
Original Article

Clonal Architectures Predict Clinical
Outcome in Gastric Adenocarcinoma
Based on Genomic Variation, Tumor
Evolution, and Heterogeneity
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Changhong Lian3, and Changqing Yang4

Abstract
Stomach adenocarcinoma (STAD) is a highly heterogeneous disease. Due to the lack of effective molecular markers and
personalized treatment, the prognosis of gastric cancer patients is still very poor. The ABSOLUTE algorithm and cancer cell
fraction were used to evaluate the clonal and subclonal status of 349 TCGA (The Cancer Genome Cancer Atlas)-STAD
patients. Non-negative matrix factorization was used to identify the mutation characteristics of the samples. Univariate Cox
regression analysis was used to determine the relationship between clonal/subclonal events and prognosis, and the Spearman
correlation was used to evaluate the relationship of clonal/subclonal events to tumor mutation burden (TMB) and neoantigens.
The evolution pattern of STAD demonstrated great tumor heterogeneity. TP53, USH2A, and GLI3 appeared earliest in STAD
and may drive STAD. CTNNB1, LRP1B, and ERBB4 appeared the latest in STAD, and may be related to STAD’s progress.
Univariate Cox regression analysis identified four early genes, eight intermediate genes, and seven late genes significantly
associated with overall survival. The number of subclonal events in the T stage was significantly different. The N stage, gender,
and histological type were significantly different for clonal events, and there was a significant correlation between clonal/
subclonal events and TMB/neoantigens. Our results highlight the importance of systematic evaluation of evolutionary models
in the clinical management of STAD and personalized gastric cancer treatment.
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Introduction

Stomach adenocarcinoma (STAD) is one of the four most

common cancers worldwide, and the second leading cause of

cancer-related deaths1. Despite some gastric cancer treat-

ment progress in recent years, prognoses are still poor2–3.

Therefore, there is an urgent need to explore its etiology and

pathogenesis.

Cancer is a disease caused by the gradual accumulation of

genomic variation, primarily by single-nucleotide variations

(SNVs) and somatic copy number alterations (SCNAs)4,5.

Comprehensive analysis of genetic and clinical studies

shows that some genes driving SNV or SCNA may be poten-

tial biomarkers6 that play an important role in tumor

occurrence and development.

The gradual accumulation of somatic changes drives

cancer development, and the mutations obtained at different

stages of tumor development may be related to different

clinical outcomes7. However, the chronology of somatic

events acquired during the evolution of STAD and its poten-

tial clinical effects have not been thoroughly studied.
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Genomic variation is distinct in different cancer cell sam-

ples; this phenomenon is called tumor heterogeneity8.

Cancer evolution and intratumoral heterogeneity have

attracted increasing attention in the field of cancer research.

The activity of these highly heterogeneous tumor cells leads

to different bodily responses to specific treatments9,10.

Full exon sequencing has shown significant tumor heteroge-

neity in somatic mutations between primary gastric cancer

and its associated lymph node metastases11. In addition,

studies of the sequenced gastric cancer genome have

revealed variable histology and two mutant subtypes.

The prognoses and treatment responses of patients in these

two subtypes are significantly different12. An in-depth

understanding of tumor heterogeneity helps reveal the

mechanism of tumor formation and evolution.

There are one or more subclonal driving events in differ-

ent subclonal tumors. Multiple subclones show genetic

changes in the same gene or genes that play a role in the

same pathway for a small number of tumor types. Previous

studies have shown that it is possible to reconstruct a single

tumor biopsy clone by estimating the cancer cell fraction

(CCF) carrying SCNA or SNP (single-nucleotide poly-

morphism)13–15. However, they demonstrated limited ability

to quantify the CCF of both SCNAs and SNVs in STAD.

In this study, we used TCGA-STAD genomic data to

analyze the clonal and subclonal composition of each

SNV and SCNA tumor sample. Some prognostic markers

related to clonal or subclonal events were identified, and

the relationship between clonal or subclonal events, tumor

mutation burden (TMB), mismatch repair genes (MMRs),

and new antigen was characterized. These characteristics

will deepen our understanding of the mechanism of

STAD tumorigenesis.

