passage of

MAMPs or DAMPs (microbe or damage-associated molecular

patterns [33]) from the surface to the inside of the cell, resulting in

increased resistance [32,34].

Since biochemical alterations of the cuticle were found to

increase the resistance of plants to pathogens, physical alterations

of the cuticle, such as wounding were tested to see if they could

also increase the defense potential of the plant to virulent

necrotrophic pathogens. Wounding of Arabidopsis thaliana leaves

leads to strong and transient immunity to the virulent pathogen B.

cinerea. This resistance is strictly limited to the wound site and is

independent of the major plant defense signaling pathways

involving salicylic acid (SA), jasmonic acid (JA), and ET [34].

In this work, we have attempted to further our understanding of

the molecular events taking place after wounding. A rapid

formation of ROS has been observed after wounding and ROS

can act as a signal for innate immunity but can also serve as an

oxidant for lignification [35,36]. This prompted us to carry out

observations on the formation of ROS under our conditions of

wounding. A strong correlation was observed between ROS

formation and resistance to B. cinerea. We discovered that ABA is

involved in the regulation of ROS production most likely causing

changes in the permeability of the cellular envelope. This led to

the finding that an increase in ROS also takes place in plants

where cuticular permeability was affected by mutations or simply

by a digestive treatment with cutinase. We propose that the cuticle

acts as a sensor for pathogens that invade directly through the cell

wall, leading to ROS formation whenever the cuticle is degraded.

B. cinerea is known to form oxalic acid that can potentially prevent

ROS formation. In line with this observation we have also shown

that transgenic plants constitutively expressing an oxalic acid-

degrading enzyme recovered their ability to produce ROS in

response to B. cinerea infection and were resistant to this fungus.

Results

Wounding induces an oxidative burst that is
accompanied by resistance to B. cinerea

Wounding A. thaliana leaves with forceps as previously described

[34] lead to an increase of fluorescence when leaves infiltrated with

the 5-(and-6)-carboxy-2,7-dichlorodihydrofluorescein diacetate

(DCF-DA) probe were viewed under the microscope (Fig. 1B).

This dye detects a broad range of oxidizing reagents including

H2O2 and O2
2 [37]. A detailed time-course of ROS production

was determined in a fluorimeter using wounded leaf discs.

Fluorescence appeared within the first minutes after wounding

and increased steadily thereafter (Fig. 1A); unwounded controls

also showed a detectable increase, likely the result of wounding

inflicted during the preparation of leaf discs. In whole excised

Author Summary

This study provides an explanation for the strong
resistance to B. cinerea observed in wounded plants or
plants with cuticular defects. We have observed that a
production of ROS and a permeable cuticle is common to
all these situations. ROS, that include hydrogen peroxide,
are known inducers of resistance and can also act directly
against the invading fungus. Degradation of the cuticle by
exposure to cutinase also results in the production of ROS
and resistance. These observations lead to a model where
the cuticle plays a central role as a barrier against water-
soluble elicitors from the surface. Under normal circum-
stances, the cuticle does not allow the passage of elicitors
and no responses are induced. Under conditions where the
cuticular barrier is broken, ROS and resistance are induced.
This illustrates why plants that are in fact permanently
exposed to potential elicitors do not constantly induce
immune responses: this only takes place once the cuticle
has been permeabilized, for example after an infection
with a pathogen. This study also demonstrates how a
cuticle-degrading pathogen avoids the generation of ROS
by producing an effector that interferes with ROS
production. Removal of this effector restores both ROS
and resistance.

Cuticle Permeability, ROS and Resistance
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leaves, fluorescence started to be detected 2 min after wounding

(Fig. S1). After inoculation with B. cinerea, fluorescence started to

accumulate 12 h after inoculation (Fig. 1B) and wounded leaves

inoculated with B. cinerea showed the same behavior as mock-

treated wounded leaves (Fig. 1B). Staining of wounded leaves with

diaminobenzidine (DAB) or with nitroblue tetrazolium (NBT)

identified production of H2O2 and O2
2 respectively, at the

wounding site (Fig. 1C). ROS production was seriously diminished

with a concomitant increase in fungal growth on leaves that were

treated with DPI, an inhibitor of superoxide formation (Fig. 1D).

Infiltration of leaves with catalase prevented the coloration of

wounding sites with DAB confirming the production of H2O2

upon wounding (Fig. 1E). The luminol assay [38] was used to

detect the formation of H2O2. A strong luminescence became

visible at the wound sites (Fig. 1F). Wound-induced ROS and

wound-induced resistance (WIR) to B. cinerea were still detected in

mutants of NADPH oxidase D (atrboh D) and F (atrboh F) as well as in

the double mutant (atrboh D/F) meaning that other genes are

possibly implicated in ROS production (Fig. S2). ROS accumu-

lation was still detected after wounding of the triple mutant

(nia1nia2noa1-2) that is impaired in the biosynthesis of NO [39]

(Fig. 1G). Laser confocal microscopy (LCM) was used to determine

the localization of ROS in leaves treated with DCF-DA. In

wounded leaves the fluorescence mainly localized at chloroplasts

in mesophyll cells and to some extent to membranes in mesophyll

and epidermal cells (Fig. 2). We have also tested the effects of

Figure 1. A: ROS production in response to wounding in leaves of A. thaliana. (A) Fluorescence after DCF-DA staining was measured on leaf
discs using fluorescence spectrophotometry. The unwounded and wounded leaf discs were infiltrated with the DCF-DA probe and the fluorescence
was directly measured at intervals of 15 min during 120 min (n = 12; 6SD). The experiment was carried out 3 times with similar results. (B) Time-
course of ROS production observed as DCF-DA fluorescence by fluorescence microscopy in unwounded or wounded B. cinerea (Bc)-inoculated leaves
compared to mock controls. After treatment, all plants were kept under humid conditions. The experiment was carried out 5 times with similar
results. (C) H2O2 formation observed as DAB staining and superoxide (O2

2) formation observed as NBT staining in unwounded or wounded leaves.
Plants were stained immediately after wounding. The experiment was carried out 3 times with similar results. (D) Effect of DPI on ROS formation
(measured as DCF-DA fluorescence) and growth of B. cinerea (determined by Trypan blue staining) in unwounded or wounded leaves. Leaves were
treated for 24 h with DPI, then rinsed and either wounded, immediately stained and examined for fluorescence or inoculated with B. cinerea (Bc) and
incubated in humid condition (symptoms were observed at 3 dpi). (E) The effect of catalase on ROS formation was tested by infiltration of catalase
(1100 U ml21) immediately prior to wounding. Plants were stained with DAB immediately after wounding. The experiments in Fig 1D and E were
carried out 5 times with similar results. (F) Production of H2O2 in unwounded control (Ctrl) or wounded (W) leaf discs detected by the
chemiluminescence reaction with luminol immediately after wounding. The experiment was carried out 3 times with similar results. (G) Production of
ROS in unwounded and wounded WT plants and in nia1nia2noa1-2, a triple mutant deficient in nitrate reductase (NIA/NR)- and Nitric Oxide-
Associated1 (AtNOA1)-mediated NO biosynthetic pathways. ROS were detected as DCF-DA fluorescence immediately after wounding. The
experiment was carried out 3 times with similar results.
doi:10.1371/journal.ppat.1002148.g001

Cuticle Permeability, ROS and Resistance
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H2O2 applied on leaves together with B. cinerea. H2O2 at

concentrations as low as 1 nM caused enhanced resistance to

fungal infection (Fig. S3A). This concentration is lower than the

IC50 value of H2O2 (determined at 8.3 mM) for inhibition of

hyphal growth in vitro (Fig. S3B). Taken together, these results

show that wounding leads to a rapid burst of ROS, including

H2O2, which could potentially take part in the resistance of A.

thaliana to B. cinerea.

