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Simple Summary: Xylan is naturally present in typical feedstuffs fed to animals and has been shown
to cause increased digesta viscosity reducing nutrient digestibility and growth. Xylooligosaccharides
are sugar oligomers consisting of xylose units that can be extracted and purified from biomaterials for
use as a prebiotic in monogastric feeds. Xylooligosaccharides can also be obtained from the hydrolysis
of xylan either in the intestine of the animal or in-vitro through various techniques. The question of
xylanase supplementation versus xylooligosaccharide supplementation as well as symbiosis of both
on the intestinal health and performance of monogastric livestock is still up for debate. Xylanase
inhibitors present in common cereal grains provide yet another obstacle to overcome and are found
to be highly variable. As the fear of antibiotic resistance increases, novel approaches to improve
growth performance and enhance intestinal health without the use of antibiotics also increase. The
aim of this article is to review the structural difference and its impact on xylan in feeds, classification
and the use of various xylanases, as well as the production and use of xylooligosaccharides for the
physiological effects on intestinal health and growth performance of monogastric animals.

Abstract: This paper discusses the structural difference and role of xylan, procedures involved in
the production of xylooligosaccharides (XOS), and their implementation into animal feeds. Xylan is
non-starch polysaccharides that share a β-(1-4)-linked xylopyranose backbone as a common feature.
Due to the myriad of residues that can be substituted on the polymers within the xylan family,
more anti-nutritional factors are associated with certain types of xylan than others. XOS are sugar
oligomers extracted from xylan-containing lignocellulosic materials, such as crop residues, wood,
and herbaceous biomass, that possess prebiotic effects. XOS can also be produced in the intestine of
monogastric animals to some extent when exogenous enzymes, such as xylanase, are added to the
feed. Xylanase supplementation is a common practice within both swine and poultry production to
reduce intestinal viscosity and improve digestive utilization of nutrients. The efficacy of xylanase
supplementation varies widely due a number of factors, one of which being the presence of xylanase
inhibitors present in common feedstuffs. The use of prebiotics in animal feeding is gaining popularity
as producers look to accelerate growth rate, enhance intestinal health, and improve other production
parameters in an attempt to provide a safe and sustainable food product. Available research on the
impact of xylan, XOS, as well as xylanase on the growth and health of swine and poultry, is also
summarized. The response to xylanase supplementation in swine and poultry feeds is highly variable
and whether the benefits are a result of nutrient release from NSP, reduction in digesta viscosity,
production of short chain xylooligosaccharides or a combination of these is still in question. XOS
supplementation seems to benefit both swine and poultry at various stages of production, as well
as varying levels of XOS purity and degree of polymerization; however, further research is needed
to elucidate the ideal dosage, purity, and degree of polymerization needed to confer benefits on
intestinal health and performance in each respective species.
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1. Introduction

Following cellulose, xylan is the second most abundant renewable polysaccharide
in nature [1]. Monogastric animals such as poultry and swine do not endogenously
synthesize the necessary enzymes for hydrolysis of non-starch polysaccharides (NSPs)
such as xylan [2]. The absence of endogenous enzymes to degrade xylan allows the NSPs
to encapsulate other nutrients and act as a barrier for digesting those trapped nutrients
in the small intestine, subsequently increasing the viscosity of digesta [3]. A decrease in
growth performance caused by increased digesta viscosity is largely observed in poultry
but also in swine consuming feeds containing a considerable amount of NSPs based on
results from recent studies [4–6].

In response to this issue, livestock producers have implemented exogenous enzymes
such as xylanases into the feeds fed to swine and poultry to degrade xylan to short chain
sugars, thus reducing intestinal viscosity and improving the digestive utilization of nutri-
ents [7,8]. Xylan from lignocellulosic biomass can also be hydrolyzed through exogenous
chemical and enzymatic processes to produce xylooligosaccharide (XOS) mixtures that are
classified as prebiotics [2]. Lignocellulosic biomass is the most economical and renewable
natural resource in the world [9] and includes terrestrial plants, such as trees and grasses,
as well as agricultural biomass waste, such as corn stover, straw, saw-mill waste, paper
mill discards and energy crops.

The emergence of antibiotics for the treatment of clinical infections and sickness in
livestock has had a significant and positive impact on the health and welfare of animals.
Due to increased consumer awareness and fear of antimicrobial resistance, however, the
use of low concentrations of antibiotics within animal feed as a “growth promotant” is
quickly becoming obsolete within the United States. The European Union has banned the
use of common antibiotic growth promotors such as Tylosin, Spiramycin, Bacitracin, and
Virginiamycin for use in animal feeds since 2006. In recent years, the animal feed industry
has placed emphasis on the investigation and use of eubiotics as a replacement for antibi-
otics as growth promotants [10]. These non-antibiotic growth promotants include essential
oils, exogenous enzymes, herbs, organic acids, prebiotics and probiotics. Prebiotics are
a class of molecules that possess the potential to substantially affect the physiology of
the whole body, thus improving health and well-being [11]. Prebiotics are non-digestible
feed components that may be fermented by beneficial bacteria in the intestine. During fer-
mentation of prebiotics, production of volatile fatty acids (VFAs) such as acetic, propionic,
and butyric acid typically increase thus lowering the pH within the intestine [3]. This is
significant as pathogenic bacteria, such as Salmonella, Escherichia coli and Clostridium,
have shown impaired proliferation in acidic environments [7]. In addition, the increase
in production of butyric acid is associated with the proliferation and differentiation of
epithelial cells in the gastrointestinal tract, thus expanding the surface area available for
absorption of nutrients [7]. Prebiotics have been investigated as an alternative to antibiotic
growth promoters as studies have shown preferential stimulation of growth in advanta-
geous bacteria such as Bifidobacterium and other lactic acid bacteria in the gastrointestinal
tract leading to an increase in the concentration of short chain fatty acids, which is often
associated with a decrease in pathogenic bacteria [12,13]. Among prebiotics, XOS exhibits
great potential to maintain and improve intestinal microbiota for enhanced health and
growth in various animal species, specifically swine and poultry.

In pigs, weaning stress is characterized by negatively affecting the functions of the
intestine that include digestion, absorption, secretion, and immunity [14–17]. Weaning af-
fects the energy and protein metabolism as well as the cellular macromolecule organization
which, then, influences the proliferation of intestinal epithelial cells in weaned piglets [17].
Thus, implementing products such as prebiotics that improve intestinal function has been
of great interest to aid piglets in recovering from weaning stress and promotes growth
performance. In broiler chickens, feed additives such as prebiotics and carbohydrases have
seen wide use to improve intestinal health as well as stimulate performance [18]. This
review is focused on the structural difference and role of xylan in lignocellulosic materials
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as well as the use of xylanases and the extraction of XOS and its implementation into swine
and poultry feeds as a prebiotic to enhance intestinal health and growth performance.

2. Structure, Occurrence and Characterization of Xylans and Their Derivatives

The plant cell wall is central to intercellular communication and plays an essential role
in plant–microbe interactions. Typically, plant cell walls are divided into two categories
of primary and secondary walls. The former is used to describe cell walls that surround
cells capable of growth or those that are actively growing. Primary cell walls are composed
of hemicellulosic polysaccharides, cellulose microfibrils, and pectic polysaccharides [19].
As time passes and the cell becomes specialized, different layers of polymers start being
deposited, forming the secondary cell wall. Secondary cell walls are usually described
as thickened structures that contain lignin and polysaccharides such as cellulose and
hemicellulose [19]. Various hemicelluloses constitute the secondary cell wall such as xylan,
heteroxylan, xyloglucan, arabinogalactans, and glucomannan [20].

Common cereal grains and related coproducts used in the feeding of livestock contain
variable amounts of NSP. Non-starch polysaccharides have been shown to increase digesta
viscosity within the small intestines, resulting in depressed absorption and digestibility of
nutrients [21–24]. In addition, increased digesta viscosity has been linked to an increase
in the pathogenic load within the small intestine which could result in an increased level
of oxidative stress as well as inflammatory responses in the small intestine of nursery
pigs [23,24]. Viscosity is related to physical properties of the polysaccharide such as
structure and molecular weight rather than the type of linkage or sugar composition of the
polysaccharide [25]. Relative NSP (%) with soluble and insoluble components in common
feedstuffs can be seen in Table 1.