Materials and Methods

Data Download and Preprocessing

We used the GDC API to download the gastric cancer data

set from TCGA. These data included the copy number

variation (CNV) data set excluding germline differences, the

mutation data set processed by Mutect2 software, and clin-

ical characteristics of each sample (Supplemental Table S1).

The following steps of preprocessing were conducted on

the clinical sample: (1) samples without clinical information

or overall survival (OS) < 30 days were removed; (2) normal

sample were removed.

The SNVs were preprocessed in the following steps:

(1) silent and intron mutated sites are removed; (2) hypermu-

tated samples were removed. Hypermutated samples were

defined as samples with more than 11.4 mutations per Mb16.

The following steps were performed on the CNV: (1) data

with the interval > 500 kb were removed; (2) gencode.v 22 of

the GRh38 version was applied to map the CNV interval to

the corresponding genes. The statistics information of the

preprocessed TCGA-STAD is shown in Table 1.

Clonal Status Classification of SNV

The ABSOLUTE algorithm was used to calculate the purity,

ploidy, and absolute DNA copy number of each sample17.

The RunAbsolute function was used to set the parameters as

follows: max.sigma.h ¼ 0.2, min.ploidy ¼ 0.95, max.ploidy

¼ 10, max.non.clonal ¼ 1, copy_num_type ¼ “total,” min.-

mut.af ¼ 0.05, platform ¼ “SNP_6.0,” sigma.p ¼ 0, max.-

as.seg.count ¼ 1,500, and max.neg.genome ¼ 0.

The evaluation results of each patient are shown in Supple-

mental Table S2.

For each mutated site, including SCNAs and SNVs, the

numbers of mutated reads, unmutated reads, tumor purity,

and local SCNA could be used to evaluate the probability

distribution density of the CCF. The tumor DNA proportion

Table 1. Clinical Information of the Preprocessed Stomach
Adenocarcinoma Data Set.

Event

Alive 207
Dead 142
Stage_T
T1 16
T2 74
T3 161
T4 94
Un 4
Stage_N
N0 103
N1 93
N2 72
N3 71
Un 10
Stage_M
M0 311
M1 23
Un 15
Stage
I 46
II 109
III 145
IV 35
Un 14
Grade
G1 9
G2 124
G3 207
Un 9
Age
0-50 29
50-60 83
60-70 103
70-80 113
80-100 21
Gender
Female 124
Male 225
Median clonal 48
Median subclonal 6
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was calculated first, and then the allele fraction (AF) prob-

ability was calculated according to the binomial probability

density distribution. In this step, the influence of normal cell

components was cleared and the p(AF) was obtained.

The second step was to integrate all possible mutation multi-

plicities (m: 1 to local absolute copy number) and evaluate

CCF’s probability by p(AF). If the p (CCF � 0.85) is greater

than 0.5, the SNV and SCNA are defined as clones; other-

wise, they are defined as subclones.

Mutation Feature Analysis

Non-negative matrix factorization (NMF) is an unsupervised

clustering method widely used to discover tumor molecular

subtypes based on genomics18,19. After the mutation charac-

teristics in STAD were further observed, the NMF method

was used to cluster the samples based on SNVs to identify

the mutation characteristics of the samples, in which the NMF

method selected the standard “Brunet algorithm” for 50 itera-

tions. The cluster number k was set to 2 to 10, the seed set to

123,456, and the average contour width of the common mem-

ber matrix was calculated using the NMF package20.

The minimum member of each subclass was set to 10.

The cophenetic, dispersion, and rss indexes of k ¼ 2 to 10

were evaluated. According to these three indicators, we

finally determined three SNV signatures, and the scores of

those signatures in each sample are shown in Supplemental

Table S3. To evaluate the heterogeneity of mutant signa-

tures, we calculated the contribution of each mutant signa-

ture to each sample, using the 30 known mutant signatures

provided by COSMIC. We calculated the similarity between

mutant signatures and COSMIC mutational signatures21.

Analysis of Genomic Variation in Clonal and Subclonal
Events

To observe the relationship between clonal, subclonal, and

CNV, the SCNA of each sample obtained by ABSOLUTE

was identified and the SCNA interval satisfying the follow-

ing conditions was retained: (1) modal CN �2 (loss) or

modal CN �2 (gain); (2) SCNA interval <1 Mb. Then the

SCNA was mapped to the gene using the coordinate position

of gencode, and the relationships between cloned and

subcloned genes and CNV were analyzed.

