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Abstract

Background: Human peripheral blood is a promising material for biomedical research. However, various kinds of biological
and technological factors result in a large degree of variation in blood gene expression profiles.

Methodology/Principal Findings: Human peripheral blood samples were drawn from healthy volunteers and analysed
using the Human Genome U133Plus2 Microarray. We applied a novel approach using the Principle Component Analysis and
Eigen-R2 methods to dissect the overall variation of blood gene expression profiles with respect to the interested biological
and technological factors. The results indicated that the predominating sources of the variation could be traced to the
individual heterogeneity of the relative proportions of different blood cell types (leukocyte subsets and erythrocytes). The
physiological factors like age, gender and BMI were demonstrated to be associated with 5.3% to 9.2% of the total variation
in the blood gene expression profiles. We investigated the gene expression profiles of samples from the same donors but
with different levels of RNA quality. Although the proportion of variation associated to the RNA Integrity Number was mild
(2.1%), the significant impact of RNA quality on the expression of individual genes was observed.

Conclusions: By characterizing the major sources of variation in blood gene expression profiles, such variability can be
minimized by modifications to study designs. Increasing sample size, balancing confounding factors between study groups,
using rigorous selection criteria for sample quality, and well controlled experimental processes will significantly improve the
accuracy and reproducibility of blood transcriptome study.
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Introduction

Peripheral blood is a very promising material for biomedical

research due to its critical role in immune responses and

metabolism. The ease and minimal invasiveness with which it

can be collected have also made peripheral blood attractive for

clinical use. Over the last decade, advances in microarray have

offered the opportunity to study the expression of thousands of

genes simultaneously in a biological system. The microarray-based

transcriptome analyse of peripheral blood may provide new

insights into the variations in global gene expression specifically

associated with physiological and pathological events. Numerous

studies have addressed the use of gene expression profiling of

peripheral blood from patients with malignancies, infectious

diseases, autoimmunity and cardiovascular diseases [1,2].

Before the blood transcriptomic biomarkers can be used for

clinical purposes, it is essential to understand the underlying

factors that contribute to the sources of variability in blood gene

expression profiles. Previous studies have investigated the blood

gene expression profiles of normal individuals [3]. Those studies

used either whole blood or peripheral blood mononuclear cells.

Gene expression profiles were found varying greatly among the

different blood cell types [4–6]. The results demonstrated the

significant contributions of genetic and physiological factors, as

well as varying proporations of different cellsubsets, in

determining the overall gene expression profiles of human

blood [7–9]. Yet other research also provided evidences that

gene expression profiles of normal individuals can be remark-

ably stable over time [10,11]. Several studies reported an excess

of hemoglobin mRNA present in total RNA extracted from
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whole blood resulting in high noise and reduced sensitivity in

transcriptome analysis [12,13]. The usefulness of available

methods to minimize excess hemoglobin mRNA was then

evaluated [14]. Furthermore, technological factors such as

sample collection, transportation and storage conditions, as well

as RNA isolation and amplification techniques, in addition to

biological factors, can have a significant impact on the blood

gene expression profiles [15–20].

In the study described here, we used the PAXgeneTM Blood

RNA System and GeneChipH U133Plus2 Microarray to analyze

gene expression profiles in peripheral blood from healthy Chinese

volunteers. For each donor, the physiological variables and blood

cell counts were measured. The blood gene expression profiles

were investigated for possible interference of age, gender, body

mass index (BMI), sample RNA quality, as well as the presence of

varying proportions of different blood cell types.

Methods

Human Blood Sample Collection
For gene expression profiling, 2.5 ml of peripheral blood were

drawn from each volunteer by PAXgeneTM Blood RNA tubes

(PreAnalytix, Hilden, Germany). Another 2 ml of blood were

collected for Complete Blood Count analysis. The test was

performed by standard procedures at the Fudan University

Shanghai Cancer Center Clinical Laboratory. The measures

included white blood cell counts (leukocyte counts, relative counts

for neutrophils, lymphocytes and monocytes), red blood cell counts

(erythrocyte counts, hemoglobin amount, and relative reticulocyte

count), as well as platelet counts. This study was carried out at the

Fudan University Shanghai Cancer Center and was approved by

the Ethical Committee of Fudan University Shanghai Cancer

Center for Clinical Research. The written informed consents were

obtained from all participants.

RNA Isolation and Preparation
Once blood samples were drawn into the PAXgeneTM Blood

RNA tubes by standard phlebotomy procedure, the samples were

inverted ten times, maintained at room temperature for 2 hours,

frozen at 220uC overnight and then moved to 280uC for storage

until further use. Frozen blood samples were thawed at room

temperature for 3 hours, followed by total RNA extraction with

the PAXgeneTM Blood RNA kit according to the manufacturer’s

instruction. The intact total RNA of each participant was

separated into three tubes (Figure 1). While the 1st tube was kept

intact, the 2nd and 3rd tubes were heated at 70uC for 10 and 20

minutes, respectively. The quantity of the total RNA was

measured by a spectrophotometer at an optical density (OD) of

260 nm. Total RNA purity was assessed by the A260/A280 ratio.