Wounding can be disconnected from ROS and resistance
in the presence of ABA

We observed that both ROS production and WIR could be

strongly impaired when the plants were maintained uncovered for

1.5 h at ambient humidity after wounding before the measure-

ments of ROS and resistance (Fig. 3A and B). Thereafter, we will

refer to these conditions as dry in contrast to the humid incubation

environment in covered trays. In contrast, ROS production and

WIR to B. cinerea remained unaffected when, after wounding,

plants were kept for 1.5 h under high humidity in covered plastic

trays (Fig. 3A and B). Maintaining plants under dry conditions

after wounding strongly reduced wound-induced callose forma-

tion, a typical defense reaction to wounding (Fig. 3C). The strong

effects of a dry environment on the suppression of H2O2

production and WIR to B. cinerea made us suspect a possible

involvement of ABA in the suppression of ROS. Indeed, mutants

blocked in the late steps of ABA biosynthesis, such as aba2 and

aba3, were not blocked in ROS production after wounding under

dry conditions and induced WIR in response to B. cinerea (Fig. 4).

Both unwounded aba2 and aba3 mutants showed a marked

resistance to B. cinerea accompanied by a faster and more intense

ROS production after B. cinerea inoculation compared to WT

plants (Figs. 4B and 5). The kinetics of ROS production was then

also tested in unwounded aba mutants and showed that ROS were

already released 3 h after exposure to water, PDB medium (mock

treatment) or B. cinerea infection without any wounding (Fig. 5).

The level of ABA was increased in wounded plants incubated in

dry conditions (Fig. 6A). To confirm an increase in the level of

ABA, the expression of ABA-dependent genes RAB18, RDB29 and

NCED23 was tested. These genes showed an increase in expression

after wounding and mock treatment as well as wounding and B.

cinerea in dry conditions that was clearly detectable at 15 min after

treatment (except NCED23 in mock-treated plants) (Fig. S4).

Changes in ABA levels were further tested using transgenic plants

containing a LUC reporter gene under the control of the ABA-

specific promoters LTI23 or HB6. The activity of the reporter gene

was mainly observed at the wound site and it was stronger in

wounded plants incubated under dry compared to humid

conditions (Fig. 6B). Furthermore, exogenous applications of

ABA at 100 mM led to a suppression of ROS and WIR in

response to B. cinerea (Fig. 6C). Thus, ABA is likely to be involved

Figure 2. Subcellular localization of ROS at wounded sites in A. thaliana leaves. Leaves were infiltrated with DCF-DA, then wounded and
ROS accumulation was observed by laser confocal microscopy immediately after wounding. The experiment was carried out 3 times with similar
results.
doi:10.1371/journal.ppat.1002148.g002
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in the suppression of wound-induced ROS when plants are kept

under dry conditions [25].

Common phenotypes between aba mutants and cuticle
mutants

The resistance to B. cinerea displayed in aba mutants was

comparable to that observed in mutants with permeable cuticles

such as bdg or lacs2.3 [32]. We therefore tested and confirmed that

bdg and lacs2.3 also produced ROS after wounding (data not shown).

Furthermore, both bdg and lacs2.3 strongly displayed DCF-DA

fluorescence after treatment with water, mock or B. cinerea compared

to WT plants (Fig. 5). The cuticle of bdg and lacs2.3 was previously

shown to be more permeable and it was postulated that this feature

would allow an easier diffusion of elicitors into the cell or an

improved passage of antibiotic substances towards the surface [32].

Consequently, we tested if the aba mutants also display alterations in

cuticle permeability. This was tested using the cell wall stain

toluidine blue applied as droplets on the adaxial side of leaves as

previously described [32]. Results showed that aba2 and aba3

mutants strongly stained in blue, as did bdg and lacs2.3 compared to

WT plants, indicating altered cuticular properties (Fig. 7A). We

have ascertained that stomatal density did not interfere with the

toluidine blue tests. The density of stomata in WT Col-0, aba2, aba3,

bdg and lacs2.3 mutants showed some differences that could however

not account for the toluidine blue staining observed only in the

mutants compared to WT plants (Fig. S5). Calcofluor staining was

also used to visualize permeable cuticles [32] and marked

differences were obtained between WT Col-0 and aba2, aba3, bdg

and lacs2.3 mutants (Fig. 7A). Increased efflux of chlorophyll is

another measure of cuticular permeability [31,40]. When dipped in

ethanol, aba2 and aba3 as well as lacs2.3 and to a lesser extent bdg

mutants released chlorophyll faster than WT Col-0 plants (Fig. 7B)

thus corroborating the results of the toluidine blue and Calcofluor

tests. Cuticular permeability was also compared when wounded

plants were incubated under humid or dry conditions. Calcofluor

staining was more intense at wounded sites in plants incubated

under humid conditions compared to dry conditions indicating a

better access of Calcofluor to the cell wall glucans (Fig. 7C).

Similarly, chlorophyll leaching proceeded more rapidly when tested

on wounded leaves incubated under humid compared to dry

conditions (Fig. 7D). Furthermore, the expression of the BDG and

LACS genes involved in cuticular biosynthesis were compared in

Figure 3. The effect of humidity on resistance to B. cinerea, ROS and callose accumulation after wounding. Wild type (WT) leaves were
wounded and maintained for 1.5 h under high humidity in tightly covered well-watered trays (humid) or in uncovered trays at room conditions (dry)
prior to ROS or infection with B. cinerea or callose detection. (A) Densitometric quantification of ROS production, (B) resistance to B. cinerea. W:
wounded; Ctrl: unwounded control plants. (C) Callose formation. M: mock; Bc: B. cinerea-inoculated. For ROS production (n = 4; 6SD), one
representative image of the fluorescent leaf surface was placed above each histogram as a visual illustration. For resistance (n = 48; 6SE) and callose
formation (n = 4; 6SD), all plants were kept under humid conditions after treatment and the experiment was carried out twice with similar results.
Different letters above each bar represent statistically significant differences (Dunn’s test; P,0.05).
doi:10.1371/journal.ppat.1002148.g003
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wounded plants incubated under humid or dry conditions.