Analysis of Chronological Relationship Between
Mutations and Tumor Evolution

A sample’s clonal and subclonal events were used to con-

struct the possible chronology of tumor evolution mutations.

When clonal and subclonal events appeared in the same

sample, an edge was established between the two to analyze

all the samples in the same manner. Finally, a gene network

with a specific direction was obtained. The network node

represented the gene, and the edge indicated a clonal and

subclonal relationship between the two genes.

Enrichment analysis was performed according to the num-

ber of in-edges and out-edges of each node (gene), Fisher’s

exact test was used to assess significance, and the Benjamini–

Hochberg (BH) method was used to calculate false discovery

rate (FDR). For SNV and SCNA, the nodes (genes) with FDR

<0.05 and out-edges >in-edges were defined as early genes;

similarly, the nodes with FDR <0.05 and in-edges >out-edges

were defined as late genes, and the genes of other cases were

defined as intermediate genes. Because we calculated the

genes that produced SCNA based on the CNV interval and

gff interval of the chip data, some SCNA genes might present

“false positives,” affecting the SNV results. We, therefore,

inferred the temporal order of SCNA and SNV. To facilitate

the display, we removed some conflicting edges and, finally,

obtained SCNA pairs and SNV pairs.

Sample Collection

STAD and adjacent tissues were collected from three

patients, immediately placed in liquid nitrogen, and pre-

served at �80�C. Patients and their families involved in this

study were fully informed, and informed consent was

obtained from the participants. This study was approved

by the Ethics Committee of Heping Hospital, affiliated with

Changzhi Medical College.

Western Blotting

Western blotting was conducted according to the standard

protocols. We used primary antibodies raised against

glyceraldehyde 3-phosphate dehydrogenase (GAPDH;

Santa-Cruz Biotechnology, Foster City, CA, USA),

DYNC2H1, GLI3, PPP1R1B, USH2A (Cell Signaling Tech-

nology, Danvers, MA, USA), NEUROD2, and OBSCN (Pro-

teintech, Shanghai, China). Goat anti-mouse and anti-rabbit

antibodies conjugated with horseradish peroxidase were

used as secondary antibodies (Jackson ImmunoResearch,

West Grove, PA, USA), and we detected the blots using

enhanced chemiluminescence (Dura, Pierce, NJ, USA).

RNA Extraction and Real-Time Polymerase Chain
Reaction Assay

Total RNA was extracted using TRIzol reagent (Invitrogen,

Carlsbad, CA, USA) following the manufacturer’s protocol

and was reverse transcribed into complementary DNA using

a Superscript Reverse Transcriptase kit (Transgene, Illkirch,

Strasbourg, France). A Super SYBR Green Kit (Transgene)

was used to carry out real-time polymerase chain reaction

(PCR) in an ABI7300 real-time PCR system (Applied

Biosystems).

The primer pairs were DYNC2H1 forward 50TCCAA

CACGATTGAGTTTGGTG30, reverse 50GGTGCGAATA

CTTGCCGTACT30; GLI3 forward 50GAAGTGCTCCAC

TCGAACAGA30, reverse 50GTGGCTGCATAGTGAT

TGCG30; PPP1R1B forward 50CAAGTCGAAGAGACC
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CAACCC30, reverse 50GCCTGGTTCTCATTCAAATTG

CT30; USH2A forward 50CTTTTCCCAAGGCTGGAG

AAC30, reverse 50CAGTGTAGGTAGGGTGTGAAGA30;
NEUROD2 forward 50TGCTACTCCAAGACGCAGAAG30,
reverse 50CACGTAGGACACTAGGTCTGG30; OBSCN for-

ward 50CGGTTCCCTTCAAAAAGCGG30, reverse 50CCTC

CTCGATGCCGTACTTG30; GAPDH forward 50GAGA

GACCCTCACTGCTG30, reverse 50GATGGTACATGACA

AGGTGC30. The relative gene expression levels for protein

were normalized against those of GAPDH in each sample,

and each sample was run in triplicate and the results

averaged.

