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Abstract

Motivation: When performing genome-wide association studies conventionally the additive genetic model is
used to explore whether a single nucleotide polymorphism (SNP) is associated with a quantitative trait. But for
variants, which do not follow an intermediate mode of inheritance (MOI), the recessive or the dominant genetic
model can have more power to detect associations and furthermore the MOI is important for downstream analy-
ses and clinical interpretation. When multiple MOIs are modelled the question arises, which describes the true
underlying MOI best.

Results: We developed an R-package allowing for the first time to determine study specific critical values
when one of the three models is more informative than the other ones for a quantitative trait locus. The
package allows for user-friendly simulations to determine these critical values with predefined minor allele
frequencies and study sizes. For application scenarios with extensive multiple testing we integrated an in-
terpolation functionality to determine critical values already based on a moderate number of random
draws.

Availability and implementation: The R-package pgainsim is freely available for download on Github at https://
github.com/genepi-freiburg/pgainsim.

Contact: pascal.schlosser@uniklinik-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

When performing genome-wide association studies (GWAS) addi-
tive models are state-of-the-art to explore associations of SNPs and
quantitative traits regardless of the actual mode of inheritance
(MOI). Recessive and dominant models are able to improve statistic-
al power to identify non-additive variants (Tam et al., 2019) and for
example a non-additive quantitative trait locus (QTL) has been
observed in FTO (Wood et al., 2016). The knowledge of the MOI of
a QTL is important for clinical interpretation and subsequent
analyses.

After computing additive, recessive and dominant models in a
GWAS and the rejection of multiple null hypotheses for a QTL
the question arises which assumed MOI describes the data best. In
studies that do consider multiple MOIs, this question is rarely
examined in detail (Kraus et al., 2015). To answer this we
adapted the p-gain concept introduced by Petersen et al. (2012) in
the context of metabolome-wide GWAS (mGWAS). We trans-
ferred this to the difference between genetic models in a similar
genome-wide manner.

2 Approach

We define the p-gains for a locus as follows:

p�gainrecessiveðyÞ :¼minðp�valueadditiveðyÞ;p�valuedominantðyÞÞ
p�valuerecessiveðyÞ

(1)

p�gainadditiveðyÞ :¼
minðp�valuerecessiveðyÞ;p�valuedominantðyÞÞ

p�valueadditiveðyÞ
(2)

p�gaindominantðyÞ :¼
minðp�valueadditiveðyÞ;p�valuerecessiveðyÞÞ

p�valuedominantðyÞ
(3)

Here, we use p� valueMOIðyÞ to reference the P-value corre-
sponding to a t-test for association between a locus and a trait with
observed values y based on a linear regression modelled with the
specific MOI.

To assess for which critical value of the p-gain the model can be
viewed as more informative than the others we derive critical values
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through a simulation. By default the simulation is performed under
the assumption of no genetic association (Supplementary Material).

3 Materials and methods

3.1 Properties of the p-gain
By definition (1)–(3) only the p-gain of the model with the lowest P-
value can be greater than 1. The definition of the three genetic mod-
els for a biallelic SNP and a quantitative trait is given in the
Supplementary Material. Because of the relation between these mod-
els the recessive and dominant p-gains are the same when the coded
allele is flipped and the additive p-gain remains unaltered for flipped
alleles [Supplementary Material (4, 5)].

Considering the p-gain as a random variable depending on a trait
Y and a SNP in Hardy-Weinberg equilibrium under the null hypoth-
esis of no genetic association the p-gain depends only on Y and the
allele frequency AF at the SNP [Supplementary Material (6)]. Thus,
for the cumulative distribution function (CDF) of the p-gain under
the null hypothesis we have

CDFðp� gaindominantðY;AFÞÞ ¼ CDFðp� gainrecessiveðY;1� AFÞÞ;
(4)

CDFðp� gainadditiveðY;AFÞÞ ¼ CDFðp� gainadditiveðY; 1�AFÞÞ:
(5)