Wounding under dry conditions enhanced the expression of BDG

or LACS genes, compared to wounded plants incubated under

humid conditions. While BDG was already enhanced within 15 min

after wounding and dry conditions, the expression of LACS2.3 was

clearly higher 30 min after treatment under the same condition

(Fig. 8). In all experiments, expression of both genes after wounding

followed by B. cinerea inoculation was not as extensive as the

expression after wounding and mock treatment. The composition of

the cuticle was altered in wounded plants after incubation in dry

conditions compared to humid conditions as was the composition of

the cuticle in aba2 and aba3 mutants compared to WT plants (Fig.

S6). Furthermore, exogenous treatment of A. thaliana with ABA

decreased the cuticular permeability (Fig. S7). ABA might therefore

be involved in the control of a wound repair mechanism that

decreases the permeability of the cuticle.

Cutinase treatment leads to ROS and enhanced
resistance to B. cinerea

We have further tested the relation between cuticle, permeabil-

ity, ROS and resistance to B. cinerea after a localized treatment

with cutinase (from Fusarium solani, prepared using heterologous

expression in S. cerevisiae). Localized application of cutinase led to

ROS production visualized with DAB and DCF-DA staining

(Fig. 9A) as well as to an increase in resistance to B. cinerea (Fig. 9B).

These experiments support the hypothesis that plants can perceive

and react to the degradation of the cuticle.

Removal of oxalic acid, a pathogenicity factor of
B. cinerea leads to increased ROS and resistance to
B. cinerea

The cutinase produced by B. cinerea during infection [16] might

potentially cause ROS production during the early stages of

infection. But the data presented in Figs. 1B and 5 show an

increase in fluorescence beyond 12 h after inoculation. B. cinerea

was reported to release oxalic acid during infection [41]. Oxalic

acid inhibits ROS production in tobacco and soybean cells [42]

and might potentially slow down ROS production during the

infection. The importance of oxalic acid as a suppressor of ROS

was tested using transformed A. thaliana over-expressing an oxalate

decarboxylase gene from the basidiomycete Trametes versicolor [43].

Figure 4. Wounding in mutants of ABA biosynthesis. Leaves were wounded and maintained for 1.5 h under high humidity in tightly covered
well-watered trays (humid) or in uncovered trays at room conditions (dry) prior to ROS detection or infection with B. cinerea. W: wounded; Ctrl:
unwounded control plants. (A) Densitometric quantification of ROS production in unwounded and wounded aba2, aba3 mutants and in WT plants.
For ROS production (n = 4; 6SD), one representative image of the fluorescent leaf surface was placed above each histogram as a visual illustration.
Different letters above each bar represent statistically significant differences (Dunn’s test; P,0.05). (B) Effects of wounding on resistance to B. cinerea
in aba2 and aba3 mutants and WT plants. After B. cinerea inoculation, all plants were kept under humid conditions (n = 32; 6SE); the experiment was
repeated twice with similar results. Different letters above each bar represent statistically significant differences (Dunn’s test; P,0.05).
doi:10.1371/journal.ppat.1002148.g004

Cuticle Permeability, ROS and Resistance
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By removing oxalic acid released by B. cinerea, we would predict an

increase in both ROS formation and resistance. In line with our

expectations, transgenic T3 lines that over expressed the

OXALATE DECARBOXYLASE gene and exhibited increased

oxalate decarboxylase activity showed an increase in resistance

to B. cinerea (Fig. 10A). ROS appeared as early as 3 hours post

inoculation at sites inoculated with B. cinerea (Fig. 10B) in

transgenic plants compared to controls. Thus, oxalic acid

produced by B. cinerea might help the fungus to avoid the effects

of ROS produced during the early steps of infection.

Discussion

We have previously reported a very marked resistance in A.

thaliana to B. cinerea in response to localized wounding. This

resistance is based on priming of camalexin synthesis, of the

expression GLUTATHIONE S TRANSFERASE 1 (GST1) gene, and

MAPK kinase activity [34]. Here, we have followed up these

observations and described early events associated with WIR. We

have described the production of ROS within 2 minutes at the site

of wounding using the fluorescent dye DCF-DA [44]. To check

the validity of the DCF-DA dye for ROS detection under our

experimental conditions, we have also monitored ROS production

using luminol, a method that mainly detects H2O2 [38] and could

confirm ROS production after wounding (Fig. 1F). The wound

sites also reacted to DAB and NBT staining confirming the

formation of H2O2 and O2
2 (Fig. 1C). Treatment with the

NADPH oxidoreductase inhibitor DPI (Fig. 1D) or infiltration of

leaves with catalase (Fig. 1E) before wounding inhibited ROS

development, as measured by DCF-DA fluorescence or DAB

accumulation, respectively indicating that a substantial part of

ROS is O2
2 and H2O2. Mutants unable to produce NO still

produced ROS after wounding (Fig. 1G), making a contribution of

NO to the initial wound-induced burst of ROS unlikely.

Observations of plants with the LCM indicated strong fluores-

cence at the chloroplasts and a weaker one at the cell border after

wounding (Fig. 2). The plastidic origin of some of the ROS might

explain in part why ROS were still observed in atrbohD or atrbohF

mutants since AtRBOHD or AtRBOHF are localized at the

plasma membrane (Fig. S2). Taken together, our observations

indicate a rapid (within 2 min) production of ROS after wounding

(Fig. S1). Since we cannot exclude the presence of other ROS

besides superoxide and H2O2, we will use the term ROS to

collectively refer to the oxidative species that can be detected after

Figure 5. Densitometric quantification of ROS production in ABA and cuticle mutants. ROS production at 3, 6, 12 h post inoculation with
B. cinerea (Bc), mock or H2O treatments in aba2 and aba3 as well as in bdg and lacs2.3 mutants compared to the WT. After treatment, all plants were
kept under humid conditions. Low level of fluorescence density in the WT were detected only after B. cinerea at 12 h post inoculation and were not
detected in response to H2O or mock treatment. For ROS production (n = 4; 6SD), one representative image of the fluorescent leaf surface was placed
above each histogram as a visual illustration. Different letters above each bar represent statistically significant differences (Dunn’s test; P,0.05).
doi:10.1371/journal.ppat.1002148.g005
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wounding. Our experiments with exogenous applications of H2O2

show that ROS can have both a direct effect against B. cinerea and

an indirect effect possibly by activation of defenses (Fig. S3). These

observations are in line with previous studies showing ROS

production after wounding [24,36,45], or in response to pathogens

[26] including B. cinerea [46].

What is the biological importance of ROS production for WIR

to B. cinerea?