RNA Integrity Number (RIN) was determined using RNA 6000

Nano Chips and the Agilent 2100 Bioanalyzer (Agilent Technol-

ogies, Palo Alto, CA, U.S.A.).

Microarray Experiments
We reversely transcribed 50 ng of total RNA and linearly

amplified single-stranded cDNA using Ribo-SPIATM technology

with the WT-OvationTM RNA Amplification System (NuGEN

Technologies Inc., San Carlos, CA, USA) according to the

manufacturer’s standard protocol. The reaction products were

purified with a QIAquick PCR purification kit (QIAGEN

GmbH, Hilden, Germany). We subsequently fragmented 2 mg

of amplified and purified cDNA with RQ1 RNase-Free DNase

(Promega Corp., Fitchburg, WI, USA) and labelled the

fragments with biotinylated deoxynucleoside triphosphates

using terminal transferase (Roche Diagnostics Corp., Indianap-

olis, IN, USA) and GeneChipH DNA Labeling Reagent

(Affymetrix Inc., Santa Clara, CA, USA). The labelled cDNA

was then hybridized onto a GeneChipH U133Plus2 Array

(Affymetrix) in a Hybridization Oven 640 (Agilent Technolo-

gies) at 60 rotations per minute and 50uC for 18 hours. After

hybridization, the arrays were washed and stained according to

Affymetrix protocol EukGE-WS2v4 using a GeneChipH Fluidics

Station 450 (Affymetrix). The arrays were scanned with a

GeneChipH Scanner 3000 (Affymetrix). All reactions and array

hybridizations were carried out by the same technician to

minimize the technical variation.

Statistical Analysis
Statistical analysis was performed using R software and

packages from the Bioconductor microarray analysis environ-

ment [21,22], adapted to our needs. Gene expression profiles

were quantified using the Robust Multi-array Average (RMA)

method [23–25] implemented in the ‘‘Simpleaffy’’ package [26].

The GeneChipH U133plus2.0 Array contains 54,000 probesets

for the interrogation of 38,500 human genes. Very often,

multiple probesets are targeting to the unique gene. It is also

found that several probesets were poorly annotated without any

target gene. To reduce the noise and redundancy, we applied a

bioinformatics-based filter using the information of Entrez Gene

Database. For multiple probesets mapping to the same Entrez

Gene ID, only the probeset showing the largest Inter Quantile

Range (IQR) were retained and the others were removed. The

probesets without Entrez Gene ID annotation were also

removed. After bioinformatics-based filtering, the expression

profiles of 9859 genes in 24 samples were retained for the

downstream analysis.

Let Y be a m|nmatrix, where the rows of Y are the genes

(m = 9859) and the columns of Y are the samples (n = 24).

Although with the bioinformatics filtering, the difficulty

remained in the fact that the number of genes was still much

larger than the number of samples. Thus, we performed

Principle Component Analysis (PCA) to reduce the dimension-

ality of gene expression data. In PCA, singular value

decomposition was applied to the mean centered data matrix

and decomposed Y into the following:

Y~UDVT

where the matrices U and Vwere column orthogonal, so that

UT U~VT V~I and D was a diagonal matrix. The columns of

Vwere the right eigenvectors and also called principle components

(PCs). We were particularly interested in the PCs because these

represented the aggregated trends in the gene expression profiles.

Specifically, the first PC was the linear combination of the gene

expression profiles that explained the most variation in the data.

The second PC was the linear combination of the gene expression

profiles that explained the most variation in the data once the first

PC had been removed, and so on. The proportion of total

variation captured by the i-th PC was given by:
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pi~d2
i =
XN

n~1

d2
n

where i = 1,2,..,n; di was the eigenvalue of the i-th eigenvector,

which was obtained from the i-th diagonal entry of D. Afterwards,

a PCA extended method, called ‘‘Eigen-R2’’ [27], was used to

precisely determine the proportion of variation explained by the

predefined biological and technological variables X based on the

PCA transformed data. Let pi be the i-th PC and let p̂pi be the fitted

values when modelling pi in terms of the predefined variable X .