Between 10 and 30% of the composition of cereals is NSP with only trace amounts
containing pectic polymers and the bulk consisting of arabinoxylan, β-glucans, and cel-
lulose [25]. Common cereal grains used in animal feeding can be grouped into two
classifications, viscous and non-viscous cereals, based on the concentration of soluble NSP
present within the respective grain [25]. Cereals included within the viscous classification
are barley, oats, triticale, and wheat, while common cereals in the non-viscous group in-
clude corn, millet, rice and sorghum [25]. The arabinoxylan and β-glucans present in the
viscous cereal grain group are partially soluble and have been shown to form more viscous
solutions when digested, hence the distinction in the two classifications. The extent of
solubility of NSPs typically refers to its solubility in water and has a significant impact on
the nutritional properties of NSP when fed to monogastric animals [25]. Cereal by-products
usually contain higher amounts of insoluble NSP and therefore do not typically increase
digesta viscosity to the same extent as cereal grains [26]. In animal nutrition, NSPs are
classified as polysaccharides that cannot be degraded by endogenous enzymes, thus allow-
ing passage to the colon almost completely undigested in monogastrics [27]. These NSPs
interfere with nutrient digestibility, decrease phytate dephosphorylation, absorb water, and
shorten digesta residence time [28,29]. Not only does the NSP content of plants vary by
species or genotype, but also by environmental factors prior to harvest as well as storage
conditions following harvest [27].

Xylan is a major class of hemicellulose within all cell walls of grasses as well as
secondary cell walls of dicots [30]. Xylan is also a major structural element of xylem vessels
within stems of plants that aid in the rapid movement of water and also contribute to
the thickness of the wall in interfascicular fibers, maintaining mechanical durability [31].
Xylan is a family of structurally diverse NSP that share a β-(1-4)-linked xylopyranose
(Xylp) backbone as a common feature [32]. Classifications of xylan are usually based on
the degree of substitution and type of side groups attached to the backbone [30,33]. These
substitutions are diverse and vary not only phylogenetically but within different tissues
and stages of growth within a species [34].

Homoxylan is unsubstituted linear polysaccharide that is common in seaweeds of the
Palmariales and Nemaliales order [30]. Glucuronoxylan typically has single 4-O-methyl-α-
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D-glucopyranosyl uronic acid residues (MeGlcA) attached at position 2 of the main chain
of Xylp units [30]. The glucuronic acid side chain, however, may be present in the 4-O-
methylated as well as the non-methylated form [35]. In the literature, this configurational
type of xylan is generally referred to as 4-O-methyl-D-glucurono-D-xylan (MGX) [30].
Type I primary cell walls of dicots are typically composed of glucuronoxylan with a
backbone of β-1, 4 linked xylose substituted with α-1, 2 linked glucuronic acid [36]. These
glucuronoxylans bind tightly to glucan chains in cellulose microfibrils and connect to other
cellulose microfibrils or other glucuronxylans to help secure cellulose microfibrils into
place [37,38]. Both arabinoglucuronoxylan (AGX) and glucuronoarabinoxylan (GAX) are
characterized by single MeGlcA and α-L-arabinofuranosyl (α-L-Araf ) residue attached at
position 2 and 3 of the xylopyranose backbone, also with the possibility of being slightly
acetylated [30]. In general, AGX is distinguished by the backbone being substituted to a
greater extent by MeGlcA compared to hardwood MGX, with AGX having 5-6 Xyl residues
per uronic acid group and MGX averaging around 10 [30].

AGX is the major hemicellulose located within cell walls of lignified support tissues of
cereals and grasses [39]. GAX is typically found in non-endospermic tissues of cereal grains
such as corn, rice bran and wheat and consists of an arabinoxylan backbone characterized by
approximately ten times fewer uronic acid side chains than α-L-Araf side chains. The ratio
of arabinose to xylose (A:X), content of MeGlcA and the presence of disaccharide chains
differ from the source in which they are extracted, and this reflects differences in the degree
and pattern of substitution in GAX [39]. Arabinoxylan (AX) is the most common form of
xylan found in cereal grains such as wheat, rye, barley, oat, rice, corn, and sorghum [40],
and is characterized as having a linear backbone substituted with α-L-Araf residues
positioned either on O-2 or O-3 or on both the O-2 and O-3 of the Xylp monomer units [35].
Xyloglucan (XG) is the primary hemicellulose found in dicotelydons, such as soybeans, and
is characterized by a glucose back bone with xylose side chains attached to carbon 6 of the
glucose residues in the chain [41]. Due to the structure of XG, this polysaccharide possesses
a “mucin-like” molecular structure that grants mucoadhesive properties [42]. This allows
XG to act as a physical barrier that can protect the integrity of mucosal cells against
potentially pathogenic microorganisms, pro-inflammatory compounds and allergens [42].
Heteroxylan is structurally more complex than other xylans and is characterized by being
heavily substituted with various mono or oligosaccharides and tends to be present in cereal
bran, seed, and gum exudates [43]. With regard to the feeding of livestock, AX and XG are
of main interest as these polymers are the most prevalent in common monogastric feeds
that utilize a corn/soybean base.

The cell wall of most cereal grains is composed of 60–70% AX located in the aleurone
and endosperm [44]. Within the endosperm, however, the degree and pattern of arabinose
substitution and molecular mass differ between wheat [45], barley [46], rye [47], and oat [48].
Jaworski et al. [49] investigated the carbohydrate composition of major feedstuffs and found
that 48.65% of the total NSP content of corn consists of AX and 48.7% of the total NSP in corn
DDGS consisted of AX. Sorghum, sorghum DDGS, wheat and wheat bran had AX levels
of 44.3%, 41.2%, 63% and 64.3% of the total NSP composition, respectively. The amount of
insoluble AX, as well as the arabinose to xylose (A:X) ratio, determines how complex the
AX structure is, the higher the degree of arabinose substitution, the higher the crosslinking
between AX and the lower the enzymatic degradation [50–52]. It has long been established
that energy obtained from the absorption of pentose sugars, such as xylose and arabinose, is
lower when compared to hexose sugars, such as galactose, glucose, and mannose, within the
small intestine [53]. Arabinoxylan followed by mannan are the two most common pentose
sugars present in cereal grains, such as corn, wheat, and barley, and are considered major
antinutritional factors in the feeds presented to monogastric livestock species [54,55].

Studies performed in broilers found that AX is not digested in the small intestine and
produces a viscous chime in the intestine, leading to proliferation of pathogenic bacteria,
intestinal inflammation, and impairment of barrier function in the intestine and severe
intestinal lesions [56,57]. Supplementation of enzymes within feeds fed to chickens has
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demonstrated improved growth performance and nutrient utilization by lowering the
gastrointestinal viscosity related to AX and β-glucan ingestion [58,59]. Enzyme supplemen-
tation, such as xylanase in feeds fed to swine, has also reported improvement in nutrient
digestibility [60], as well as a reduction in digesta viscosity [61]. The use of exogenous
enzymes within formulated feeds fed to both swine and poultry is a common strategy
to help alleviate some of the antinutritional properties of NSP present in common feed-
stuffs [60,62,63]. Due to high levels of phytate being generally concentrated in the fibrous
cell walls of feedstuffs, mixtures of NSP-hydrolyzing enzymes and phytase have been
proposed to further improve nutrient digestibility in swine [61]. For instance, in an in vitro
study simulating the monogastric digestive tract, the addition of xylanase increased the
availability of soluble minerals in corn (copper, zinc, and manganese), wheat (copper, zinc,
iron, and manganese), wheat middlings (zinc), barley (copper and manganese), wheat bran
(manganese), and soybean meal (copper) [64]. According to the same authors, such an
increase in mineral availability could be obtained by a reduction in the antinutritional factor
of xylan by half (on average 55.3%) in feedstuffs after inclusion of xylanase. Polysaccharides
such as mannan and AX are considered anti-nutritional compounds due to their detrimen-
tal impact on nutrient utilization [65,66], conversely, oligomers produced from AX and
other xylan exert a more functional purpose in enhancing monogastric intestinal health.