Statistical Analysis

The Kaplan–Meier method was used to construct survival

curves for the subgroups in each data set, and the log-rank

test was used to determine if differences were statistically

significant (assigned at P <0.05). The chi-squared test was

used to test the significance of sample overlap between clin-

ical features and clonal or subclonal events. The BH method

converts the P-value to an FDR. All of the above analyses

were completed using R software (v. 3.5.1).

Results

Genomic Mutant Signature Analysis of STAD

We estimated the CCF of each SNV and SCNA in all samples

(see Materials and Methodology) (Supplemental Table S4).

There were 24,359/10,480 clonal/subclonal events (69.9%)

obtained for SNV and 129048/5191 clonal/subclonal events

(96.1%) for SCNA.

Mutated signatures can reflect the potential effects of

previous exposure to different carcinogens and some charac-

teristic changes associated with DNA damage and repair in

STAD. The Brunet algorithm in NMF was used to identify the

SNV signature. To ensure that the optimal number of SNV

signatures could be identified, we evaluated cophenetic and

rss when k ¼ 2 to 10. Finally, according to the trinucleotide

mutation pattern, three SNV signatures (k¼ 3) were chosen as

the optimal quantity (Supplemental Fig. S1). They were

defined as signatures A-C. According to the base mutation

pattern, signature A was mainly composed of C > T, signature

B was mainly composed of C > A, C > G, and C > T, and the

mutation pattern of C > G only appeared in signature B.

Signature C mainly consisted of T > G (Fig. 1A). No significant

difference was observed between the clonal and subclonal con-

tributions to the three SNV signatures (Supplemental

Fig. S2A), demonstrating that clonal events and subclonal

events had a similar mutation pattern.

The contributions of signatures A-C were calculated in each

sample to evaluate the heterogeneity of SNV signatures (the

larger the contribution, the higher the proportion of the signa-

ture in the sample). Signature A accounted for a large propor-

tion in most samples, while signatures B and C accounted for

a high proportion only in specific samples (Fig. 1B). Using

the known 30 mutational signatures provided by COSMIC

(https://cancer.sanger.ac.uk/cosmic), we calculated the cosine

similarity between three signatures and COSMIC mutational

signatures. Signature B had high similarity with signatures 3,

13, C, and 17 (Fig. 1C). The similarity between signature A

and signature 1 was the strongest (Supplemental Fig. S2B).

We systematically analyzed the relation between the three

SNV signatures and clinical features of tumor–necrosis–

metastasis (TNM) stage, clinical stage, grade, gender, and

age, and found no association between the three SNV sig-

natures and all variables except the M stage and age. The

scores of signature B and signature C in M0 samples were

significantly higher than those in the M1 stage (Supplemen-

tal Fig. S3A), and signature A was positively correlated with

age (Supplemental Fig. S3B).

Variation Analysis of Clonal and Subclonal Genomes

The clonal and subclonal events of CNV and SNV were

integrated. The CNV and SNV genes with more than 5%
occurrence times in all samples were selected, and we

obtained 46 CNV genes and 101 SNV genes (Supplemental

Table S5), respectively, with the highest occurrence fre-

quency. The top 30 genes are shown in Fig. 2. TP53, TTN,

and MUC16 genes showed the highest number of mutations

(>20%), and the major mutation was clonal events (Supple-

mental Fig. S4, enrichment P < 0.05, Supplemental Table

S6), indicating that these genes were more likely to occur as

early mutation events. The number of clonal and subclonal

mutations in oncogenes such as PIK3CA was relatively

small (<10%).

Chronological Relationship Between Mutation and
Tumor Evolution

To analyze the mutations involved in the occurrence and

development of STAD, 46 CNVs and 101 SNVs with the

highest mutation frequencies were sorted according to CCF

(Fig. 3A). Overall, the CCF of CNV was significantly higher

than that of SNV (rank test P <1e-5, mean value of CCF

0.9287/0.9003). The CNV gain/loss was very high (gain/

loss:1214/3).

We used clonal and subclonal events from a sample to

construct the sequence of possible mutations during tumor

evolution and obtained 369 CNV pairs (Supplemental Table

S7) and 119 SNV pairs (Supplemental Table S8). Five early

CNV genes and eight early SNV genes (Supplemental

Tables S9 and S10) were obtained by edge enrichment anal-

ysis. For SNV, TP53, USH2A, and GLI3 appeared the

earliest in STAD, indicating they could be STAD drivers.