For each of PCs, the proportion of variation in pi that is explained

by X was calculated by:

R2
p̂pi
~

ŝs2
p̂pi

ŝs2
pi

~

Pn
j~1 (p̂pij{

�̂pp̂ppi)
2

Pn
j~1 (pij{�ppi)

2

where �̂pp̂ppi was the mean of p̂pi and �ppi was the mean of pi. Since pi

of the total variation in the data is explained by pi , R2
p̂pi

should be

weighted by pi. Additionally, given each pair of PCs is

uncorrelated, the variation explained by X in pi is orthogonal

to the variation explained by X in pj where j=i. Therefore,

the proportion of total variation explained by X was estimated

by:

Figure 1. The study design for evaluating the impact of RNA quality on the blood gene expression profiles. From each healthy
volunteer, 2.5 ml of peripheral blood was collected using a PAXgeneTM Blood RNA tube. The extracted total RNA from each individual was aliquoted
into three tubes. The 1st tube was kept intact, while the 2nd and 3rd tubes were heated at 70uC for 10 and 20 minutes, respectively. According to the
RNAs processing, microarray experiments were then performed in the sequential series: Series_1, Series_2 and Series_3. The RIN value was measured
and used as the technical variable for evaluating the impact of RNA quality on the blood gene expression profiles.
doi:10.1371/journal.pone.0026905.g001
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Eigen{R2~
Xn

i~1

piR
2
p̂pi

Given the small cohort of present study, we further adjusted the

R2 calculation to accommodate small sample sizes by:

adjusted{R2~1{
(1{R2)|(n{d0)

(n{d)

where d0 and d were the degrees of freedom spent in fitting the

null model and the target model, respectively. By default, the null

model was a model with only intercept (d0 = 1). The adjusted

estimator had been shown to be a unbiased estimator of the true

value [28].

The gene-wise linear analysis was performed using the lmFit()

function from the ‘‘Limma’’ package [29], adjusted for multiple

testing with False Discovery Rate (FDR) [30]. For each gene, a

linear model was fitted over the series of arrays with the log2-

transformed gene expression intensity as the dependent variable

and the biological and technological factors as the independent

variables. The functional annotation enrichment analysis for gene

ontology and pathways were performed by the DAVID Bioinfor-

matics Resource (http://david.abcc.ncifcrf.gov) with default

parameters [31].

The microarray dataset discussed in this study were MIAME

compliant [32]. The raw data had been deposited in ArrayExpress

Database [33] and were accessible through the accession number:

E-MEXP-2917.

Using the Independent Dataset for in silico Validations
Given the small sample size in the present study, we further used

an independent, previously published blood gene expression

dataset to verify our findings [10]. The Karlovich et al. study

employed the same methodologies for the sample collection

(PAXgeneTM Blood RNA System) and gene expression profiling

(HG-U133Plus2 Microarray), hence we considered the dataset an

appropriate material to perform the in silico validation. From the

Karlovich et al. dataset, we selected a total of 100 arrays with blood

samples drawn from 20 (11 female and 9 male) healthy volunteers

at five time points (Starting day, Day 14, Day28, Day90 and Day

180). All volunteers were Caucasians and lived in eastern France.

The volunteers ranged in age from 23 to 64 yr (mean 6

SD = 46615). The age distribution was well balanced between

men and women. The raw data were downloaded from NCBI’s

Gene Expression Omnibus [34] with the accession number:

GSE16028.

Gene Expression Analysis by Real-time PCR
For each sample, 0.2 mg of total RNA was reverse-transcribed

into cDNA using the Prime ScriptTM reverse transcriptase (TaKaRa,

Dalian, China). Real-time PCR analysis was performed by the

LightCyclerH 480 system (Roche Diagnostics, Mannheim, Ger-

many) in 96-well plates using the SYBR Premix Ex TaqTM

(TaKaRa, Dalian, China) according to the manufacturer’s

instructions. Primer designs were provided in the Table S1. ACTB

(b-actin) was used as an internal control. The relative quantifica-

tion of mRNA expression was calculated as a ratio of target gene

to ACTB. The correlations of real-time PCR data with microarray

data and predefined variables were assessed by the Spearman’s

Rank Correlation Test.

Results

Sample Characteristics and Variable Definition
Peripheral blood samples were taken from 8 (4 female and 4

male) apparently healthy volunteers. All volunteers were Chinese,

not on medication and non-fasted. The volunteers ranged in age

from 22 to 35 yr (mean 6 SD = 27.164.1). The age distribution

was balanced between men and women. The volunteers’ height

and weight were measured and converted into BMI. The BMI

ranged from 17.6 to 29.4 (mean 6 SD = 21.363.7). For each

volunteer, the blood cell counts including leukocyte count,

lymphocyte%, monocyte%, neutrophil%, erythrocyte count,

hemoglobin amount, reticulocyte% and platelet count were

measured.

We performed Spearman’s Rank Correlation Test to explore

the correlationship between age, gender, BMI and blood cell

counts (Figure 2). Given that lymphocytes and neutrophils

together making up 80–95% of total leukocytes, not surprisingly,

the lymphocyte% and neutrophil% was inversely correlated with

each other (r= 20.95, P-value,0.001). The erythrocyte count,

hemoglobin amount, monocyte% as well as BMI were observed

significantly correlated with the gender factor (P-value,0.001).