Firstly, exogenously applied H2O2 can inhibit growth of B.

cinerea (Fig. S3). Secondly treatments with DPI and catalase or

incubation under dry conditions abolished ROS, WIR to B. cinerea

as well as callose accumulation (Figs. 1D, E and 3). Thirdly, the

absence of ROS formation and resistance to B. cinerea under dry

conditions could be rescued in mutants impaired in ABA

biosynthesis (aba2 and aba3) and exogenous application of ABA

suppressed both ROS and resistance to B. cinerea (Figs. 4 and 6C).

Finally, localized treatments with cutinase resulted both in ROS

production and increased resistance to B. cinerea on treated sites

(Fig. 9) [47]. Taken together, these results support the biological

importance of ROS produced in response to wounding for WIR to

B. cinerea. Several reports have proposed that ROS and subsequent

cell death formed in response to B. cinerea or other necrotrophs

might facilitate the infection by the pathogen (reviewed in [26]).

This is clearly different from the situation described here where

ROS produced after wounding are strongly induced prior to an

inoculation and lead to an early induction of defenses such as rapid

callose formation (Figs. 1 and 3). In a previous article, we have

shown wound-induced priming of camalexin synthesis, expression

Figure 6. ABA accumulates after wounding under dry conditions and affects resistance to B. cinerea. Leaves were wounded and
maintained for 1.5 h under high humidity in tightly covered well-watered trays (humid) or in uncovered trays at room conditions (dry) prior to
measurement of ABA or luciferase activity. (A) Measurement of ABA in ng mg21 fresh weight of plant tissue in unwounded or wounded plants,
incubated under humid or dry conditions (n = 6; 6SD). Different letters above each bar represent statistically significant differences (Dunn’s test;
P,0.05). (B) Expression of pAtLTI23T::LUC or pAtHB6T::LUC in wounded leaves incubated either under humid or dry conditions compared to
unwounded plants. The wounds inflicted by the forceps (arrows) show a stronger expression of the LUC gene in plants incubated under dry
conditions. The experiment was repeated 3 times, one typical result is represented. (C) Effect of exogenous ABA treatment (leaf discs were floated on
100 mM ABA, 1 d prior to wounding). After wounding, ROS (measured as DCF-DA fluorescence) and growth of B. cinerea (Bc) (leaf discs were floated
on water and inoculated; Trypan blue staining was carried out 2 d after inoculation) were determined (the experiment was carried out 3 times, one
typical result is represented).
doi:10.1371/journal.ppat.1002148.g006

Cuticle Permeability, ROS and Resistance

PLoS Pathogens | www.plospathogens.org 8 July 2011 | Volume 7 | Issue 7 | e1002148



of GLUTATHIONE S TRANSFERASE 1 (GST1) and MAPK kinase

activity [34].

How do our data agree with the conventional observation that

wounding is associated with susceptibility? Unless wounded plants

are maintained under humid conditions WIR is lost. This resolves

the apparent paradox, since most of the time plants wounded

under natural conditions may not be under conditions of

saturating humidity.

What is exactly the contribution of ABA? Our experiments have

shown that ABA is implicated in the control of ROS formation in

wounded plants that are incubated under dry conditions.

Wounding followed by incubation in dry conditions lead to an

increase in ABA levels (Fig. 6A). Furthermore, both the expression

of ABA-dependent genes (RAB18, RDB29 and NCED23) [48] and

the expression of the ABA reporter gene constructs ATH6: LUC

and ATLTI23:LUC [49] were induced (Figs. S4 and 6B). ABA

applied on leaves suppressed wound-induced ROS and subsequent

resistance to B. cinerea (Fig. 6C). Our data are in agreement with

observations made on ABA-deficient sitiens mutants of tomato,

where the accumulation of H2O2 was both earlier and stronger

than in WT plants after inoculation with B. cinerea [50]. Our results

and those of Asselbergh et al. (2007)[50] suggest a negative control

of ABA on ROS formation and resistance. Several reports show a

link between ABA and increased susceptibility to pathogens that

was mostly explained by antagonistic interactions of ABA with

defense signaling controlled by SA, JA or ET [51]. How ABA

prevents wound-induced ROS accumulation in A. thaliana remains

a study to be carried out on its own. This will be interesting, since

ABA controls stomatal closure via ROS production [52]. But the

action of ABA further unveiled when we observed that aba mutants

Figure 7. Cuticle permeability is impaired in ABA mutants and after wounding under humid conditions. Permeability of the cuticle in
ABA and cuticle mutants (positive controls) or WT plants (A) and (B). (A) Upper panels: a droplet of toluidine blue was placed on the leaf surface for
2 h in high humidity then the leaf surface was rinsed with water. The blue stain that remains attached to the cell wall is indicative of a permeable
cuticle. Lower panels: leaves were bleached overnight in ethanol then stained with Calcofluor white that binds to cellulose, and viewed under UV
light. Calcofluor staining to the leaf is indicative of a permeabilized cuticle (all experiments were carried out 12 times, one typical result is
represented). (B) Leaves were placed in ethanol and the release of chlorophyll was followed over time. Chlorophyll leached out more rapidly in all
mutants compared to WT indicating a higher cuticle permeability (n = 6; 6SD). Permeability of the cuticle in unwounded and wounded plants
incubated under humid or dry conditions (C) and (D). (C) Leaves were wounded and maintained for 1.5 h under high humidity in tightly covered well-
watered trays (humid) or in uncovered trays at room conditions (dry). The permeability of the cuticle was assessed using Calcofluor white. Wounding
(arrow) followed by incubation under humid conditions lead to white staining visible at the wound sites and to a lesser extent in other parts of the
leaf. Wounding followed by incubation in dry conditions showed no staining (the experiment was carried out 12 times, one typical result is
represented). (D) Chlorophyll leached out more rapidly in plants incubated under humid conditions compared to plants incubated under dry
conditions (n = 5; 6SD).
doi:10.1371/journal.ppat.1002148.g007
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had a resistant phenotype reminiscent of plants affected in cuticle

integrity such as CUTE or the cuticle mutants bdg and lacs2.3 that

are immune to B. cinerea [32,47]. For those reasons, ROS

production was followed in bdg or lacs2.3. Indeed, these mutants

displayed a strong DCF-DA fluorescence even after water or mock

treatments or inoculation with B. cinerea (Fig. 5). The bdg or lacs2.3

mutants were previously shown to have an increased cuticular

permeability compared to WT plants (Fig. 7A, B and [32,53]).