Although AX is typically viewed as an antinutritional factor present in common cereal
grains that must be overcome, the effects of all polymers within the xylan family are
not as defined or understood. The mucoadhesive properties of XG allow the compound
to act as an additional hurdle for pathogen invasion through the reduction in bacterial
adherence as well as having a role in the preservation of tight junctions and paracellular flux
in vitro [67–69]. XG is a water-soluble polymer that can form a neutral and viscous aqueous
solution [70]. Though not much focus has been placed on XG in the feeding of livestock,
studies have been conducted on the possible beneficial effects of XG on intestinalmicrobiota.
In vivo, it was found that Firmucutes and Bacteroidetes are the two dominant phyla that
utilize XG [71]. More specifically, two strains of bacteria, Clostridia spp. and Bacteroides spp.,
have been identified in the rumen as being able to utilize XG [72]. A study conducted by
Moro Cantu-Jungles [73] demonstrated that the utilization of tucuma pulp XG by human
intestinal microbiota altered the composition and abundance of the microbiota, highlighted
with an increase in Bacteroidetes and reduction in Firmicutes and Actinobacteria. More
specifically, B. uniformis was considerably enhanced and Bifidobacterium sp. was notably
decreased. The majority of studies involved with XG are performed in single animal models
with rats serving as the primary model; no further research exploring the mechanism by
which XG forms a protective layer in the intestinal tract or the physiological effect of that
protective layer is available at this time. More research in this area is needed to solidify
the effects that XG has on intestinal health and, consequently, growth performance. The
antinutritional effects of xylan on swine and poultry performance can be seen in Table 2.

Table 1. Relative non-starch polysaccharides (NSPs) in feedstuff 1.

Feedstuff Arabinose, % Xylose, % AX, % β-Glucan, % Cellulose, % Total NSP, % Reference

Corn grain

1.2 (0.5) 1.7 (0.4) ND ND 1.7 8.1 (2.5) [49]
ND ND 5.1 (0.1) ND 2.0 8.0 (0.1) [28]
ND 1.7 4.3 0.3 2.0 8.3 [74]

2.0 (0.3) 2.7 (0.2) 4.7 (0.5) 0.1 2.0 9.0 (1.1) [75]

Soybean
meal

1.7 (0.9) 1.7 (0.2) ND ND 6.2 21.7 (6.3) [76]
ND ND 0.4 0.7 5.9 25.7 [74]

2.6 (0.9) 1.7 (0.2) ND ND 5.9 21.0 (5.8) [75]
3.1 (0.53) 1.7 (0.11) ND ND 4.4 19.2 (2.7) [77]

Wheat grain
ND ND 7.1 0.6 1.8 10.0 [74]

1.7 (0.6) 2.9 (0.7) ND ND 1.3 9.5 (1.9) [49]
ND ND 6.3 (1.8) 0.4 (0.4) 2.0 9.0 (2.4) [78]
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Table 1. Cont.

Feedstuff Arabinose, % Xylose, % AX, % β-Glucan, % Cellulose, % Total NSP, % Reference

Sorghum ND ND 3.7 0.1 1.1 5.5 [74]
1.6 (0.1) 1.3 ND ND 1.5 6.6 (0.4) [49]

Barley ND ND 7.1 (0.8) 0.7 (3.6) 3.9 12.2 (4.5) [78]
1.7 (0.3) 2.4 (0.4) ND 4.2 1.0 12.4 (5) [76]

Corn DDGS
ND ND 11.7 ND 10.7 25.3 [74]

4.3 (0.5) 6.2 (0.9) ND ND 5.8 25.0 (3.4) [49]
7.9 (2.4) 10.2 (2.6) ND ND 6.0 31.8 (8.3) [24]

Wheat DDGS ND ND 12.2 0.3 3.7 17.0 [74]

Rolled Oats 0.6 (0.4) 1.1 (0.2) ND 4.2 0.6 9.1 (4.8) [76]
1 Values reported on a % dry matter basis. DDGS, dried distiller grains with solubles. AX, arabinoxylan. ND, no data. Values inside
parentheses indicated soluble portion of NSP. Values outside parentheses denote insoluble portion of NSP.

Table 2. Effects of dietary arabinoxylan content on monogastric animal performance.

Animal BW Age, d Duration, d Xylan Content Effect Reference

Broiler ND 1 35

0.8% (additional AX
in crumble feed)

0.7% (additional AX
in pelleted feed)

Increased ileal viscosity, total AX
solubilization (22%) and

fermentation.
[79]

Broiler 38 g 1 14 2.1% AX (soluble)
Lowered body weight (24%).

Increased bifidobacteria
population (64%).

[80]

Broiler ND 6 19 2.5, 5.0, 7.5, 10.0,
15.0% D-xylose

Linear decrease in BWG (5–22%)
and FCR (1–10%). [81]

Pig 6.9 kg 26 30 2.6% AX

Lowered cecal pH (10%).
Reduced intestinal transcellular
permeability in SI and midcolon

(76%, 77%). Increased total
SCFA in cecum and midcolon

(32%, 19%). Growth
performance unaffected.

[82]

Pig 7.5 kg 30 20 4.6% AX
Lowest SCFA concentration.

Highest jejunal viscosity. Lower
villus height and proliferation.

[24]

Pig 10.7 kg 42 21 1.9% additional AX
in feed 1

Increased jejunal viscosity (22%)
and TNF-α (12%). Reduced AID

of DM (8%) and GE (8%).
Reduced villus height/crypt

depth ratio in duodenum (12%)

[83]

Pig 45–120 kg ND ND 12.3% AX

No effect on growth
performance. Decreased AID of

CP (16%), starch (5%), OM
(35%), and energy (20%).

[84]

Pig 58 kg ND 11 11.8% AX in high
fiber diet

Decreased AID of OM (7%),
starch (7%), and CP (3%).

Decreased AID of Arg (4%), Asp
(19%), Glu (3%), Leu (9%), and

Ser (12%).

[85]

ND, no data. AX, arabinoxylan. BWG, body weight gain. FCR, feed conversion ratio. SI, small intestine. SCFA, short-chain fatty acid.
TNF-α, tumor necrosis factor-α. AID, apparent ileal digestibility. DM, dry matter. GE, gross energy. CP, crude protein. OM, organic matter.
1 Calculated according to corn DDGS AX values given by Tiwari et al. [24] and corn AX values given by Knudsen [75].



Animals 2021, 11, 609 7 of 25

3. Production of Xylooligosaccharides

Oligosaccharides are short-chain polymers of monosaccharide units connected by α

or β glycosidic bonds. Xylooligosaccharides (XOS) are an emerging prebiotic produced
through chemical and/or enzymatic processing of lignocellulosic materials (LCMs). During
the pretreatment phase of LCMs for production of oligosaccharides, the large majority
of insoluble hemicelluloses are separated from the cellulose microfibrils surface and de-
graded to numerous soluble oligosaccharides. The amount, as well as the structure of the
oligosaccharide, is dependent on the method of pretreatment as well as the severity of
the extraction process. Different methods of production of XOS include autohydrolysis
through heating LCMs in water or steam, chemical treatments in dilute solutions of mineral
acids [86], direct enzymatic hydrolysis [87,88], or chemical fractionation to isolate xylan in
the LCM, which will later be converted to XOS through enzymatic hydrolysis [89].