The reticulocyte% and platelet count were also found to be

correlated with each other (r= 0.69, P-value,0.001). The age

variable was not apparently correlated with any other variable.

Furthermore, the RIN value was measured to assess the RNA

integrity on a scale from 0 (low integrity) to 10 (high integrity) [35].

Afterward, it was used to investigate the effect of RNA quality on

the blood gene expression profiles. All the sample characteristics

on the basis of demography, blood cell counts and RNA quality

were given in the Table 1.

Investigation of Variation in Blood Gene Expression
Profiles

Our blood gene expression dataset contained 9859 genes and

24 samples. The goal is to dissect the variation of thousands of

gene expression profiles and characterise the underlying factors

that contributed to the data variability. For this purpose,

sophisticated data analysis methods were required. PCA is a

widely used unsupervised linear technique for dimensionality

reduction. The central idea behind PCA is to transform the

original dataset consisting of a larger number of interrelated

variables to a new set of uncorrelated principal components

(PCs), while retaining as much as possible the variation present in

the original data set [36]. Therefore, we used PCA to decompose

the overall data variation into a set of PCs (Table S2). It was

noteworthy that the Top-10 PCs explained 85% of the total

variation, suggesting that the gene expression profiles might be

affected by only few but significant factors. To explore and

visualise the major sources of variation, samples were displayed in

a 3-dimensional space consisting of the Top-3 PCs which

explained 28.2%, 17.0% and 10.2% of the total variation,

respectively. In the Figure 3, the spatial distance between the

samples actually reflected their approximate degree of transcrip-

tional similarity. Interestingly, the samples from each individual

across experimental series were in close proximity to one another

on the plane of PC1 and PC2, while male and female groups

were separated in the direction of PC3. All of PCs transformed

from original gene expression data were retained to avoid any

information loss. Furthermore, a PCA extended method, called

‘‘Eigen-R2’’, was used to precisely determine the proportion of

variation related to the predefined biological and technological

factors based on the PCA transformed data (Table 2).

Gene Expression Profiling of Human Whole Blood
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Figure 2. Heatmap of correlationship between demography variables and blood cell count measures. The Spearman’s Rank Correlation
Test was performed to assess the correlationship between age, gender, BMI and blood cell counts. The absolute values of correlation coefficients
were represented as the heatmap with red colour indicating high correlations and green colour indicating low correlations between the variables.
doi:10.1371/journal.pone.0026905.g002

Table 1. Sample information on the basis of demography, blood cell counts and RNA quality.

Variable Men Women Total

Mean±SD Study Range Mean±SD Study Range Mean±SD Study Range

Age 28.364.6 25–35 26.063.9 22–31 27.164.1 22–35

BMI 23.664.0 20.2–29.4 19.061.1 17.6–20.2 21.363.7 17.6–29.4

Leukocyte (10ˆ 9/l) 6.862.9 3.6–10.6 5.660.5 5.0–6.1 6.262.0 3.6–10.6

Lymphocyte% 28.969.2 20.0–40.8 32.664.3 28.5–38.6 30.767.0 20.0–40.8

Monocyte% 7.060.9 6.8–7.9 5.761.1 4.7–7.2 6.461.2 4.7–7.9

Neutrophil% 61.269.7 48.4–69.4 59.865.0 52.4–62.8 60.567.2 48.4–69.4

Erythrocyte (10ˆ 12/l) 5.560.4 4.9–5.9 4.360.3 4.1–4.7 4.960.7 4.1–5.9

Hemoglobin (gm/dL) 162.5611.1 147–171 129.868.5 122–139 146.1619.8 122–171

Reticulocyte% 0.560.2 0.3–0.7 0.460.4 0.2–1.0 0.560.3 0.2–1.0

Platelet(10ˆ 9/l) 246.0628.9 206–275 247.5656.1 190–322 246.8641.3 190–322

RIN Value 7.761.2 6.3–9.2 7.861.0 5.8–9.2 7.761.1 5.8–9.2

doi:10.1371/journal.pone.0026905.t001
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Variation Associated with RNA Quality and the Influence
of RNA Degradation on Blood Gene Expression Profiles

It is widely believed that the highest quality RNA should be

used for gene expression analyses. However, in some cases, such as

human autopsy samples or paraffin embedded tissues, high quality

RNA samples may not be available. Previous studies had

investigated how the RNA quality might affect the gene expression

profiles in the tissue samples [37,38], remarkably little is know for

the situation in blood. In this work, with a specific study design, we

intended to explore the possible effect of sample quality on the

blood gene expression profiles (Figure 1). The extracted total RNA

from each individual was aliquoted into three tubes. The 1st tube

was kept intact, while the 2nd and 3rd tubes were heated at 70uC
for 10 and 20 minutes, respectively. According to the RNAs

preparation, microarray experiments were then performed in the

sequential series: Series_1, Series_2 and Series_3. The average

RIN value for Series_1, Series_2 and Series_3 were 8.9, 7.7 and

6.5, respectively. The distributions of RIN value between series

were significantly different (P-value,0.001).