CTNNB1, LRP1B, and ERBB4 appeared the latest in STAD,

which might be related to STAD’s progress (Fig. 3B).

CNV, MYC, KRT14, and KRT16 were identified as early

genes and metaphase genes, and KRAS, ERBB2, and

CCNE1 were identified as late genes (Fig. 3C).
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Validation of the Prognostic Genes in Clonal/Subclonal
Events in the Database

The univariable Cox analysis was performed on the 46

high-frequency CNV genes and 101 SNV genes to study the

effect of clonal and subclonal events on patient survival.

We selected the first two genes with the most significant

prognostic significance in the early stage (USH2A, GLI3)

(Fig. 4A, B), the middle stage (DYNC2H1, OBSCN) (Fig.

4C, D), and the late-stage (PPP1R1B, NEUROD2) (Fig. 4E,

F). We also used the GEPIA database to analyze the correla-

tion between genes and clinical stage and found that only

DYNC2H1 and OBSCN expressions were positively

correlated with the clinical stage. The higher the clinical

stage, the more the gene expression. Subsequently, we used

three pairs of gastric cancer and paracancerous tissue sam-

ples to verify the gene’s protein expression, and the results

were consistent with our analysis (Fig. 4G, H).

In the Oncomine database, our screening criteria were

“THRESHOLD (P VALUE) <0.05.” PPP1R1B, USH2A,

OBSCN, and NEUROD2 were highly expressed in cancer

tissues, especially PPP1R1B, highly expressed in all gastric

cancer studies. DYNC2H1 is expressed in both cancer and

paracancerous tissues (Fig. 5A).

We selected some of the gastric cancer microarray data

sets for difference analysis. Supplemental Fig. S5A–E

shows the expression of DYNC2H1, OBSCN, NEUROD2,

USH2A22–24, and PPP1R1B in the Oncomine database (GLI3

demonstrated no significant difference). We used TCGA-

STAD data to further analyze the expression of USH2A, GLI3,

Figure 1. Distribution of mutant signatures of the TCGA STAD samples. A. The three mutant signatures identified by NMF; B. the
composition of the three signatures in STAD samples; C. the composition of 30 signatures in COSMIC STAD samples.
STAD: stomach adenocarcinoma; TCGA: The Cancer Genome Cancer Atlas.
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DYNC2H1, OBSCN, NEUROD2, and PPP1R1B25. The GLI3

gene expression was significantly lower in TCGA cancer tis-

sues, and USH2A and PPP1R1B were significantly highly

expressed in TCGA cancer tissues compared to normal tissues

(Supplemental Fig. S5F–H).

The Human Protein Atlas (https://www.proteinatlas.org/)

provides information on the tissue and cell distribution of

26,000 human proteins. It primarily uses specific antibodies

to study protein expression in cell lines, normal tissues, and

tumor tissues. We explored the expression of four genes:

GLI3, DYNC2H1, OBSCN, and PPP1R1B in normal and

tumor tissues (there was no information in the database on

genes USH2A and NEUROD2). The expression of PPP1R1B

and OBSCN was significantly high in cancer tissues, and the

expression of DYNC2H1 in cancer tissues was stronger than

that in para-cancerous tissues. GLI3 was significantly high in

normal samples (Fig. 5B–E).

Protein and mRNA Validation of the Prognostic Genes
In Vivo

We analyzed three pairs of STAD tissues and para-cancerous

controls to validate the protein and mRNA levels of prog-

nostic genes. The expression of PPP1R1B, USH2A, and

OBSCN was significantly higher in tumor tissues. DYNC2H1

was expressed in both cancer and para-cancerous tissues.

GLI3 was significantly higher in normal tissues. The trends

of our experimental results were mostly consistent with

those of the database (Fig. 6).

Analysis of the Correlation Between Clonal or Subclonal
Events and Clinical Characteristics

The differences between clonal and subclonal events by the

TNM stage, clinical stage, age, gender, and histological type

were analyzed. There were significant differences in the

number of subclonal events in the T stage (Fig. 7A), whereas

the N stage, gender, and histological type were significantly

different in clonal events (Fig. 7B–D). The risk of gastric

adenocarcinoma is reportedly higher in males than females,

consistent with our observation that clonal events in males

were significantly higher than females (Fig. 7C). Papillary

and tubular types were significantly higher than those in

other types (Fig. 7D). There was no significant difference

observed in the clonal/subclonal events and M stage, clinical

stage, age, or grade (Supplemental Fig. S6).