Xylan extraction accomplished through steam and acid treatments has been shown to
produce large amounts of monosaccharides along with their dehydration products [90,91].
Autohydrolysis or the degradation of xylan through the use of steam results in increased
production of acetic acid through the deacetylation of xylan, which in turn hydrolyzes
hemicellulose present in LCMs [92,93]. Although the autohydrolysis method of extraction
avoids the use of corrosive chemicals, which could be perceived as advantageous to
consumers, the process requires special equipment that has the ability to operate at high
temperatures and can produce large amounts of undesirable by-products. The variety
of compounds formed by water or steam treatments includes monosaccharides, acetic
acid, lignin fractions of the parent stock, furfural, inorganic components, and protein-
derived products [94]. Refinement of the autohydrolysis liquors must be accomplished
through the removal of monosaccharides as well as non-saccharide components to obtain
a product with the highest XOS concentration as possible [95]. Ethanol, 2-propanol, and
acetone have been used in solvent extraction and precipitation for refinement of XOS;
these compounds aid in the removal of non-saccharide components within autohydrolysis
liquors and result in a fraction that is solvent-soluble, consisting of phenols and extractive-
derived compounds as well as the refined aqueous fraction [96]. The degree of purity and
recovery yields is not only dependent on the type of solvent used, but also the type of LCMs
used, as this determines the XOS substitution pattern and the presence of non-saccharide
components [97]. Ethanol has achieved the best purification results but exhibited limited
recovery yields [97–99]. The production of XOS manufactured by autohydrolysis has been
accomplished in a myriad of feedstuffs and biomaterials such as corncobs [100], barley
hulls [92], brewery spent grains [101,102], rice hulls [98], corn fiber [103], hardwoods [92],
and softwoods [104].

Basic or dilute acidic media can also be used to produce XOS through hydrolytic
processes. The most commonly used acid for XOS production is dilute sulfuric acid
(0.1–0.5 M) [105]. The concentration of the acid, temperature, and reaction time determines
the degree of polymerization (DP) distribution of the XOS formed, the amount of monosac-
charides is determined by the structure and composition of xylan in the LCM [86]. The
advantage of using acid hydrolysis for the production of XOS is the simplicity as well as
the rapidity of the process. Akipinar et al. [86] reported the reaction time of dilute acid
hydrolysis took a few minutes in contrast to several hours using enzymatic hydrolysis to
produce the same XOS conversion rate. The disadvantage of acid hydrolysis, however, is
the low yield of oligomers compared to monomers as well as the production of undesirable
byproducts such as furfural [105]. Methods for the removal of these byproducts include
membrane separation and adsorption chromatography.

Alkali compounds such as NaOH, KOH, and Ca (OH)2 or a mixture of these com-
pounds can be used to extract xylan from LCMs, which can then be converted to XOS via
xylanase enzymes with low exo-xylanase and/or β-xylosidase activity [88]. Production
of XOS through enzymatic hydrolysis has been accomplished using cotton stalks [88],
corn residues [106,107], wheat straw [108], oat spelt [109], beech wood [110], and hard-
wood [100,111]. The benefit of enzymatic hydrolysis is the lower production of undesirable
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monosaccharides and other by-products compared to autohydrolysis extraction as well lack
of special equipment needed for extraction. Enzymatic hydrolysis, however, results in much
longer reaction times in comparison to autohydrolysis or acid hydrolysis techniques [105].

Due to the relatively recent interest in the prebiotic industry for scientific research
and food applications, the classification of what constitutes a prebiotic is evolving. Gibson
et al. [11] suggested that a prebiotic is a selectively fermented ingredient that allows specific
changes—both in the composition and/or activity of the gastrointestinal microbiota that
confers benefits. Xylobiose is characterized by having two xylose residues in its structure;
xylotriose contains three xylose residues, and so on. The amount of xylose residues varies
from 2 to 10 in XOS production usually, with the xylan source as well as the method of
extraction impacting DP, monomeric units, and types of linkages [95]. These variations can
have a large impact on the prebiotic activity of XOS as the DP has been shown to have a
significant effect on the bifidogenic ability in the intestine [112]. Xylobiose and xylotriose
have been shown to be significantly more effective for the growth of bifidobacteria when
compared to longer chains of XOS [112]. This is important as XOS mixtures that differ
widely in composition can have very different dosage requirements and selectivity in terms
of fermentation.

4. Xylooligosaccharides on Intestinal Health and Performance

The gastrointestinal (GI) tract of pigs and poultry contains the voluminous portion of
immune tissue located in the body, encompassing over 70% of the total immune cells in the
organism [113]. Such massive presence of immune cells is necessary to provide selective
absorption of nutrients in addition to preventing harmful effects of toxins and potential
pathogens from the intestinal lumen. The commonly used term “intestinal health” consists
of five distinct domains that provide a complex and thorough definition: (1) a balanced
feed that provides all required nutrients and energy to the animal; (2) a robust mucosal
layer that preserves intestinal integrity; (3) adequate immune responses; (4) motor and
neuroendocrine functions of the intestine; (5) a balanced intestinal microbiome that sustains
a stable and healthy intestinal environment [113–115]. The physical barrier of the GI tract
includes epithelial cells, as well as intercellular tight junctions and mucus; the chemical and
immunological barrier consists of secretions, such as lysosomes and proteolytic enzymes,
as well as gastric acid. Tight-junction proteins within the structural barrier create a seal
between two enterocytes and help to regulate intestinal permeability. Mucosal immunoreg-
ulation in the intestine is generally controlled by a single layer of epithelial cells that act as
a barrier between the contents of the lumen and the lymphocyte-rich lamina propria [116].
These epithelial cells can recognize antigens and bacterial lipopolysaccharides through
pattern recognition receptors and respond with various chemokine and cytokine secretions
from local intestinal immune cells [117]. Disruption of this structural barrier is known as
hyperpermeability or leaky gut syndrome [117].

When intestinal health is threatened by immunostimulatory components and/or
exogenous polysaccharides residing within the lumen, feed efficiency and growth perfor-
mance suffer, ultimately causing depressed economic returns [115]. Supplementation of
oligosaccharides is one strategy that can aid in the reduction in immune response stimula-
tion and help mitigate the adverse effects on intestinal health caused by polymeric forms
within the dietary fiber source [53]. XOS resists salivary hydrolysis as well as hydrolysis
catalyzed by gastric and pancreatic secretions, allowing passage through the small intestine
to the colon of pigs or ceca of poultry, providing a substrate for microbial fermentation [118].
The functional difference between the oligosaccharide and polysaccharide form of xylan is
the inability of XOS to form cross-linkages and stimulate immune receptors [115]. There-
fore, it is speculated that XOS may help to reduce stimulation of the immune response in
monogastric animals, thus limiting the metabolic cost associated with maintaining that
immune response. Recent studies investigating the impact of XOS supplementation on
swine and poultry growth and health can be found in Table 3.
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Host and intestinal microbes constantly interact with one another resulting in modu-
lation of various physiological responses and functions of the host. Functional oligosac-
charides derived from xylan have been demonstrated in several studies to alter the micro-
bial ecology in the intestines of monogastric animals. In a study conducted by Okazaki
et al. [112], the authors utilized a mixture of XOS with varying DP: xylose (DP:1), xylobiose
(DP:2), xylotriose (DP:3), as well as other saccharides for in vitro fermentations with Bifi-
dobacterium adolescentis, Bifidobacterium infantis, and Bifidobacterium longum along with other
microorganisms. The authors reported that B. adolescentis showed exceptional ability to
utilize both xylobiose and xylotriose. The XOS mixture composed of mainly xylobiose was
greatly utilized by B. adolescentis, as well as B. infantis and B. longum. Lactobacillus species
were found to only slightly utilize XOS, except for L. fermentum. The authors also concluded
that Staphylococcus and E. coli did not utilize XOS as an energy source but utilized glucose
well, whereas most clostridium species did not utilize XOS. The authors then conducted an
in vivo experiment with XOS in humans and found that Bifidobacteria counts increased
from 10% (pre-administration of XOS) to 32% by the 2nd week following the onset of
XOS supplementation. The XOS-supplemented group also experienced decreased pH
of the feces and maintained the water content of the feces within a normal range, both
contributing to the establishment of a suitable condition for the intestine. These results
were obtained by providing daily supplementation of just 2 g of XOS.