Accordingly, we have characterized cuticular properties in aba

mutants and observed a higher permeability in aba2 and aba3

mutants than in WT plants (Fig. 7A and B). Cuticular permeability

measured by Calcofluor white or chlorophyll efflux was also

decreased after incubation of wounded plants under dry conditions

compared to plants left at high humidity despite the opening

caused by the wound (Fig. 7C and D). In addition, a change was

observed in the composition of aliphatic cuticle monomers [30,31]

and in the expression of the LACS and BDG genes involved in

cuticle biosynthesis in wounded plants incubated under dry

compared to humid conditions (Fig. 8). Incubation of wounded

plants for 1.5 h under dry conditions was sufficient to increase

Figure 8. Expression of genes involved in cuticle formation in wounded and unwounded plants. Leaves were wounded and maintained
for 1.5 h under high humidity in tightly covered well-watered trays (humid) or in uncovered trays at room conditions (dry) prior to expression of BDG
and LACS2.3 genes. Gene expression was determined 0, 15 or 30 min after wounding in plants incubated under humid or dry conditions and either
mock-inoculated (M) or inoculated with B. cinerea (Bc) (n = 3; 6SD). The experiment was carried out twice with similar results. The expression levels of
unwounded control plants behaved similarly under dry or humid conditions. Different letters above each bar represent statistically significant
differences (Dunn’s test; P,0.05).
doi:10.1371/journal.ppat.1002148.g008
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detectable changes in of 16:0 and 18:3 cuticle monomers (Fig. S6).

Thus, the changes cuticle properties in response to the

environmental conditions are accompanied by changes in aliphatic

monomers of the cuticle. The aba2 and aba3 mutants also

displayed a different composition in aliphatic cuticle monomers

compared to Col-0 WT plants (Fig. S6). However, it is not yet

feasible to link changes in structural components of the cuticle to

functions such as cuticular permeability.

Exogenous application of ABA to WT or aba2, aba 3 lacs2.3 and

bdg mutants decreased the cuticle permeability, further supporting a

role for ABA in this process (Fig. S7). Curvers et al. (2010)[54]

reported recently that tomato mutants impaired in ABA biosyn-

thesis show enhanced cuticular permeability and resistance to B.

cinerea. Our results in A. thaliana are in full agreement with an effect

of ABA on the cuticle in tomato. It becomes now interesting to

determine how ABA exerts its effects on the structure of the cuticle.

How could an increase in cuticular permeability affect the

formation of ROS? The strong resistance of cuticular mutants to

B. cinerea was explained by the facilitated diffusion of potentially

antibiotic compounds produced by the plant and/or of elicitors

from the medium/pathogen through the permeable cuticle surface

[32,53]. The perception of elicitors, including breakdown products

of plant cuticles, has been previously described to produce ROS

[22–24,26]. The fact that cuticular mutants lacs2.3, bdg and aba2,

aba3 produced ROS even when exposed to water or mock solution

alone (Fig. 5) might be explained by the perception of elicitors

present at the surface of the non-sterile leaves that dissolve in the

water or in the mock solution and diffuse through the cuticle to the

cell where they are perceived. The hypothesis that diffusion is

facilitated through a permeabilized cuticle is further supported by

the effect of cutinase treatments. This enzyme was already shown

to degrade cutin and increase the permeability of the cuticle and

resistance to B. cinerea when expressed constitutively in A. thaliana

[29,47]. By digesting the cuticle, this enzyme generates cutin

monomers, increases the permeability of the cuticle and therefore

improves diffusion of breakdown products that, together with

other possible elicitors present at the leaf surface, would

subsequently be recognized and lead to ROS formation and

resistance (Fig. 9). Recognition of cutin monomers as well as wax

components has also been described to induce the production of

H2O2 in abraded epicotyls of cucumber [24].

How can these results be tied into a comprehensive model?

When the cuticle is intact, it functions in protection against water

loss, irradiation and xenobiotics. When it is permeabilized upon

degradation by either enzymes secreted during pathogenesis or

acted upon by mechanical action, elicitors might have a facilitated

access to the cell, will be recognized and eventually lead to a rapid

release of ROS and subsequent defense reactions. The model in

Fig. 11 explains why plants are not continuously in an induced

state, despite the existence of an extensive microbial flora at the

leaf surface. As long as the cuticle prevents passage of elicitors, no

induction of defenses takes place, illustrating economic energy

management by the plant.

Why does a virulent necrotrophic pathogen like B. cinerea that

degrades the cuticle not lead to a rapid burst of ROS? Virulent

pathogens produce suppressors or effectors that can interfere with

Figure 9. ROS production and resistance to B. cinerea in response to exogenous treatments with cutinase. A droplet containing cutinase
(5 mg l21, a non-toxic concentration; see [47]) was applied to the surface of an A. thaliana leaf. After 72 h in high humidity, the drop was removed,
and (A) the leaf was stained with DAB or DCF-DA (insert) to detect ROS production or (B) replaced by B. cinerea spores (6 mL; 56104 spores ml21)
applied at the same location. After 72 h, lesion sizes were determined (n = 27; 6SE). The experiment was carried out twice with similar results.
Different letters above each bar represent statistically significant differences (Dunn’s test; P,0.05).
doi:10.1371/journal.ppat.1002148.g009
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plant defenses [55]. Oxalic acid produced by B. cinerea [41] can

suppress the formation of ROS [42] and might thus protect the

fungus from their effects. We have previously shown that removal of

oxalic acid produced by B. cinerea enhances the protection of A.

thaliana [56]. Results obtained here with plants over expressing an

oxalate decarboxylase extend these findings. In oxdec plants ROS

appeared early during infection and growth of B. cinerea was

decreased (Fig. 10). Similar observations were published for the

virulent oxalate-producing fungus Sclerotinia sclerotiorum and B. cinerea

[43,57]. In addition, B. cinerea was shown to produce ABA [58,59]

Figure 10. Effect of OXALATE DECRABOXYLASE over expression in A. thaliana on resistance to B. cinerea and ROS production. (A)
Resistance displayed by T3 A. thaliana lines over expressing the OXALATE DECARBOXLYLASE gene from T. versicolor (oxdec plants); all plants were
previously checked for the over expression of the oxalate decarboxylase activity (n = 130; 6SE). Different letters above each bar represent statistically
significant differences (Dunn’s test; P,0.05). (B) Densitometric quantification of ROS production at 3, 6, 12 h post inoculation with B. cinerea (Bc) and
mock in oxdec plants compared to the WT. After treatment, all plants were kept under humid conditions. Low level of fluorescence density in the WT
is detected only after B. cinerea at 12 h post inoculation and not in the mock treatment. For ROS production (n = 4; 6SD), one representative image of
the fluorescent leaf surface was placed above each histogram as a visual illustration. Different letters above each bar represent statistically significant
differences (Dunn’s test; P,0.05).
doi:10.1371/journal.ppat.1002148.g010
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that might also be possibly involved in repressing ROS production

during infection. B. cinerea can also induce ABA production in the

plant [60]. The AP-1 transcription factor Bap1 plays a pivotal role

in ROS detoxification of B. cinerea in vitro. But Bap1 was not found to

be essential for pathogenesis and the role of an oxidative burst was

questioned [61]. Here we show that removal of oxalic acid can

indeed restore early ROS production by the plant and impair

pathogenicity of B. cinerea, thus confirming previous results on the

importance of oxalic acid for B. cinerea [56,57].