The RIN variable was shown to be associated with 2.1% of the

total variation in blood gene expression data. The effect of RNA

quality on the expression of individual genes was estimated

through the gene-wise linear analysis at FDR ,0.01. We identified

28 genes which the expression profiles were significantly associated

with the RIN variable. The list of genes was submitted to the

DAVID Bioinformatics Resource for functional enrichment

analysis. The overview of variable-associated-gene list and

enriched functional annotation terms were provided in the Table

S3. The genes involved in ‘‘mRNA metabolic process’’ (ZFP36L2,

PTBP2, SFRS2IP, HNRNPC and RBM25; P-value = 3.2E-3),

‘‘endoplasmic reticulum’’ (CTSZ, CNIH4, SLMAP, ATF6B, CNPY3

and ERGIC1; P-value = 1.4E-2), as well as ‘‘chromatin organiza-

tion’’ (EPC1, HUWE1, MLL3 and MPHOSPH8; P-value = 2.5E-2)

were significantly enriched. As an example, the expression profiles

of ERGIC1 (Endoplasmic Reticulum-Golgi Intermediate Com-

partment 1) were found highly variable between the series of

Figure 3. Illustrations of principle component analysis on the
blood sample gene expression profiles. Principle component
analysis was performed on gene expression profiles of 24 blood
samples. Samples were displayed in three-dimensional space consisting
of the Top-3 principal components which explain 55.4% of the variation
of the whole dataset. Colours indicate blood samples collected from the
same volunteers. Circles represent females and crosses represent male.
The distances between samples reflect their approximate degree of
transcriptional similarity. The individuals across three experimental
series were in close proximity to one another, whereas females and
males were separated.
doi:10.1371/journal.pone.0026905.g003

Table 2. Eigen-R2 analysis for dissecting data variation,variable-associated gene identification and functional annotation
enrichment.

Variable

Proportion of
Variation Explained
by Variable (%)

N of Significant
Genes
(FDR,0.01) Top Enriched Functional Annotation Term*

Age 8.3 196 blood coagulation, blood vessel development, stem cell maintenance, inflammatory response

Gender 9.2 105 iron ion binding, kinase binding, defense response, negative regulation of signal transduction

BMI 5.3 122 natural killer cell mediated cytotoxicity, hematopoietic cell lineage, phosphatase activity

leukocyte 12.6 557 leukocyte activation, mitochondrial membrane organization, homeostasis of number of cells,
T cell receptor signaling pathway, immune response, cell activation, hemopoiesis, regulation
of apoptosis

lymphocyte% 15.3 1146

monocyte% 7.8 50

neutrophil% 16.4 1560

erythrocyte 8.6 299 negative regulation of apoptosis, iron ion binding, oxidation reduction, erythrocyte
differentiation

hemoglobin 3.6 60

reticulocyte% 3.7 7

platelet 4.3 24 immune response, nucleotide binding,

RIN value 2.1 28 mRNA metabolic process, endoplasmic reticulum, chromatin organization

All the gene lists as well as the corresponding functional annotation enriched terms obtained via DAVID were provided in the Table S3.
doi:10.1371/journal.pone.0026905.t002
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arrays (Figure 4). Given the same cohort, the average expression

intensity of ERGIC1 dropped from 615 to 394 between Series_1

and Series_3, indicating the notable influence of sample RNA

quality on the individual gene expression profiles. Recently, the

technology advances such as RNA 6000 Nano Chips and Agilent

2100 Bioanalyzer had made it possible to access the samples’ RNA

quality beforehand. In case the quality of RNA was not satisfied,

one would simply discard it. However, our results showed that this

may not solve all the problems. Given the blood samples drawn

from the same donors and high quality RNAs in Series_1 and

Series_2 with the RIN values between 7.3 and 9.2, the expression

intensity of ERGIC1 were significantly different (P-value = 0.002).

Hence, it could be also important to consider the distribution of

RIN variable and make it equally distributed between the

comparison groups.