Relationship Between Clonal /Subclonal Events and
TMB/Neoantigens

The TMB and neoantigens are important biomarkers in

immune checkpoint therapy, and clonal/subclonal events

Figure 2. Frequency distribution of clonal and subclonal events in STAD samples (showing the first 30 genes). Top panel: quantitative
statistics of clonal and subclonal events. Bottom panel: the clonal and subclonal status of the STAD samples. The genes tagged with stars
represent that they have significant difference in clonal/subclonal events. Un indicates that the identification of clonal or subclonal events
cannot be made.
STAD: stomach adenocarcinoma.
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also substantially affect the occurrence and progression of

tumors. In evaluating the relationship between clonal/sub-

clonal events and TMB and neoantigens, we found the

distributions of TMB, neoantigen, and clonal/subclonal

events were non-normal (Shapiro test P < 1e-5). The Spear-

man method was, therefore, used to evaluate the correlations

among them. The results showed a highly significant rela-

tionship between clonal events and TMB and neoantigen

(Fig. 8A–C), but a weak correlation between subclonal

events and TMB and neoantigen (Fig. 8D).

The mutation of MMRs has an important effect on the

mutation burden of the genome. The clonal/subclonal

difference between MMR-mutated samples (Mut) and non-

mutated samples (wild type [WT]) was further evaluated.

The clonal/subclonal events in the Mut group were higher

than that in the WT group, but the differences were not

significant, which might be related to the smaller sample

size of the Mut group (Fig. 8E). The TMB and neoantigens

in the Mut group were significantly higher than those in the

WT group (Fig. 8F), but there was no significant difference

between them in OS (Fig. 8G).

Discussion

In recent years, researchers have studied the molecular

mechanism of STAD and the genomic variation in gastric can-

cer. Second-generation sequencing, as a high-throughput

method, can systematically identify genomic variations in the

cancer genome26. Studies have reported genomic mutations in

gastric cancer, such as TP53, PIK3CA, CTNNB1, and

CDH127. In addition, 59% of gastric cancer has mutations in

chromatin remodeling genes such as ARID1A, PBRM1, and

SETD228. As two important genomic variation sources, SNV

and SCAN have played an important role in gastric cancer.

Although many studies have utilized bioinformatics

methods to find key molecules and potential regulatory

Figure 3. The temporal order of mutation acquisitions during STAD evolution. A. CCF distribution of top 5% mutant genes. Genes with
only clonal mutations are removed. B. The temporal maps of SNV acquisitions in STAD. C. The temporal maps of CNV acquisitions in STAD.
B and C diagrams delete some genes without edges. The arrow indicates that the two genes appeared in the same sample, and the arrow
width indicates the number of times the event occurred. The genes labeled red correspond to the early genes, the gray correspond to the
intermediate genes, and the blue correspond to the late genes. FDR <0. 05 was selected for temporal order significance test.
CCF: cancer cell fraction; CNV: copy number variation; FDR: false discovery rate; STAD: stomach adenocarcinoma.
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Figure 4. Relationship between clonal/subclonal status and overall survival rate of CNV and SNV. A, B: the KM curve of clonal/subclonal
status and OS of early genes; C, D: the KM curve of clonal/subclonal status and OS of intermediate genes; E, F: the KM curve of clonal/
subclonal status and OS of late genes. P values are calculated by log-rank test. G-H: genes expression in GEPIA database.
CNV: copy number variation; OS: overall survival; SNV: single-nucleotide variation.

Figure 5. A. Genes expression in Oncomine database; B: GLI3 expression in HPA database; C: DYNC2H1 expression in HPA database; D:
OBSCN expression in HPA database; E: PPP1R1B expression in HPA database.
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pathways related to tumor prognosis or diagnosis, few stud-

ies have been based on tumor evolution analysis to provide

effective prognosis and other related information, especially

in gastric cancer. To the best of our knowledge, our research

is the first to explore the biological significance and potential

target molecules of tumor evolution in gastric cancer.