3.2 R-package pgainsim
In the R-package pgainsim the traits are normally distributed with a
user-specified study size. By default the genotypes of the SNPs are
simulated independently from the trait according to the Hardy-
Weinberg equilibrium by drawing twice out of the set fA, Bg of two
potential alleles with the probability of B being a user-specified al-
lele frequency AF. We receive the p-gains by computing the P-values
of the models based on the simulated data. For AF! 1 the correl-
ation between the t-statistics of the additive and recessive models
increases (Fig. 1a) and hence, the variance of the recessive p-gain dis-
tribution decreases as shown in Figure 1b based on 200 million data-
points. The function p_gain_simulation provides a dataset of
simulated p-gains of different MOIs using pgain_types (rec, dom,
add), AFs (vector 2 ð0; 1Þm), n_study (study size 2 N) and n (number
of random draws 2 N) as input. Following equation (5) we combine
the simulations for AF and 1-AF for the additive p-gain.
Additionally, p-gains can be simulated with an assumed true effect
(Supplementary Material). With the function p_gain_density_plot
the density of the simulated p-gains of a user-specified MOI is plot-
tet for different AFs (Fig. 1b).

When a sufficient number of random draws were performed the
observed ð1� aÞ-quantiles can be used as critical values, where a is
the desired significance threshold. The function p_gain_quantiles
provides ð1� 0:05=ntestsÞ-quantiles based on the simulated p-gains
with ntests being the number of parallel tests. For applications with
extensive multiple testing we implemented an interface for an

extension of the empirical critical values. By use of the function
p_gain_quantile_fit a log-linear fit of the function of ntests on the
observed ð1� 0:05=ntestsÞ-quantiles of class f ðxÞ ¼ log dðaþ b � xÞ is
determined and critical values to the desired number of tests are
interpolated (Fig. 1c). The density of the additive p-gain and the
observed quantiles are shown in Supplementary Figure S1.

3.3 Application example
To illustrate the p-gain concept we performed an additive, recessive
and dominant GWAS of the concentration of the metabolite glutam-
ate in urine similarly to the additive GWAS in Schlosser et al. (2020)
(Supplementary Material). There was one QTL identified by all
three models. The lowest P-value was observed for rs4900072
(p� valuerecessive ¼ 1:7e� 58, MAF¼33%, p� gainrecessive ¼ 2:6e
þ22). Using the pgainsim package we determined the critical value
for the recessive p-gain as 39 309 based on 200 million random
draws simulated under no genetic association, MAF¼33% and a
study size of 1627 and hence were able to reject the additive and
dominant MOI (Supplementary Material).

4 Discussion

State-of-the-art GWAS model SNPs in an additive fashion. If consid-
ered at all the MOI is determined by the lowest P-value, which cor-
responds to a p-gain statistic greater one, or by the graphical
representation of the gene dosages (Kraus et al., 2015; Schlosser
et al., 2020). This not only leads to a loss in power for associations
with a true recessive or dominant MOI but also to false positive
detections of non-additive MOIs.

An application of particular importance is mGWAS. Here we il-
lustrate the application of the p-gain by a GWAS of glutamate con-
centrations and identified the recessive association with a variant in
DGLUCY, which encodes D-glutamate cyclase that converts D-glu-
tamate to 5-oxo-D-proline. When such an application of the critical
values of the p-gain is extended to the metabolome-wide fashion of
an mGWAS we suggest the binning of AFs in 5% intervals, determin-
ation of critical values for all interval limits and application of the
more stringent of the two critical values for AFs within the interval.

We published an R-package rather than a reference set of critical
values based on a large simulation as study size will influence the cor-
relation between t-statistics of the three models and the appropriate
study size should be used in the simulations. The R-package is based
on the assumption of a linear regression model with a biallelic SNP
and a continuous normally distributed outcome variable, as usually
done in GWAS. Should one be interested in non-normal traits, such
as binary traits, an adapted simulation design would be needed.

5 Conclusion

The R-package pgainsim allows for the first time the differentiation
of MOIs in a study and allele frequency specific manner. This will
lead to increased power for detection of non-additive genetic associ-
ations and inform downstream analyses and clinical interpretation.
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Fig. 1. (a) Recessive and dominant t-statistics for multiple AFs and their marginal distributions. (b) Density of recessive p-gain for multiple AFs based on 200 million random

draws with a study size of 5000, the vertical line marks one. (c) Recessive p-gain quantiles for multiple AFs and their log-linear fit. For interpolation the quantiles up to 50 000

tests were used
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