Variation Associated with Age
The aging effect might contribute to 8.3% of the total variation

in blood gene expression profiles. A list of 196 genes was identified

to be significantly associated with the age variable. Interestingly,

several biological processes including ‘‘blood coagulation’’

(CD40LG, CD59, TFPI, SERPING1 and PF4; P-value = 0.02),

‘‘blood vessel development’’ (CEACAM1, EPAS1, IL8 and TCF7L2;

P-value = 0.45), ‘‘stem cell maintenance’’ (RIF1, TCL1A and

TCF7L2; P-value = 0.03) and ‘‘inflammatory response’’ (C3AR1,

TNFSF4, IL8, CD40LG, HRH4, RIPK2, SERPING1, IDO1 and

CXCL10; P-value = 0.02) were significantly enriched. Given the

fact that the blood vessel walls become thicker and tougher during

the aging process, it was not unexpected that the angiogenesis-

related genes were appeared in the list. On the other hand, the

blood itself also changes with age in different aspects. The amount

of bone marrow decreases with age, causing a decline in the

formation of new blood cells. Therefore, recovery from bleeding

episodes will be slowed. Age-related decline also occurs in white

blood cells. Most of the white blood cells stay at the same levels,

but certain white blood cells important to immunity (e.g.

lymphocytes) decrease in their number and ability to resist

inflammatory and infection.

We performed PCA and Eigen-R2 analysis using the indepen-

dent Karlovich et al. dataset. The age variable was found to be

associated with 2.3% of the total variation. This value was in

accordant with what had been reported by Karlovich et al.,

however, somewhat lower compared to our result. We noticed

some differences between two studies that might contribute to the

discordance. The age range was smaller in our study (22–35 yrs)

compared to the Karlovich et al. study (23–64 yrs). Actually, 14 out

of 20 volunteers from Karlovich et al. dataset were above the

35 yrs old. Hence, it was not unexpected that our result could not

be fully retrieved from those samples. Furthermore, Karlovich et al.

explained that the broad age range in their study might have

prevented the detection of the aging effect in blood [10]. Although

similar observations had been reported previously [7,11], the aging

effect in blood transcriptome needs to be further specified with

more samples and a broad range of ages.

Variation Associated with Gender
The gender effect was found to be associated with 9.2% of the

total variation in blood gene expression data. A total of 105

gender-associated genes were identified at FDR ,0.01. It was

intriguing that the Top-10 gender-associated genes were located

on either the X or Y chromosomes (XIST, RPS4Y1, EIF1AY,

KDM5D, DDX3Y, CYorf15A, CYorf15B, USP9Y, UTY and PRKY).

The ectopic expression patterns of gene XIST (X Inactive Specific

Transcript) was observed showing an average intensity of 3,000 in

females and almost no expression in males. On the contrary, the Y

chromosome linked gene RPS4Y1 (Ribosomal Protein S4, Y-linked

1) was highly expressed in males with an average intensity of 1,800

but nearly no expression in females (Figure S1). In the Karlovich et

al. dataset, gender effect was associated with 9.7% of the total

variation, which was very similar to what was found in our dataset.

Furthermore, the specific patterns of XIST and RPS4Y1 were also

retrieved. The ratio of XIST to RPS4Y1 showed significantly

higher in females compared to males (P-value = 1.6E-7), which

might represent a useful gender-associated biomarker for the blood

gene expression analyses in the future.

Variation Associated with BMI
Given the distinct distribution of BMI between men and

women, we included the gender variable to the Eigen-R2 linear

regression model for the estimation of variation. The BMI variable

was found to be associated with 5.3% of the total variation. A total

of 122 BMI-associated genes were identified at FDR ,0.01. Of

these genes, a cluster of 9 genes known to be related to ‘‘natural

killer cell mediated cytotoxicity’’ were enriched (TNFRSF10A,

PRF1, KIR2DL5A, KIR2DS1, GZMB, KIR2DL1, KIR2DL3,

SH2D1B and KIR3DL1; P-value = 8.2E-6). Other genes involving

in the ‘‘hematopoietic cell lineage’’ (CD38, CD8B, IL7 and CD5; P-

value = 0.03) and ‘‘phosphatase activity’’ (ALPL, PTPRN2,

INPP4B, PSPH and NT5E; P-value = 0.05) were also enriched in

the list.

Variation Associated with White Blood Cells
It was noteworthy that the white blood cell measures

(‘‘Leukocytes’’, ‘‘Lymphocyte %’’, ‘‘Monocyte %’’ and ‘‘Neutro-

phil %’’) were associated with 7.8% to 16.4% of the total variation.

Previously, white blood cells had been described as the most

transcriptionally active of all cell types in blood and might present

the most sensitive gene expression profiles in response to biological

Figure 4. ERGIC1 gene expression profiles across the series of
arrays. In x-axis, the samples were arranged in accordance with the
array Series 1–3 from the left to the right. Colours represent blood
samples collected from the same volunteers. The y-axis indicates the
gene expression signal intensity.
doi:10.1371/journal.pone.0026905.g004
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and technological factors [7,11]. Taking the advantages of PCA

and Eigen-R2 method, our result demonstrated that the heteroge-

neity of white blood cell constituents indeed contributed to the

most significant portion of the overall data variation. Via the gene-

wise linear analysis at FDR,0.01, we identified 50, 557, 1146 and

1560 genes associated with ‘‘Monocyte %’’, ‘‘Leukocytes’’,

‘‘Lymphocyte %’’ and ‘‘Neutrophil %’’, respectively. The white

blood cell counts had been shown highly correlated, hence we

combined the four gene sets together and resulted in a list of 1893

unique genes. As expected, numerous specific (e.g. ‘‘leukocyte

activation’’, P-value = 2.7E-7; ‘‘mitochondrial membrane organi-

zation’’, P-value = 2.7E-5; ‘‘homeostasis of number of cells’’, P-

value = 8.1E-5; and ‘‘T cell receptor signalling pathway’’, P-

value = 1.1E-2) as well as more general biological processes (e.g.