Furthermore, a study performed by Smiricky-Tjardes et al. [119] investigated fermenta-
tion characteristics of different oligosaccharides by swine fecal microbiota. The oligosaccha-
rides that were evaluated included short, medium, and long-chain fructooligosaccharides
(FOS), stachyose, raffinose, transgalactooligosaccharides, glucooligosaccharides (GOS),
mannanoligosaccharides (MOS), and xylooligosaccharides. The authors reported that
fermentations of XOS resulted in the lowest pH at 8 and 12 h followed by GOS. These
data indicate that bacteria present in the large intestine may be able to ferment the XOS
substrate more extensively compared to the other oligosaccharides tested. In addition,
XOS fermentation produced the highest total short chain fatty acid (SCFA) concentration
among all oligosaccharides tested. The importance of SCFA production should never be
underestimated as SCFA has been found to contribute up to 28% of the total maintenance
energy of pigs [120]. In a study conducted by Finegold and others [121], bifidobacteria
counts in the human intestine increased 21% at 4 weeks from baseline and 17% at 8 weeks
from baseline in the high dose XOS group (2.8 g/d). The study also reported increased
numbers of B. fragilis in the high dose group; however, no increase in lactobacilli was
observed. At the genus level, Faecalibacterium spp. and Akkermansia spp. were signifi-
cantly increased in subjects consuming the high dose of XOS. Faecalibacterium spp. is a
butyrate-producer and has known anti-inflammatory properties within the intestine [122].
Akkermansia is a mucin-degrading bacterium that has been associated with improved in-
testinal health [123]. Jaskari et al. [124] and Van Laere et al. [125] both found that XOS
sourced from oats was not exclusively fermented by bifidobacteria but also, Bacteroides spp.,
Lactobacillus acidophilus, Klebsiella pneumoniae and Clostridium spp., all reporting moderate
growth using this substrate.

In a study conducted by Pan et al. [126], the authors evaluated XOS supplementation
on the microbial activity and concentration in grow-finish phase pigs. The authors found
that supplementing 100 g/ton XOS during the grow-finish phase of production led to
an increase in the relative abundance of lactobacilli, as well as an increase in SCFAs and
bioamines. The levels of acetic acid, propionic acid, and SCFA were significantly higher in
the 100 g/ton XOS group than the non-supplemented group; the author suggests this points
to certain bacteria, such as lactobacilli, having a key role in SCFA production. Compared
to the antibiotic-fed group (0.04 kg/ton virginiamycin and 0.2 kg/ton colistin), the XOS
supplemented group had significantly improved the relative abundances of bacteria often
considered beneficial such as Coprococcus, Lactobacillus, Roseburia, and Ruminococcus in
addition to increased luminal concentrations of SCFAs, which are considered advantageous
for intestinal health [127]. In a similar study, Liu et al. [128] investigated the effects
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of probiotic or xylooligosaccharide supplementation on nutrient digestibility, noxious
gas emission, and intestinal health in weanling pigs. The authors reported that XOS
supplementation of 200 mg/kg for 28 days improved both ADG (17%) and G:F (14%)
in weanling pigs also in addition to lowering the fecal NH3 concentration. Conversely,
Yin et al. [129] reported that XOS supplementation had no effect on growth performance
or biochemical parameters in weaned pigs but did markedly enhance the α-diversity
of the intestinal microbiota. The author partially attributes the discrepancy of growth
performance on the low dosage (0.01% XOS) used in the study and called on future studies
to confirm the optimal dose of XOS for weaned pigs.

Madhukumar and Muralikrishna [130] evaluated the ability of different strains of
Bifidobacteria, Lactbacilli, and Pediococci spp. to utilize XOS from Bengal gram husk (BGO)
and wheat bran (WBO). All bacterial strains tested were found to readily use XOS; this
was concluded due to the increase in turbidity of the culture broth, xylanase, xylosidase,
and arabinosidase activity, dry cell mass and the increased production of short chain fatty
acids. Out of all the microbes tested, Lactobacillus brevis NDRI strain RTS and Pediococcus
pentosaceus NCDO 813 more effectively utilized XOS from both WBO and BGO. These two
microorganisms were followed by Bifidobacterium adolescentis NDRI 236, Bifidobacterium
bifidum ATCC 29521, Bifidobacterium bifidum NCDO 2715, Pediococcus pentsaceus ATCC 8081
and Lactobacillus plantarum NDRI strain 184. These findings are in line with previous
studies confirming that Bifidobacterium strains are able to efficiently ferment xylose-
based oligosaccharides [118,131]. Beneficial bacteria such as Bifidobacteria and lactic
acid bacteria produce enzymes that degrade carbohydrates and ferment non-digestible
oligosaccharides; this leads to the production of SCFAs that provide energy to the host
as well as aids in the acidification of the bowel [132]. The increase in production of
SCFAs as a result of fermentation also decreases intestinal pH, which correlates with
increased population growth of beneficial microbes thus inhibiting the growth of potentially
pathogenic bacteria [133].

Lin and others [134] conducted a randomized controlled study evaluating the prebiotic
effects of XOS on fecal microbiota in healthy human volunteers after a period of 6 weeks
(1.2 g XOS/d). The results showed that XOS supplementation significantly increased fecal
bacteria counts of Bifidobacterium spp., Lactobacillus spp., as well as decreased counts of
Clostridium perfringens without altering the total anaerobic bacterial counts. Clostridium
perfringens is considered to be detrimental as it is an opportunistic pathogen with the ability
to cause food poisoning and necrotic enteritis [135]. The authors attribute the decreased
counts of Clostridium perfringens to the increased production of SCFA and consequently
the decrease in intestinal pH. Hsu and others [136] evaluated XOS, as well as FOS sup-
plementation on cecal microbiota, cecal pH, cecal weight, serum lipid levels, and their
inhibitory effect on precancerous colon lesions in male rats. The researchers found that
supplementation of 60 g/kg of XOS or FOS for 35 days significantly increased the intestinal
bifidobacteria populations as well as decreased cecal pH levels when compared to the
control. The XOS supplemented group had greater colonic wall and cecal wall relative
weights as well as a greater bifidobacteria population than the FOS supplemented group.
The authors attribute the increased cecal total and wall weights to a normalization of
epithelial cell proliferation due to the increased production of SCFA. Howard et al.’s [137]
findings were in accordance with the previously mentioned study and reported that XOS
supplementation increased cecal wall density due to an enhancement in epithelial cell
proliferation. A previous study conducted by Tomomatsu [138] reported the effective daily
dose of FOS in humans is 3.0 g/d, yet only 0.7 g/d for XOS, suggesting XOS may be more
effective than FOS. Additional effects of XOS supplementation include improvement of
bowel function, calcium absorption, and lipid metabolism along with lowering of cardio-
vascular disease and colon cancer [139]. XOS has also been shown to be thermostable
during pasteurization and can be autoclaved at a lower pH than FOS, which is found
to be more susceptible to degradation at higher temperatures and lower pH [140]. This
is significant as XOS should theoretically be more resistant than FOS to common feed
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milling processes such as forms of extrusion and pelleting in addition to possessing easier
storage options.

Table 3. Effects of the addition of xylooligosaccharide (XOS) to swine and poultry feeds.