In conclusion, we propose a model whereby the cuticle is part of a

sensing device besides its passive protective role of aerial plant

surfaces. Without modification of the diffusive properties of the

cuticle, defenses are not induced. Modifications of the surface with

subsequent increased permeability will allow for a better passage for

molecular determinants that can be recognized by the plant and lead

to the activation of defenses. This mechanism is doubled up by

another mechanism provided by the wall itself, that, when exposed to

the appropriate enzymes will breakdown to damage associated

determinants (DAMPs) that are also recognized and initiate defenses.

Virulent pathogens have evolved mechanisms to interfere with such

mechanisms and data presented here support these findings. Future

work should now be directed at the molecular mechanisms that lead

to a rapid generation of ROS. It will be interesting to determine if

they overlap with a similar responses observed when plant react to

other elicitors that lead to ROS formation such as flagellin.

Materials and Methods

Plant maintenance
Arabidopsis thaliana seeds were grown on a pasteurized soil mix of

humus and Perlite (3:1). Seeds were kept at 4uC for two days and

then transferred to the growth chamber. Plants were grown in a

12 h light/12 h dark cycle with 60–70% of relative humidity, with

a day temperature of 20–22uC and a night temperature of 16–

18uC. WT plants were obtained from the Nottingham Arabidopsis

Stock Center (Nottingham, UK). The Arabidopsis mutant referred

to as aba2 was aba2–1 and aba3 was aba3–1 [62]. The lacs2–3, bdg2

and the nia1nia2noa1–2 mutants were previously described

[31,32,39].

Culture of B. cinerea, inoculation, staining of hyphae and
wounding procedure

B. cinerea strains BMM, provided by Brigitte Mauch-Mani

(University of Neuchâtel, Switzerland), were grown on Difco

(Becton Dickinson, http://www.bd.com) potato dextrose agar

39 g l21. Spores were harvested in water and filtered through glass

wool to remove hyphae. Spores were diluted in J strength Difco

potato dextrose broth (PDB) at 6 g l21 for inoculation. Droplets of

6 ml spore suspension (56104 spores ml21) were deposited on

leaves of 4-week-old plants for quantification of lesions size (mm)

after 3 days. Spores (26105 spores ml21) were also sprayed on

whole plants for RT-PCR experiments. The inoculated plants

were kept under high humidity in covered trays. Control plants

were mock inoculated with J strength PDB solution. Leaves were

wounded by gently pressing the lamina with a laboratory forceps.

For wounding of entire leaves, the pressing was carried out on

both sides of the main vein. Wounded leaves were incubated in

covered trays at high humidity (referred to as humid conditions); in

some cases the trays were left uncovered after wounding (referred

to as dry conditions) under the same laboratory conditions.

Inoculation with B. cinerea was performed within 10 min after

Figure 11. Model illustrating the role of the cuticle at the interface between B. cinerea and A. thaliana. Under the action of digestive
enzymes, permeabilization of the cuticle increases, allowing for early sensing and perception of elicitors (MAMPs/DAMPs) with subsequent induction
of ROS and potential activation of innate immune responses. The virulent pathogen produces effector(s)/suppressor(s) (e.g. oxalic acid) that interfere
with ROS build-up leading to decreased defenses and allowing colonization.
doi:10.1371/journal.ppat.1002148.g011
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wounding, by placing a droplet of spores on the wound site.

Fungal structures and dead plant cells were stained by boiling

inoculated leaves for 5 min in a solution of alcoholic lactophenol

trypan blue. Stained leaves were extensively cleared in chloral

hydrate (2.5 g ml21) at room temperature by gentle shaking, and

then observed using a Leica DMR microscope with bright-field

settings.

Detection of ROS
ROS were detected using the fluorescent probe 5-(and 6)-

carboxy-29,79-dichloro dihydrofluorescein diacetate (DCF-DA)

(Sigma-Aldrich, www.sigmaaldrich.com). Wounded or unwound-

ed leaves were vacuum-infiltrated (363 min) in 60 mM of DCF-

DA in a standard medium (1 mM KCl, 1 mM MgCl2, 1 mM

CaCl2, 5 mM 2-morpholinoethanesulfonic acid adjusted to pH 6.1

with NaOH) [44]. Leaves were then rapidly rinsed in DCF-DA

medium and observed using a Leica DMR epifluorescence

microscope with a GFP filter set (excitation 480/40 nm, emission

527/30 nm) (Leica, www.leica.com). Microscope images were

saved as TIFF files and processed for densitometric quantification

with Image J version 1.44 (NIH). Software settings were kept the

same for every image analyzed; the surface of each analyzed

picture was the same (2.278 mm2). One representative image of

the fluorescent leaf surface was placed above each histogram as a

visual illustration. Quantification of ROS using DCF-DA was also

performed on wounded or unwounded leaf discs of 5 mm

incubated in 60 mM of DCF-DA in a 96-well plate (Sarstedt,

www.sarstedt.com). After vacuum-infiltration (363 min), ROS

were determined using a FL6800 microplate fluorescence reader

with a excitation filter 485/20 nm and an emission filter 528/

40 nm (Bio-Tek instruments, www.biotek.com). Accumulation of

O2
2 and H2O2 in leaves was determined using nitroblue

tetrazolium (NBT) staining [63] and 3,39-diaminobenzidine

(DAB) staining [64] respectively. The destained leaves were

observed using a Leica DMR microscope with bright-field settings.

The H2O2 accumulation was also determined using the luminol

test [65]. A solution containing 50 ml of 0.5 mM luminol (3-

aminophtalhydrazide, Sigma-Aldrich) in 0.2 N NH3, pH 9.5

added to 0.8 ml of 0.2 N NH3, pH 9.5 and 100 ml of 0.5 mM

K3Fe(CN)6 in 0.2 N NH3, pH 9.5 was added to leaf discs of 8 mm

in 24-well plates (Corning incorporated, www.corning.com) and

luminescence was measured immediately using CCD camera

(Princeton Instrument Versarray system, www.princetoninstru-

ments.com) equipped with a Sigma Aspherical objective (www.

sigma-foto.de) in a dark box. The pictures were analyzed with an

Imaging System.

Luciferase activity
Arabidopsis reporter lines consisting of either a pAtHB6 or

pLTI65 promoter fragment fused to the LUC gene were generously

given by Prof. Erwin Grill [66]. For imaging of LUC activity,

plants were sprayed with a solution of 1 mM luciferin (Applichem,

www.applichem.com) in 10 mM MES, pH 7.0, 0.01% Tween 80.

Ten min after luciferin spraying, light emission was detected using

an intensified CCD camera (Princeton Instrument Versarray

system, www.princetoninstruments.com) equipped with a Sigma

Aspherical objective (www.sigma-foto.de) in a dark box. The

pictures were analyzed with the MetaVue Imaging System (www.

biovis.com/metavue.htm).