‘‘immune response’’, P-value = 4.2E-10; ‘‘cell activation’’, P-

value = 2.8E-8; ‘‘hemopoiesis’’, P-value = 2.2E-5; and ‘‘regulation

of apoptosis’’, P-value = 1.8E-4) were significantly enriched among

the list of leukocytes-associated genes. Hierarchical clustering of

the leukocytes-associated genes resulted in perfect clustering of

individual samples, demonstrating the predominating effect of

individual heterogeneities of leukocyte subsets on the blood gene

expression profiles (Figure 5).

Variation Associated with Red Blood Cells
Given the different physiological conditions between men and

women, the red blood cell counts were correlated with gender.

Hence, we included the gender variable into the Eigen-R2 linear

regression model for the estimation of variation. The red blood

measures (‘‘reticulocyte%’’, ‘‘erythrocyte’’ and ‘‘hemoglobin’’) were

found to be associated with 3.6% to 8.6% of the total variation. A

total of 7, 60 and 299 genes were identified to be associated with

‘‘reticulocyte%’’, ‘‘erythrocyte’’ and ‘‘hemoglobin’’, respectively.

The three lists were combined and resulted in a set of 306 unique

genes. Interestingly, multiple relevant biological processes, such as:

‘‘negative regulation of apoptosis’’ (HTATIP2, GNRH1, SOCS3,

CLU, SNCA, PF4, PIM3, BCL2L1, STRADB, CSDA, MIF, PROK2,

Figure 5. Hierarchical clustering of leukocytes-associated genes across samples exhibiting significant inter-individual differences.
The expression profiles of 1893 leukocytes-associated genes across 24 samples were used for unsupervised hierarchical clustering. On the heat map,
each row represents one gene and each column represents one patient. Red colour indicates gene over-expressed and green colour indicates gene
low-expressed. Colours of bars associated with clustering of the columns designate samples from different donors. The leukocytes-associated genes
perfectly cluster individual samples, suggesting the predominating effect of individual heterogeneities of leukocyte subsets on the blood gene
expression profiles.
doi:10.1371/journal.pone.0026905.g005
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BAG1, HIPK3, BNIP3L, TGM2, MPO, BCL3, VNN1, BCL6, THBS1

and F2R; P-value = 4.1E-7), ‘‘iron ion binding’’ (STEAP4, UTY,

SNCA, EIF2AK1, CYP27A1, PGRMC1, HEBP1, HBZ, NDUFS8,

MPO, SLC25A37, HBQ1, KDM6B and KDM5D; P-value = 1.0E-3),

‘‘oxidation reduction’’ (ACOX1, STEAP4, HTATIP2, DHRS13,

UTY, SNCA, GMPR, SLC25A12, ADI1, AKR1C3, SNAI3, CYP27A1,

PRDX6, BLVRB, NDUFS8, MPO, SMOX, ERO1L, KDM6B, NQO2

and KDM5D; P-value = 4.5E-3), as well as ‘‘erythrocyte differenti-

ation’’ (TAL1, HBZ, BCL6 and KLF1; P-value = 3.0E-2) were

significantly enriched.

Variation Associated with Platelets
Human blood platelets play critical roles in normal hemostatic

processes and pathologic conditions such as inflammation,

thrombosis, vascular remodelling, and wound repair. Although

platelets are anucleate and lack nuclear DNA, they retain

megakaryocyte-derived mRNAs [39]. Platelets contain rough

endoplasmic reticulum and polyribosomes, and thereby they

maintain the ability for protein biosynthesis from cytoplasmic

mRNA [40]. Quiescent platelets generally display minimal

translational activity, but newly formed platelets synthesize various

a-granule and membrane glycoproteins [41]. In our dataset, the

platelets variable was associated with 4.3% of the total variation.

The gene-wise linear analysis identified 24 platelet-associated

genes. Several genes involved in ‘‘immune response’’ (DDX58,

OAS3, RSAD2, IFI44L, OAS1, TREML1 and IFI6; P-value = 3.6E-

5) as well as ‘‘nucleotide binding’’ (OAS1, OAS3, DDX6, DDX58,

NUAK1, CMPK2 and RNF213; P-value = 5.6E-3) were significantly

enriched. Moreover, it was intriguing that PEAR1 (platelet

endothelial aggregation receptor 1) and GP3A (platelet glycopro-

tein III) were also found significantly associated, but with slightly

higher FDRs at 0.02 and 0.03, respectively.