Animal BW, kg Age, Day Duration, Day % XOS in Feed,
(Purity) Effect Reference

Broiler ND 1 42
0.0025, 0.0050, 0.0075,

and 0.0100 (35%
XOS)

Linearly improved FCR (4%)
(100 mg/kg) and water-holding
capability in thigh muscle (37%)
(100 mg/kg). Linearly decreased

duodenal crypt depth (12%)
(100 mg/kg)

[141]

Broiler ND 1 39
0.20 (d 1 to 13)

and 0.50 (d 14 to 39)
(35% XOS)

Improved FCR (2%). Increased
villus length in ileum (14%). Higher

abundance of butyrate producing
species and Lactobacillus crispatus

[142]

Broiler ND 1 59 0.005, 0.01, and 0.02
(8.24% XOS)

Improved ADG (9.44%), FCR
(4.18%) [10 g/kg].Enhanced
endocrine metabolism and

improved immune function

[143]

Broiler ND 1 21 0.50 2
Decreased glucose, VLDL, and

Streptococci and E. coli populations.
Increased Bifidobacteria

[144]

Broiler ND 1 29 0.025 and 0.100 (35%
XOS)

0.100% reduced FI (11.82%).
Improved FCR (11.5%) [145]

Broiler 1 ND 21 21 0.025 2
Improved BWG (6.01%), G/F
(2.32%). Increased proportion

of SCFAs
[146]

Laying
hen ND 196 56 0.01, 0.02, 0.03, 0.04,

and 0.05 2

Increase in eggshell thickness,
eggshell relative weight and plasma

1,25(OH)2 D3.
Lowered plasma GPT, cholesterol,

HDL, VLDL

[147]

Pig 6.30 21 28 0.02 (50% XOS) Improved ADG (17%), FCR (14%).
Decreased NH3 levels [128]

Pig 7.44 ND 28 0.01 (40% XOS) Reduced serum IFN-γ. Enhanced
α-diversity [129]

Pig 30.00 70 30 to 100 kg BW 0.01, 0.025, and 0.05
(35% XOS)

Increased abundance of Lactobacilli
and other beneficial bacteria.

Increased SCFA concentration
[100 g/t]

[126]

1 Challenged with coccidia. 2 XOS purity not reported. ND, no data. FCR, feed conversion ratio. ADG, average daily gain. VLDL, very
low-density lipoprotein. FI, feed intake. BWG, body weight gain. SCFA, short-chain fatty acid. GPT, alanine aminotransferase. HDL,
high-density lipoprotein. IFN-γ, interferon-γ.

5. Xylanase

In addition to chemical and enzymatic treatments of LCM for the production of XOS
to be used in animal feeding, supplementation of xylanase in feeds offered to monogastric
animals is also of great interest. As previously stated, common cereal grains and related
coproducts contain fluctuating amounts of NSP which can increase the viscosity of the
digesta in the small intestine resulting in the reduction in digestibility and absorption of
nutrients. Furthermore, the increase in digesta viscosity can lead to morphological changes
on the mucosal surface [4,24], increased pathogenic load in the small intestine [148] and
increased digesta transit time [149].



Animals 2021, 11, 609 12 of 25

Xylanases are classified as glycosidases that catalyze the hydrolysis of 1,4-β-D-xylosidic
linkages in the polymer xylan [1]. Endo-xylanases are characterized by hydrolyzing bonds
in the interior of xylan polymers or exo-xylanases that act by hydrolyzing xylan from either
the reducing or non-reducing end [150]. Originally, Wong et al. [150] attempted to classify
xylanases based on their physicochemical properties and suggested two classification,
xylanases with low molecular weight (<30 kDa) and basic pI, and xylanases with high
molecular weight (>30 kDa) and acidic pI. This was soon replaced by a more complete
system [151] as approximately 30% of identified xylanases, specifically fungal xylanases,
could not be classified under this system [1]. This novel classification system not only
facilitated the classification of xylanases but glycosidases in general (EC 3.2.1.x) and is
still the standard means of classification to this day. This system classifies enzymes based
upon the primary structure of the catalytic domain only and then categorizes enzymes of
related sequences into families [152,153]. Initially, xylanases and cellulases were grouped
into six families; today there are 168 glycoside hydrolase (GH) families recognized on the
CAZy database (http://www.cazy.org/, accessed on 22 December 2020). Due to divergent
evolution, some families have related three-dimensional structures and thus are grouped
into higher hierarchical levels known as clans [154]. To date, 18 different clans have been
proposed (GH-A to GH-R) with the majority of clans containing two to three families aside
from GH-A which contains 24 families. Xylanases are typically reserved to families 10
and 11 [155–158].

Up to now, GH5, GH8, GH10, GH11, GH30, GH43, GH51, and GH98 are the eight
glycoside hydrolase families that EC 3.2.1.8 is classified under [149]. The classification of
different endo-xylanases is reflective of their use in various applications with GH10 and
GH11 being the most commonly used and researched. Both fungal and bacterial from
GH10 and GH11 constitute the predominate enzymes used in trials for the production
of different types of XOS [149]. The genes obtained from bacterial endo- β-xylanases are
mainly from Gram-positive bacteria under the phyla Firmicutes and Actinobacteria with the
classes Bacilli and Clostridia being the most commonly derived from Firmicutes [149]. The
genus, Streptomyces, constitutes the majority of candidates from Actinobacteria derived
endo- β-xylanases [159–161]. The pattern of XOS obtained has been found to be at least,
to some extent, GH-family dependent. This is highlighted by a study performed on
Trichoderma sp. xylanases, where GH10 xylanases were shown to have higher activity on
smaller substrate molecules resulting in the preferential production of XOS with lower
DP (xylobiose to xylopentaose). Conversely, GH11 xylanases were more active on larger
substrates and resulted in XOS with higher DP (xylobiose to xylohexose) [161]. In addition,
Abou-Hachem [161] found that two xylanases from Psedozyma hubeiensis, representing
both GH10 and GH11, produced no xylose or xylobiose but only produced xylobiose to
xyloheptose. This finding indicates that the pattern in which XOS is produced is also
enzyme dependent and not solely family dependent. GH10 xylanases have been shown to
hydrolyze β-1,4-xylosidic linkages in heteroxylans but can also handle glucose to some
extent when in the active site [149]. GH10 xylanases have been reported to have low ability
to act on insoluble forms of xylan [144] but can act on substitutions to the xylose backbone.
Interestingly, GH10 xylanases have shown high affinity for short XOS indicating a small
substrate binding site is present [149].

Enzymes in GH11 show high activity for heteroxylans with a backbone of xylose units
and absence of glucose. Interestingly, GH11 enzymes prefer longer substrates with the
affinity for XOS increasing from DP 3 (xylotriose) up to DP 5 (xylopentose) and no activity
on XOS with a DP of less than 3 [162]. The restrictions of substitutions for GH11 enzymes
typically result in total degradation of substituted xylan being lower compared to GH10
enzymes, which can handle a higher degree of substitutions at the active site [163]. Due to
the smaller size of GH11 xylanases, however, the enzyme is shown to be more efficient in
degrading insoluble xylan compared to GH10 xylanases [164].

Enzymes previously assigned to GH5 have now been reclassified to GH30 as phyloge-
netic analysis showed these enzymes were more similar to GH30 [165]. GH30 enzymes

http://www.cazy.org/
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are grouped into eight subfamilies, predominantly based on the arrangement of secondary
structures that form the side β-structure [149]. The enzymes with the majority of the
xylanase activity reside in subfamily 8 with the only exception being two characterized
xylanases in subfamily 7 [166,167]. As of now there are nine characterized GH30 xylanases
that are structurally determined with four having been extensively researched, BSXynC
from Bacillus subtilis [167,168], EcXynA from Erwinia chrysanthemi [169,170], Xyn30D from
Paenibacillus barcinonensis [171], and CpXyn30A from Clostridium papyrosolvens [172]. Both
BsXynC and EcXynA were the first xylanases classified as GH30 and characterize the com-
mon features seen with GH30_8 xylanases [149]. Both of these xylanases differ from those
found in GH10 and GH11 due to high affinity for glucuronoxylan and xylooligosaccha-
rides substituted with methylglucuronic acid or glucuronic acid and very low affinity for
unsubstituted xylan, XOS and arabinoxylan [149]. Xyn30D from Paenibacillus barcinonensis
is solely assigned to EC 3.2.1.136 and is exclusively active on glucuronoxylan [171] and
CpXyn30A from Clostridium papyrosolvens is solely designated to EC 3.2.1.8 and shows
moderate affinity for glucuronoxylan yet high affinity for arabinoxylan and XOS [172].