Callose staining
Twenty-four hours post infiltration, leaves were harvested and

distained in 3:1 ethanol: lactic acid, previously diluted in 1:2

ethanol. The solution was changed several times until the

chlorophyll had totally disappeared. Translucent leaves were

progressively re-hydrated in 70% ethanol for about 2 hours and in

50% ethanol for 2 hours. Leaves were left in water and gently

shaken overnight. Leaves were then incubated for 24 hours in

150 mM K2HPO4 (pH 9.5) containing 0.01% aniline blue.

Stained material was mounted on glass slides in 50% glycerol

and examined under UV light with a LEICA DMR fluorescence

microscope. The callose deposition was determined by counting

the pixels using the Image J 1.44 software (NIH).

RNA extraction and real time RT-PCR
RNA was prepared using the Trizol reagent containing 38%

saturated phenol, 0.8 M guanidine thiocyanate, 0.4 M ammoni-

um thiocyanate, 0.1 M sodium acetate and 5% glycerol. RNA

(1 mg) was then retrotranscribed into cDNA (Omniscript RT kit,

Qiagen, www.qiagen.com). RT-PCR was performed using

Sensimix SYBR Green Kit (Bioline, www.bioline.com). Gene

expression values were normalized to expression of the plant gene

At4g26410, previously described as a stable reference gene [67].

The primers used were rab18fw 59- AACATGGCGTCTTAC-

CAGAA; rab18rev 59-AGTTCCAAAGCCTTCAGTCC; rd29

bfw 59-GAATCAAAAGCTGGGATGGA; rd29brev 59-TGCT-

CTGTGTAGGTGCTTGG; nced23fw 59-ATTGGCTATGTC-

GGAGGATG; nced23rev 59-CGACGTCCGGTGATTTAGTT;

lacs2-3fw 59-GTGCCGAGAGGAGAGATTTG; lacs2-3rev 59-

CGAGGTTTTCAACAGCAACA; bdgfw 59-TTCTTGGCT-

TTCCTCTTCCA; bdgrev 59- CCATAACCCAACAGGTCCA-

C.

Treatments with ABA, DPI, catalase and cutinase
Leaf discs of 8 mm were floated in 24-well plates (Corning

incorporated, www.corning.com) filled with 1.5 ml in each well of

either 50 mM DPI (Sigma-Aldrich), 100 mM ABA (Sigma-Aldrich)

in 0.05% EtOH and distilled water or EtOH 0.05% as controls for

24 h before wounding. Catalase (300 U ml21 catalase; Sigma-

Aldrich) was infiltrated into the leaves prior to wounding. After

wounding, either ROS were visualized on the discs with DCF-DA

or DAB or discs were floated on distilled water for 24 h and

inoculated with B. cinerea and infection was determined after 3

days. The effect of ABA on cuticle permeability was determined

after spraying leaves with 100 mM ABA in 0.05% EtOH followed

by a 24 h incubation period under humid conditions. Eight mL

droplets of purified preparation of cutinase (5 mg l21) from F.

oxysporum [68] or 10 mM Na-acetate pH 5.2 in controls were

applied on the leaf surface. After 72 h incubation under moist

conditions, the droplets were removed and leaves were stained

with DCF-DA or DAB to detect ROS. Alternatively, the droplet

was rinsed off the leaf and replaced by a droplet of spore

suspension of B. cinerea and incubated as described above.

Quantification of abscisic acid
Leaf material (ca 500 mg) was frozen in liquid nitrogen and

collected in 2 ml Eppendorf tubes, and then homogenized (twice)

with 1000 ml of 70uC-warm extraction buffer (water/propane-1-

ol/HCl : 1/2/0.005, v/v) without thawing. The sample was

transferred to a glass tube and 200 ng of the internal standard

abscisic acid-d6 (Santa Cruz Biotechnology, www.scbt.com) and

2 ml of dichloromethane were added. The sample was then mixed

15 s with a vortex and centrifuged 1 min at 14,000 g. The lower

organic phase was transferred to a new glass tube and dried by the

addition of anhydrous Na2SO4. Then, carboxylic acids including

ABA were methylated to their corresponding methyl esters at

room temperature for 30 min after the addition of 10 ml of 2 M

bis-trimethylsilyldiazomethane (Sigma-Aldrich) and 100 ml of
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MeOH. Methylation was stopped by the addition of 10 ml of 2 M

acetic acid during 30 min at room temperature. Extraction of the

vapor phase was performed using a VOC column conditioned

with 361 ml of dichlororomethane. The VOC column and a

nitrogen needle were fixed on the screw cap of the tube. The

solvent was evaporated under a nitrogen stream at 70uC and

heated for 2 min at 200uC. The VOC column was eluted with

1 ml of dichloromethane in a new glass tube. The eluate was

evaporated and then dissolved in 20 ml of hexane before injecting

3 ml on a capillary column HP1 (25 m60.25 mm) GC column

(Agilent, www.agilent.com) fitted to a Hewlett Packard 5980 GC

coupled to a 5970 mass specific detector. The methyl esters of

ABA and ABA-d6 were detected and quantified by selective ion

monitoring at m/z 190 and 194 respectively. The amount of ABA

(measured as methyl ABA) was calculated by reference to the

amount of internal standard. The results are expressed in ng mg21

fresh weight of plant tissue.

Chemical composition of cuticle
The surface of 15 to 20 leaves of 4 weeks-old A. thaliana Col-0

was first determined as described previously [69]. Then the leaves

were extracted with chloroform:methanol (1:1; v/v) and dried

before depolymerization. The samples were depolymerized using

transesterification with 2 ml BF3 (Fluka, Sigma-Aldrich) for 12 h

at 75uC. After addition of 2 ml saturated NaCl/H2O and 20 mg

dotriacontane as internal standard, aliphatic monomers were

extracted 3 times with 1 ml of chloroform. The combined organic

phase was evaporated in a stream of nitrogen to a volume of

,100 ml. All samples were treated with bis-(N,N,-trimethylsilyl)-tri-

fluoroacetamide (BSTFA; Macherey-Nagel, www.mn-net.com) for

40 min at 70uC to convert free hydroxyl and carboxyl groups into

their corresponding trimethylsilyl (TMS) derivatives. Remaining

solvent and derivatization reagents were removed under a stream

of N2 and the samples were resolubilized in 100 ml dichloro-

methane prior to vapour phase extraction. Monomers were

identified on the basis of their electron-impact MS spectra (70 eV,

m/z 50–700) on a HP 6890 GC system coupled to an HP 5973

mass-selective detector (USA). The depolymerisation products

were separated by on a capillary column (ZB-AAA, 10 m,

0.25 mm, Zebron, Phenomenex, www.phenomenex.com) by

injection at 50uC, 2 min at 50uC, 5 uC min21 to 225uC, 1 min

at 225uC, 20uC min21 to 310uC, 10 min at 310uC. The results are

expressed in g cm22 leaf tissue.