In this study, we obtained three SNV signatures (A–C)

based on the trinucleotide mutation pattern, and these signa-

tures were found to be similar to known mutant signatures

provided by COSMIC. It is found that signature B and sig-

nature 3, and signature C and signature 17 have high simi-

larity, Signature A and signature 1 demonstrated the best

similarity. For example, signature 3 is associated with the

repair failure of double-strand breaks of homologous recom-

bined DNA, mainly found in breast, ovarian, and pancreatic

cancers. Apart from gastric cancer, signature 17 has also

been found in esophageal cancer, breast cancer, liver cancer,

lung adenocarcinoma, B-cell lymphoma, and melanoma, but

its relationship with tumors is still unknown. Signature 1 had

been found in all cancer types and most cancer samples. It is

generated by the endogenous mutation caused by the spon-

taneous deamination of 5-methylcytosine. Further, we sys-

tematically analyzed the relation between the three SNV

signatures and clinical features; it showed that the scores

Figure 6. Protein and mRNA validation of the prognostic genes in vivo. A. Protein expression of six genes in western blot; B. mRNA
expression of six genes in polymerase chain reaction.
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of signature B and signature C in M0 samples were signif-

icantly higher than those in the M1 stage, and signature A

was positively correlated with age.

Tumorigenesis is a process of dynamic evolution, and

tumor heterogeneity originates from the evolution of different

subclones in tumor evolution. In the process of occurrence

and development of tumors, due to the accumulation of muta-

tions, the clonal type of tumor cells constantly changes29. This

study attempted to explore the evolutionary model of clonal

and subclonal in gastric cancer. First, 46 SCNA and 101 SNVs

with high-frequency mutations were obtained. As the number

of mutations in TP53, TTN, and MUC16 genes was the high-

est among all samples (>20%) and mainly clonal events, these

genes are more likely to appear as early events. In contrast, the

number of clonal and subclonal mutations in common proto-

oncogenes, such as PIK3CA, is relatively small (<10%).

However, the CNV gain of MIEN1, GRB7, and PNMT genes

were the highest (>10%) among all samples.

We analyzed the relations between mutation and tumor

evolution in clonal/subclonal events. A group of genes with

mutations in the early, intermediate, and late stages of tumor

evolution were obtained, and the expressions of significantly

prognostic genes were verified with clinical samples

(USH2A, GLI3, DYNC2H1, OBSCN, NEUROD2, and

PPP1R1B). The time of occurrence of these gene mutations

may have an important impact on tumor occurrence and

progression.

Finally, we focused on the TMB and neoantigens as impor-

tant biomarkers for immune checkpoint therapy30. Tumors

with high mutational burden are more likely to respond to

anti-immunosuppressive strategies based on a checkpoint

blockade31–34. Our results show that the emergence of clonal

events is an important contributor to the TMB and neoanti-

gens. The mutation of the MMR’s key gene has an important

effect on the genome’s mutation load. We found that TMB

and neoantigens in the mutation group were significantly

higher than those in the WT group, but there was no signifi-

cant difference in prognosis. Although the abnormality of

MMR can have an important impact on genome stability, it

has a complex relationship with prognosis.

Although we have systematically analyzed the mutation

characteristics in gastric cancer evolution in large samples

by bioinformatics, additional research with larger sample

sizes is needed. We detected data with both exome and

CNVs. Furthermore, the data with clinical follow-up only

existed in the TCGA cohort, so it is difficult for our results

to be verified in other cohorts. We expect future data collec-

tion and analyses to support our conclusions.

In conclusion, we obtained the whole-genome sequencing

data of 349 patients from TCGA. We analyzed the chronol-

ogy, mutation characteristics, and evolutionary patterns of

frequent somatic events in gastric cancer, evaluated their

clinical correlation with patients, and verified the expression

of mutant genes with significant prognoses. Our results

revealed specific mutation characteristics and tumoral het-

erogeneity changes during the evolution of gastric cancer.

Furthermore, we proposed an evolutionary model of gastric

cancer development, and found some clonal or subclonal

events as potential prognostic markers.
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Figure 7. A. The quantitative distribution of clonal events and subclonal events on T stage; B. the quantitative distribution of clonal events
and subclonal events on N stage; C. the quantitative distribution of clonal events and subclonal events on gender; D. the quantitative
distribution of clonal events and subclonal events on different tissue types.
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