β-D-xylosidases (EC 3.2.1.37.) cleave monomers from the non-reducing end of xy-
looligosaccharides; however, acetylxylan esterases (EC 3.1.1.72), ferulic acid esterases (EC
3.1.1.73), α-L-arabinofuranosidases (EC 3.2.1.55.), p-coumaric acid esterases (EC 3.1.1.B10),
and α-D-glucuronidases (EC 3.2.1.139) catalyze the removal of side groups [1]. Thus, in the-
ory, supplementing xylanase in corn-based feeds, an ingredient rich in fiber, should enhance
the energetic contribution of said fiber resulting in improved growth performance. How-
ever, very few studies report an improvement in both digestibility and performance [173]. A
hypothesis by Bedford [174] proposed that rather than non-starch polysaccharide enzymes
(NSPases) producing more fermentable sugars, these NSPases may produce oligosaccha-
rides that then signal to the microbiome and increase the capacity of the entire system to
degrade fiber. According to the author, this is evidenced by a recent study performed in
chickens that revealed 35 d of xylanase supplementation resulted in greater fermentation
of pentoses and AXOS in the cecum of supplemented birds compared to the control. In
a study conducted by Duarte et al. [5], newly weaned pigs were supplemented with a
xylanase or a protease or a combination of both throughout two feeding phases for a total
of 24 days. It was found that the BW of pigs increased when both enzymes were used
in conjunction but not when individually supplemented. At the culmination of the trial,
it was concluded that xylanase supplementation (45,000 XU/kg) improved the growth
performance and intestinal morphology, reduced digesta viscosity and reduced intestinal
oxidative stress in newly weaned pigs; however, the protease was shown to be more
effective in the maintenance of intestinal morphology due to increases in villi length and
reductions in crypt depth and cell proliferation. These results correlate nicely with the
findings of Passos et al. [4], who observed that xylanase supplementation reduced jejunal
digesta viscosity in nursery pigs when fed feeds consisting of 30% DDGS, thus enhancing
nutrient utilization. Data obtained in the study also indicated that as the dietary level of
xylanase increased, digestibility of DM OM, energy, NDF and crude ash increased by 9.2,
8.5, 9.3, 12.4, and 10.7%, respectively. These results are in accordance with an earlier study
conducted by Diebold et al. [175] as increases in ileal digestibility of OM, CP, CF, NDF, and
energy resulted from xylanase supplementation in nursery pigs, however, to a lesser extent.
Interestingly, a study focused on the supplementation of xylanase in the feeds offered to
growing pigs (26 kg) found that improvements in AID of DM, CP, and energy were small
(<2%) but significant [176]. Naturally, mature pigs have a larger and more developed GIT
with higher cellulolytic activity as well as lower feed intake per kg of body weight and
slower digesta transit time [177]. This may be attributed to the ability of older and more
mature pigs, such as sows, to digest a greater amount of fibrous components in comparison
to young pigs, such as nursery or early growers, as fiber digestibility and the capacity for
fiber degradation increase with body weight [178]. Indeed, Jørgensen et al. [177] reported
that sows digest a larger portion of NSP in the small intestine compared to growing pigs.
The authors also found that sows had a higher capacity to digest insoluble NSP; however,
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no such difference in digestibility of soluble NSP between sows and growing pigs was
observed. This enhancement in fiber degradation and capacity in more mature and heavier
weight pigs may limit the effectiveness of xylanase supplementation when added to feeds.
A trial conducted by Kerkaert et al. [179] investigated the effects of xylanase on growth
performance as well as carcass characteristics in 1944 mixed sex growing-finishing pigs
(initial BW: 22.63 kg, final BW: 133.64 kg) and found that, overall, there was no difference
in ADG, ADFI, or FCR between the supplemented pigs and control. It is interesting to note
that the authors used increasing levels of xylanase in six nutritionally adequate corn-soy
based feeds at levels of 0, 2.3, 4.5, 9.1, 18.1 and 34.0 SXU/lb of enzymatic activity for
xylanase (IU)/lb (0, 5, 10, 20, 40, 75 IU/kg) of added xylanase. Although no difference
was found in growth performance or percentage of pigs receiving injectable treatments
and overall mortality, carcass yields did increase when intermediate levels of xylanase
were fed.

Xylanase inhibitors in common feedstuffs have proven to be yet another obstacle to
overcome. The presence of these inhibitors was first discovered in the late 1990s within
wheat [180,181]. Following the initial discovery, these proteinaceous xylanase inhibitors
were found in barley [182], rye [183], and maize [184]. Wheat (Triticum aestivum) was found
to contain three structurally different inhibitors, T. aestivum xylanase inhibitor (TAXI) [180],
thaumatin-like xylanase inhibitor (TLXI) [185] and xylanase-inhibiting protein (XIP) [186].
Other cereals with proteinaceous inhibitors of xylanase are similar in structure to both XIP
and TAXI found in wheat thus are often called XIP-like and TAXI-like proteins [183]. Studies
have shown that these inhibitors can specifically affect microbial xylanases belonging to GH
families 10 and 11 but, interestingly, have no effect on endogenous enzymes synthesized
by plants and xylanases outside of the previously mentioned families [183–187]. There
have been specific microbial xylanases from GH families 10 and 11 that are insensitive to
proteinaceous inhibitors, but these are thought to be the exception and not the rule.

XIP-I has been found to competitively inhibit fungal xylanases in GH families 10
and 11 but not to the same extent in bacterial xylanases found in these families [183,186].
XIP-I has also been found to inhibit α-amylases in GH family 13 [188,189] and barley
α-amylase/subtilisin inhibitor (BASI) has been shown to partially inhibit xylanase in
GH family 11 [189]. This is noteworthy as some authors suggest this cross inhibition of
xylanases and amylases by proteins from cereals may have developed throughout the
plants’ evolution as a protective function against external attack of phytopathogens [182].
XIP-like inhibitors have been found in barley [190,191], maize [191], rice [192,193], oat [194],
and Algerian pearl millet [195]. TAXI-like proteins typically inhibit fungal and bacterial
xylanases from GH family 11 but not GH family 10, with TAXI-I-like proteins generally
inhibiting xylanases with low and high pI values and TAXI-II-like proteins solely inhibiting
xylanases with high pI [188,196]. TLXI is the newest classification of proteinaceous xylanase
inhibitor, being discovered in 2006 [194]. Similarly, TLXI proteins tend to inhibit xylanases
from GH family 11 but have no such effect on GH family 10 [184]. Data are limited
regarding the presence of TLXI-like inhibitors in other cereals besides durum wheat [194].
The TAXI, XIP, and TLXI content in cereal grains is highly variable and dependent on the
breed, cultivar, time of harvest as well as the specific fraction of the grain [195–197]. For
example, the XIP-I content of wheat belonging to the same cultivar, ranged from 0.12 to
0.6 mg/g in the flour and 0.21–0.56 mg/g in the grain [197]. TAXI content of 20 different
cultivars of wheat grain grown in France saw variation from 0.05 to 0.19 mg/g [197]. The
response to xylanase supplementation in swine and poultry feeds can be seen in Table 4.



Animals 2021, 11, 609 15 of 25

Table 4. Effects of xylanase supplementation in swine and poultry feeds.

Animal BW Age, Day Duration, Day Xylanase Activity Effect Reference

Broiler 45 g 1 35 1875, 3750, 5625
XU/kg

Linear increase in BWG (2%), AID of
DM, CP and GE, VH:CD,

Lactobacillus populations in ileum
and cecum. Decreased FCR (3%) and

cecal E. coli populations (15%).

[198]

Broiler ND 1 42 16,000 BXU/kg

Decreased ileal digesta viscosity
(19%) and lactic acid in cecum.

Increased soluble arabinose and
xylose residues in ileum, increased

Bifidobacterium spp, acetic and butyric
acids in cecum.

[199]

Broiler ND 1 24 16,000 BXU/kg
Improved BWG (2%) and reduced

FCR (3%) and jejunal digesta
viscosity (30%).