Tests of cuticle permeability
Chlorophyll extraction and quantification was performed

according to the protocol of Sieber et al. 2009 [29]. Leaves were

cut at the petiole, weighed and immersed in 30 ml of 80% ethanol.

Chlorophyll was extracted in the dark at room temperature with

gentle agitation. Aliquots were removed at 2, 5, 10, 20, 30 and

40 min after immersion. After ABA treatment, aliquots were

removed at 40 and 60 min after immersion in ethanol. The

chlorophyll content was determined by measuring absorbance at

664 and 647 nm and the micromolar concentration of total

chlorophyll per gram of fresh weight of tissue was calculated from

the following equation: (7.936(A664 nm) + 19.536(A647 nm)) g21

fresh weight. The toluidine blue test was carried out by placing

6 ml droplets of a 0.025% toluidine blue solution in J PDB

placed on the leaf surface. After 2 h incubation leaves were

washed gently with distilled water to remove excess of the toluidine

blue solution from leaves. For staining with Calcofluor white,

leaves were bleached in absolute ethanol overnight, equilibrated in

0.2 M NaPO4 (pH 9) for 1 h, and incubated for 1 min in 0.5%

Calcofluor white in 0.2 M NaPO4 (pH 9). Leaves were rinsed in

NaPO4 buffer to remove excess of Calcofluor white and viewed

under UV light on a GelDoc 2000 system (Biorad, www.biorad.

com).

Production of oxdec lines and detection of the oxalic acid
decarboxylase activity

The gene used to transform A. thaliana plants is the OXALATE

DECARBOXYLASE from Trametes versicolor (TOXDEC, Genbank

accession number AY370675). The gene was kindly provided by

Andreas Walz (Institute for Phytomedicine, University of Hohen-

heim) as cDNA cloned into the transformation vector pBI 101

(p221-TOXDC). A. thaliana Col-0 plants were transformed using

Agrobacterium tumefaciens and the flower dip method [70]. Resulting

seeds were collected and grown on selective medium; the

expression of the gene was determined respectively by crude

PCR and Northern Blot. The activity of oxalate decarboxylase was

measured in the T3 generation along with resistance to B. cinerea

strain BMM. Oxalate decarboxylase activity was measured as

described [71] with the following modifications. Leaves (100 mg)

were homogenized using a Polytron (Kinematica, www.kinema-

tica-inc.com) in 1 ml extraction buffer containing 50 mM

potassium phosphate buffer pH 7.5, 1 mM EDTA, 1 mM

phenylmethylsulphonyl fluoride and 5 mM sodium ascorbate;

200 ml of this extract was added to 10 ml oxalic acid (1 M, pH 6.2)

and incubated 3 h at 37uC. After centrifugation during 5 min,

12 ml of a 30% sodium acetate solution (w/v) and 300 ml reagent

solution containing 0.5 g citric acid monohydrate, 10 g acetic

acetamide in 100 ml isopropanol were added to 150 ml extract.

The solution added to 1 ml of acetic acid anhydride was incubated

40 min at 50uC; the intensity of the resulting pink color reflects

oxalate decarboxylase activity.

Statistical analyses
Kruskal-Wallis one way analysis of variance (ANOVA) on ranks

followed by a Dunn’s test was performed using SigmaPlot version

11.1 software (Systat Software, San Jose, CA). Different letters

above each bar represent statistically significant differences

(Dunn’s test; P,0.05).

Supporting Information

Figure S1 Time-course of ROS after wounding. To follow

the rapid formation of ROS (measured as DCF-DA fluorescence),

WT leaves were infiltrated with DCF-DA and then wounded. The

first fluorescent signal was detected 2 min after wounding. The

experiment was repeated twice with similar results.

(TIF)

Figure S2 ROS production in NADPH oxidase mutants.
ROS (measured as DCF-DA fluorescence) and WIR to B. cinerea

were still detected after wounding in atrboh D and atrboh F as well as

in the double mutant atrboh D/F. After wounding, all plants were

kept under humid conditions. W: wounded; Ctrl: unwounded

control plants. The experiment was carried out twice with similar

results. Different letters above each bar represent statistically

significant differences (Dunn’s test; P,0.05).

(TIF)

Figure S3 Direct and indirect effects of H2O2 against B.
cinerea. (A) Leaves were treated with H2O2 or water (Ctrl)

(during 1 d in high humidity) then rinsed with water and

subsequently inoculated with B. cinerea (n = 15; 6SD). Different

letters above each bar represent statistically significant differences

(Dunn’s test; P,0.05). (B) Effect of H2O2 or water (Ctrl) on in vitro
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hyphal growth of B. cinerea (observed 16 h after treatment). The

experiment was carried out twice times with similar results.

(TIF)

Figure S4 Expression of ABA-dependent genes RAB18,
RD298 and NCED23. Leaves were wounded and maintained for

1.5 h under high humidity in tightly covered well-watered trays

(humid) or in uncovered trays at room conditions (dry) prior to

expression of ABA-dependent genes. Gene expression was

determined 0, 15 or 30 min after wounding in plants incubated

under humid or dry conditions and either mock-inoculated (M) or

inoculated with B. cinerea (Bc) (n = 3; 6SD). The experiment was

carried out twice with similar results

(TIF)

Figure S5 Number of stomata in lacs2.3, bdg, aba2 and
aba3 mutants compared to WT plants (n = 10; ±SD).
Different letters above each bar represent statistically significant

differences (Dunn’s test; P,0.05). The experiment was carried out

twice with similar results.

(TIF)

Figure S6 Composition of aliphatic monomers of A.
thaliana and ABA mutants leaf cuticle. Wild type (WT)

leaves were wounded and maintained for 1.5 h under high

humidity in tightly covered well-watered trays (humid) or in

uncovered trays at room conditions (dry) prior to fatty acid

analysis. The fatty acid composition was determined for 15 to 20

leaves of wounded and unwounded WT plants in dry and humid

conditions and of aba mutants (n = 3; 6SD). D: dry; H: humid; W:

wounded. For each fatty acid, different letters above each bar

represent statistically significant differences (Dunn’s test; P,0.05).

(TIF)

Figure S7 Cuticle permeability is impaired in WT, ABA
mutants and cuticle mutants after ABA treatment.
Chlorophyll leaching decreased upon ABA treatment (+ABA) in

WT, aba2, aba3, lacs2.3 and bdg mutants compared to untreated

plants (-ABA) (measured at 40 and 60 min after immersion in

ethanol 80%). Plants were treated with ABA 100 mM for 24 h

under humid conditions (n = 4; 6SD). Different letters above each

bar represent statistically significant differences (Dunn’s test;

P,0.05).

(TIF)
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