Validation of the Microarray Data by Real-time PCR
Real-time PCR is generally considered the "gold-standard"

assay for measuring gene expression and is often used to confirm

findings from microarray data. A total of five genes (C3AR1, XIST,

LCK, OAS1 and IFIT1), which associated with age, gender and

blood cell counts in microarray data, were selected for real-time

PCR validation. The gene expression profiles determined by

microarray and real-time PCR were found to be highly correlated

(Table 3). Meanwhile, the real-time PCR based gene expression

profiles were also significantly associated with the age, gender,

lymphocyte%, reticulocyte% and platelet variables.

Discussion

In the study described here, we intended to characterize the

major sources of variation in the gene expression of human blood.

We used the PCA and Eigen-R2 method to dissect the overall

variability of gene expression data and associate the major sources

of variation with the predefined biological and technological

factors. The results indicated that the predominating sources of the

variation could be traced to the individual heterogeneity of the

relative proportions of various blood cell types (leukocyte subsets

and erythrocytes). The physiological factors (age, gender and BMI)

were found to be associated with a significant proportion of

variation in blood gene expression profiles. We further used a large

independent dataset to perform the in silico validation. By applying

the same statistical analyse, the similar gender effect as well as

lessened aging effect was verified in the Karlovich et al. dataset.

Through the specific design, we investigated the blood gene

expression profiles from the same donors but with different levels

of RNA quality. Although the proportion of variation associated to

the RIN variable was mild, the significant impact of RNA quality

on the expression of individual genes was observed.

Remarkably, the individual heterogeneities of blood cell constit-

uents represent the most significant portion of the overall variation in

blood gene expression. As a major defense and transport system, the

blood interacts with virtually every organ and tissue in the human

body, and thereby the gene expression responses of circulating white

blood cells can potentially provide early warning of any abnormal-

ities they discover. From this point of view, our results lend support to

the clinical use of blood transcriptomic biomarkers for exposure,

disease progression, diagnosis or prognosis. Given the significant

effect of the relative proportions of different blood cell types, it is

highly recommended to perform the CBC tests simultaneously and

integrated the blood cell counts into the blood transcriptome study.

For the donors with the blood cell counts falling outside normal

ranges, they should be excluded. In some cases the size effects of

biological or environmental factors are mite, the differences of gene

expression profiles between comparison groups can be whelmed by

the unconcerned individual heterogeneity and resulting in no

differentially expressed genes was found. Then, it is possible to

deconvolute blood gene expression profiles ‘‘in silico’’ if the measures

of blood cell counts are available. This type of analysis can help to

deduce cellular composition or cell-specific levels of gene expression

using statistical methodologies [42-44]. Ultimately, increasing the

sample size of comparison groups whenever possible is always helpful

to neutralize the unconcerned individual heterogeneity. In the study

design, physiological factors (age, gender and BMI) need to be well

controlled and have them equally distributed between the

comparison groups. The RNA quality of blood samples should be

accessed before gene expression profiling. In case the quality of RNA

not fit the predefined criteria, samples should be removed. It is also

important to pay an attention to the global distribution of sample

quality and make it well balanced between the comparison groups.

Table 3. Validation of microarray data by real-time PCR.

Gene Associated variable Correlations with variable Correlations with microarray data

r P-value r P-value

C3AR1 age 0.82 8.4 E-7 0.95 2.0 E-6

XIST gender 0.87 4.2 E-8 0.75 2.0 E-5

LCK lymphocyte% 0.6 0.002 0.73 7.2 E-5

OAS1 reticulocyte% 20.65 0.001 0.87 2.5 E-6

IFIT1 platelet 20.77 1.1 E-5 0.94 2.2 E-6

doi:10.1371/journal.pone.0026905.t003
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Finally, our study extends the limited information base currently

available for the baseline variation of blood gene expression

profiling in Chinese population. The clinical and transcriptomic

data described in the study have been made freely available and

should represent a useful resource for the design of future studies.

Supporting Information

Figure S1 The ectopic expression patterns of XIST and
RPS4Y1 in men and women. In x-axis, the samples were

arranged in accordance with the array Series 1–3 from the left to

the right. Black and red dots represent blood samples collected

from men and women, respectively. The y-axis indicates the gene

expression signal intensity.

(TIF)

Table S1 Primers of selected genes for real-time PCR.
(DOC)

Table S2 The proportion of total variation explained by
each principle component.
(DOC)

Table S3 The overview of variable-associated-gene lists
and enriched functional annotation terms.

(XLS)
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