[200]

Broiler ND 1 28 16,000 BXU/kg

Increased DM retention, NEp (3%),
energy retained as fat (5%) and
efficiency of energy retained as

fat (6%).

[201]

Broiler ND 1 40 12,000, 24,000
BXU/kg

No difference in growth performance
or total VFA concentration. [202]

Broiler ND 1 49 16,000, 32,000
BXU/kg

Improved FCR (6%). Improved AID
of energy in wheat-based diet. 32,000

BXU/kg increased isovaleric and
caproic acid content.

[203]

Broiler 1 ND 1 21 16,000 BXU/kg Increased FI (8%) and BWG (12%).
Improved FCR (2%). [204]

Broiler 2 ND 1 21 5500 XU/kg

Increased VH:CD in jejunum (4%).
Decreased plasma endotoxin levels.

Increased occludin mRNA
expression in ileum (22%).

[205]

Broiler ND 1 42 16,000 XU/kg

No effect on BWG, FI, FCR or carcass
traits. Increased serum insulin.
Interaction with dietary ME on

serum peptide YY concentration.

[206]

Broiler ND 1 49 16,000 BXU/kg

Birds fed reduced energy diet
supplemented with xylanase had
performance equivalent to control

group. Improved FCR during grower
and finisher phase (7%).

[207]

Pig 7.2 kg 21 24 45,000 XU/kg

Increased ADG (6%). Reduced
viscosity of jejunal digesta (13%),
mucosal MDA (17%), crypt depth

(10%) and crypt cell
proliferation (15%).

[5]

Pig 7.2 kg 28 28 4000 XU/kg

Improved ATTD of DM (2%), energy
(8%), NDF (23%), ADF (19%),

hemicellulose (25%), and
phosphorus (29%).

[208]
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Table 4. Cont.

Animal BW Age, Day Duration, Day Xylanase Activity Effect Reference

Pig 7.5 kg 23 20 1500 EPU/kg

Increased concentration of SCFA
(20%), villus height in duodenum
(8%), proliferation rate in crypt of

jejunum. Reduced viscosity of jejunal
digesta (26%).

[24]

Pig 3 7.9 kg 21 20 10,000 XU/kg

Increased ADG in phase 1 (44%),
villus height (13%) and VH:CD ratio

(22%). Reduced crypt depth and
Ki-67+ (7%).

[6]

Pig 10.7 kg 42 21 1500 EPU/kg

Increased ADG (7%), AID of GE (7%)
and NDF (14%), crypt depth in

duodenum (11%). Reduced viscosity
of jejunal digesta (14%) and plasma

TNF-α (36%).

[83]

Pig 14.2 kg 49 35 8000, 16,000, 32,000
BXU/kg

No effect on growth performance,
nutrient digestibility, VFA

concentration or peptide YY
concentration.

[209]

Pig 17.6 kg ND 10 700, 1400 LXU/kg

Enhanced ileal digestibility of NDF,
DM (14%), OM (13%), and energy
(14%) (1400 LXU/kg). Reduced
viscosity of jejunal digesta (14%)

(700 LXU/kg).

[4]

Pig 24.3 kg ND 21 450, 900, 1800 XU/kg

Improved ADG (14–16%), AID of
DM (2–4%), histidine, and glutamic

acid. Increased fecal and ileal
Lactobacillus populations. Reduced

fecal and ileal E. coli counts.

[210]

Pig 25.8 kg ND 16 24,000 BXU/kg

Increased AID of GE (15%) and NDF
(41%) in dry wheat diets. Increased
AID of NDF (32%) in liquid DDGS

diets. Increased crypt depth (14%) of
jejunum in DDGS-fed pigs.

[211]

Pig 34.8 kg ND 14 16,000 BXU/kg Improved ATTD of GE (1%), DM
(1%) and TDF (10%) [212]

1 1500 FTU/kg of phytase added, diet deficient in Ca (0.20%), available phosphorus (0.18%), ME by 80 kcal/kg and amino acids (5%).
2 Challenged with Clostridium perfringens. 3 Challenged with ETEC, supplemented with probiotic Bacillus sp. 2 × 108 CFU/kg. XU, the
amount of enzyme that releases 1 micromole of reducing moieties from 1.5% arabinoxylan substrate solution per minute at pH 5.0 and
40 ◦C. BWG, body weight gain. AID, apparent ileal digestibility. DM, dry matter. CP, crude protein. GE, gross energy. VH:CD, villus
height to crypt depth ratio. FCR, feed conversion ratio. ND, no data. NEp, net energy for production. VFA, volatile fatty acid. BXU, one
BXU is defined as the amount of enzyme that produces 1 nmol reducing sugars from birchwood xylan in 1 s at 50 ◦C and pH 5.3. FI, feed
intake. ME, metabolizable energy. ADG, average daily gain. MDA, malondialdehyde. ATTD, apparent total tract digestibility. NDF, neutral
detergent fiber. ADF, acid detergent fiber. EPU, one EPU is the amount of enzyme which releases 0.0083 µmol of reducing sugars (xylose
equivalent) per minute from oat spelt xylan at pH 4.5 and 50 ◦C. SCFA, short-chain fatty acid. TNF-α, tumor necrosis factor-α. LXU, one
LXU is defined as the amount of enzyme which releases 1 µmol of reducing sugars equivalents (as xylose or glucose) from birch xylan or
barley glucan per minute at pH 5.5 and 50 ◦C. OM, organic matter. DDGS, dried distiller grains with solubles. TDF, total dietary fiber.

6. Conclusions

In conclusion, understanding the structural difference, type, and concentration of xy-
lan within the plant material, as well the various xylanases available for use, is paramount
for the future of feeding animals and understanding the role of fiber within feeds. Char-
acteristic differences in xylan substrates have a direct impact on both endogenous and
exogenous cleavage of the polymer to more functional oligosaccharides and thus are central
in giving rise to the desired prebiotic effects. Supplementation of XOS seems to confer phys-
iological benefits in various animal species and typically exerts these benefits at a lower
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dose than other prebiotics. Available experimental evidence supports the claim that XOS
can help prevent or mitigate gastrointestinal disorders as well as increase the numbers of
beneficial bacterial populations. These results are encouraging; however, data on XOS are
still limited in comparison to other prebiotics, such as FOS, MOS, and GOS, so additional
studies are needed to solidify the promising initial results. The supplementation of xylanase
within feeds fed to poultry and swine arose to combat the antinutritional effects of NSP
in common feedstuffs and provides an opportunity to improve the energetic contribution
of fiber and produce XOS for fermentation in the distal intestine. However, the response
to xylanase supplementation is highly variable due to a number of factors such as age of
animal, feed composition, duration of supplementation and presence of xylanase inhibitors.
Additionally, even when benefits are reported with xylanase supplementation, whether
those benefits are a result of nutrient release from NSP, reduction in digesta viscosity or
production of short chain xylooligosaccharides is still in question. As with many other
feed additives, the effects, as well as the mode of action, are likely multifactorial. Issues
related to digesta viscosity are mainly associated with the feeding of poultry; however,
the poultry industry is much more consolidated in terms of genetic variability and diet
composition. As the swine industry progresses in becoming more sustainable to feed the
growing global population, more coproducts from various industries may be implemented
into swine feeds, thus necessitating the for understanding the role that digesta viscosity
plays in the feeding of these animals. Future studies focusing on the in-vivo mode of
action of xylanase in corn-based feeds fed to poultry and swine could greatly improve the
consistency of feeding outcomes as well as our understanding of carbohydrases in general.
Whether providing xylanase to the feeds to hydrolyze xylan within the intestine of the
animal or supplementing XOS prepared in-vitro to the feeds of animals for improving
growth rate and intestinal health is still up for debate and future studies should focus on
this gap in scientific knowledge. Comparisons among and within species on the extent
of physiological effects that XOS can confer is clouded not only by differences in purity
of the XOS product administered, but also by the degree of polymerization and type of
substitution present in the product.
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